Breaking the Rabin-Williams digital signature
system implementation in the Crypto++
library

Evgeny Sidorov,
Yandex LLC
e-sidorov@yandex—-team.com

April 16, 2015

Abstract

This paper describes a bug in the implementation of the Rabin-
Williams digital signature in the Crypto++ framework. The bug is in
the misuse of blinding technique that is aimed at preventing timing
attacks on the digital signature system implementation, but eventu-
ally results in an opportunity to find the private key having only two
different signatures of the same message. The CVE identifier of the
issue is CVE-2015-2141.

1 Introduction

The Rabin-Williams digital signature system (RW) is a signature system
based on the difficulty of the integer factorization problem. Originally this
signature system was proposed by Rabin in [9] and was improved by Williams
n [I0]. The RW digital signature is similar to the RSA system, but it has a
number of advantages. One of them is the use of a small exponent (usually
it’s 2) that makes the verification procedure blazingly fast.

The RW signature system variant was standardized by IEEE in [2] and
IS0 [3], but nowadays there are few implementations of it in popular cryp-
tographic frameworks though a number of open source reference implemen-
tations can be easily found in the Internet.

Crypto++ ([I]) is a popular cryptographic framework that contains an im-
plementation of the Rabin-Williams signature system as well as a number of

http://cryptopp.com
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-2141
http://cryptopp.com

padding schemes used with it. The implementation corresponds the descrip-
tion of the RW system given in [2], but with a small difference. The authors
decided to enforce the code with a blinding technique aimed at preventing
timing attacks. The technique works for the RSA signature system but in
case of the RW system it results in an opportunity to find the private key
having at least two signatures for the same message.

In a nutshell, the class RWSS<P1363_EMSA2 ,H>: : Signer (where His a hash
function) being applied to a fixed message several times produces a sequence
of signatures s1, 9, s3, ... so that

s; =3 (mod N)

where N = p- ¢ is a RW modulus and s;, s; are likely to be different.
Simply computing GCD(s; —s;, N) an attacker can easily reveal a non-trivial
factor of NV and thus can recover the private key.

2 Modular square roots

This section contains some well-known number theory facts and definitions
that will be used later on. All these facts can be found in [§].

Let Z! be the multiplicative group of integers modulo n. Let QR(n) be
the subgroup of quadratic residues modulo n, and QN R(n) is the set of all
non-residues modulo n.

Definition Let p and ¢ be two distinct primes such that p = 3 (mod 4) and
q = 3 (mod 4), and let n = p - q. Such integers n are called Blum integers.
Let a € QR(n) be a quadratic residue modulo n. The unique square root of
a in QR(n) is called the principal square root of a modulo n.

Theorem 2.1 If n =p-q, p and q are two distinct primes each congruent
to 3 modulo 4, then the function f : QR(n) — QR(n) defined by f(z) =

22 (mod n) is a permutation. The inverse function of f is:
f—l(x) — ((p=1)-(g=1)+4)/8 (mod n)

To inverse the function f there’s no need to use the formula above. Square
roots of x modulo p and ¢ can be found separately and then turned into one
modulo n using the well-known CRT (Chinese Remainder Theorem) theorem.

If p=3 (mod 8) and ¢ = 7 (mod 8), then Legendre symbols of (—1) and
2 are

() ()= () ()

Using these values and the fact that for an arbitrary integer x its Jacobi
symbol is (p%]) = (%) . (%) we can tweak any element of Z; so that the
Jacobi symbol of the tweaked value is 1.

Definition Let n = p- ¢ be a product of two distinct primes p = 3 (mod 8)
and ¢ = 7 (mod 8). Let h € Z}. Triplet (e, f,s) wheree € {—1,1}, f € {1,2}
and e - f - s> = h (mod n) is called tweaked square root of h modulo n.

If (e, f,s) is a tweaked square root of h modulo n and s € QR(n), then
the vector (e, f, s) is called principal tweaked square root of h modulo n.

If (e, f, s) is a principal tweaked square root of h modulo n, then the vector
(e, f,min{n — s, s}) is called |principal| tweaked square root of h modulo n.

The following theorem shows how tweaked values are used to build a
digital signature system.

Theorem 2.2 Let p and q be distinct primes each congruent 3 modulo 4,

and let n = p-q. Let x be an integer having Jacobi symbol (%) =1, let

d=((p—1)-(g—1)+4)/8. Then

2d Z, fo S QR(TL) (1)
n—ua, ifre QNR(n)

And the following two results are used to break the implementation of
the Rabin-Williams digital signature system.

Theorem 2.3 Letx, y, n be integers. If v* = y* (mod n) but x # +y (mod n),
then GCD(x — y,n) is non-trivial factor of n.

Theorem 2.4 Let n = p-q a product of two distinct primes. If x, y are
random elements of Z* so that x* = y* (mod n), then the probability that
GCD(x — y,n) is a non-trivial factor of n equals %

3 Rabin-Williams digital signature system

This section describes the Rabin-Williams signature system and EMSA2 en-
coding scheme in the way they are defined in [2]. Although there are some
variants of this digital signature system defined in [2], the only one variant
is implemented in the Crypto++ library and the only this variant will be
described here.

http://cryptopp.com

3.1 Public and private keys

The public key in the RW digital signature system is N = p - ¢ a product of
two large primes p and ¢ such that

p =3 (mod 8) and g = 7 (mod 8).

The exponent is the fixed value 2 and so there is no need to include it
into the public key.

The private key of the RW system is a tuple (p,q,c) where p and ¢ are
as stated above and ¢ = ¢! (mod p).

3.2 The signing algorithm
Input:

1. The signer’s RW private key (p, ¢, ¢)
2. The message representative, which is an integer f such that
0< f<Nand f=12 (mod 16)

Output: The signature which is an integer s such that 0 < s < %

Operation:

if the Jacobi symbol (%) =1 then
u<+ f
else
u< 1
end if
ji < eaxplu, (p-+1)/4) (mod p)
j2 4= exp(u, (¢+1)/4) (mod q)
h < c- (j1 = j2) (mod p)
s < min(j, N —j)
return s
The result value s is the third component of the |principal| tweaked square
root of f modulo N, but in this particular case there is no need to store
tweaks as they can be easily recovered knowing that f = 12 (mod 16). The
recovering process is shown in the verification algorithm.

3.3 The verification algorithm
Input:

1. The signer’s public key N.

2. The signature to be verified, which is an integer s.

Output: The message representative, which is an integer f such that 0 <
f <N and f =12 (mod 16) or “invalid”.

Operation:
if s ¢ [0, %] then return “invalid”
end if
t; < s? (mod N)
ty N — t1
if t; = 12 (mod 16) then
f <t
else if t; = 6 (mod 8) then
f —2-t4
else if t, = 12 (mod 16) then
[t
else if ¢, = 6 (mod 8) then
f — 2t
else return “invalid”
end if
return f

3.4 EMSA2 encoding scheme

Before applying the signing procedure the message representative should be
computed. As it was mentioned above the message representative must be
congruent to 12 modulo 16 and to achieve this a proper message encoding
scheme should be used. There are several different approaches to computing
message representatives. The standard [2] defines only two of them - EMSA2
and EMSA4.

Although both of these schemes are implemented in the Crypto++ frame-
work, only EMSA2 is mentioned in its documentation in relation with the RW
digital signature, and only this scheme is affected by the issue as it doesn’t
add any randomness during computation of a message representative.

To generate the representative of a message m (here we assume that the
length of the message is greater than 0) according to the EMSA2 scheme the
following steps should be performed:

1. Compute the hash value H of the message m with the selected hash
function

2. Make an octet string in the following way

http://cryptopp.com

0x6b||0xbb . .. 0xbb||0xbal|H||HashID||0xcc

where HashID is a one byte that defines the used hash function. A
complete list of the HashID values can be found in [2].

The number of Oxbb. . .0xbb octets is len(N) —len(H)—4, where len(N)
and len(H) are the number of octets in binary representation of N and the
number of octets in hash value H respectively. The EMSA2 padding scheme
doesn’t include any randomness into a message representative.

4 Timing attacks on modular exponentiation

Many public-key algorithms use modular exponentiation and usually this op-
eration is performed with the following algorithm (can also be found in [7]).

Input: Integers x, y, N. Binary representation of x consists of w bits.
Output: Integer R = y* (mod N).
Operation:
So 1, k<« 0
while £ < (w —1) do
if (bit k of x is 1) then
Ry, < (s -y) (mod N)
else
Rk <— Sk
end if
Spy1 < RE (mod N)
k+—k+1
end while
return R,_;

Observing execution time of the algorithm above an attacker can reveal
information about z because the execution time depends on the number of
ones in the binary representation of x. Additional information about such
attacks and their countermeasures can be found in [7].

One approach to mitigate these attacks is to use the so-called blinding
technique. The main idea of the method is to add randomness before doing
exponentiation and after the operation has been performed - remove the
random parameter.

For the RSA signature system this can be done in the following way. Let
N is an RSA modulus, m is message representation and e, d are public and

private exponents respectively. To perform blinding a random integer r is
generated and r~¢ (mod N) is calculated. The signing algorithm consists of
three steps:

1. Blinding step: calculate m - r (mod N)

2. Modular exponentiation: calculate (m -)¢ (mod N)

3. Unblind the result: (m-r)%-r= (mod N) = m® (mod N)

The approach above works fine for the RSA public key system, but it
cannot be directly applied to the Rabin-Williams digital signature.

5 The Rabin-Williams digital signature sys-
tem implementation

As it was mentioned before, the vulnerable class of the Crypto++ library is
RWSS<P1363_EMSA2,H>: :Signer. In its internals the EMSA2 message repre-
sentative is computed and the InvertibleRWFunction: :CalculateInverse
function is called. The whole C++ listing of this function is:

Integer InvertibleRWFunction::CalculateInverse (
RandomNumberGenerator &rng, const Integer &x) const
{
DoQuickSanityCheck ();
ModularArithmetic modn(m_n);
Integer r, rlnv;

do

{
r.Randomize (rng, Integer::0ne(), m_n - Integer::0ne());
rInv = modn.MultiplicativelInverse (r);

}

while (rInv.IsZero());

Integer re = modn.Square(r);

re = modn.Multiply(re, x);

Integer cp=re/m_p, cq=re’m_q;

if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)

{

cp = cp.Is0dd() 7 (cp+m_p) >> 1 : cp >> 1
cq = cq.Is0dd() ? (cq+m_q) >> 1 : cq >> 1
}

#pragma omp parallel
#pragma omp sections

{
#pragma omp section
cp = ModularSquareRoot (cp, m_p);
#pragma omp section
cq = ModularSquareRoot(cq, m_q);
}

http://cryptopp.com

Integer y = CRT(cq, m_q, cp, m_p, m_u);

y = modn.Multiply(y, rInv);

y = STDMIN(y, m_n-y);

if (ApplyFunction(y) != x)

throw Exception(Exception::0THER_ERROR,

"InvertibleRWFunction: computational errorgduring privategkeyy

operation");

return y;

In the above function the argument x is a message representative gener-
ated from a message using the EMSA2 scheme. Let’s denote this value as z
and from encoding algorithm we know that x = 12 (mod 16). Let (e, f,s)
also be the principal tweaked square root of modulo n, so by the definition:

e-f-s°=ux(modn)

In the lines 7 to 13 a random integer is generated and stored in the r
variable, then its multiplicative inverse modulo n is calculated and stored in
the rInv variable. Let denote these values by r and r~! respectively. The
value in r is also squared modulo n and stored in the re variable, let denote
it by r2.

In the 15th line the blinding is applied to x and as a result re contains
the z - r* (mod n) value.

Then using the fact that Z;, = Z; x Z; all calculations are made in the two
multiplicative groups Z; and Z;. In those subgroups the value x - r? (mod n)
is multiplied by f~! and then an operation similar to square root extraction
is performed. Then two results modulo p and modulo ¢ are combined into
one modulo n.

The multiplication by f~! ensures that the Jacobi symbol

()
n

and the theorem can be applied. According to the theorem and the
fact that 2 € QR(n) as a result in the 32nd line we get

e-s-r, (modn)

where e and s are parts of the principal square root vector of x and r, is
the principal square root of r? modulo n.

Then the 33rd line is the unblinding step and the previous value is mul-
tiplied by 771, so it becomes e-s-r,-r~* (mod n). Actually the step doesn’t
remove the blinding value as r, -7~ (mod n) doesn’t always equal 1. In fact

r, - =1 (mod n) if and only if r was chosen to be equal r, and this holds
only in 1/4 of all random choices of r.

The 34th line adds a multiplier € that is either —1 or 1 depending on the
result of the STDMIN function. So after this step we have the following value

€-e-s-1, 1" (modn),

and this is a result of the function. The square modulo n of this value is

(cre-s-rpr)P=s(rPr?)=s=e-f 'z (modn),

where the last equivalence holds according to the theorem 2.1, The e- f~*-
x (mod n) won’t change if we apply signing function once again to the same
message as the EMSA2 scheme doesn’t add any randommness to the message
representative. By applying the signing function to a fixed message we’ll get
the sequence of values I, lo, . . . in which every ; = €?-e-s-r{”-(r®)=1 (mod n)
where e and s are fixed, rz(,i) and (r®)~! are calculated from a random blinding
value 7, and € € {—1,1} is the sign added by the STDMIN function.

For any two elements of the sequence 1, Iy, ... holds that (? = ZJQ- (mod n)
and according to the theorems|2.3[and [2.4| calculating of GCD(l;—1;,n) gives
us a non-trivial factor of n with 1/2 probability that allows to recover the
private key.

The following C++ code shows how to attack the implementation using
classes from the Crypto++ library.

RWSS<P1363_EMSA2, SHA256>::Signer rwSignerl (privKeyl);
RWSS<P1363_EMSA2, SHA256>::Verifier rwVerifierl (pubKeyl);

RWSS<P1363_EMSA2, SHA256>::Signer rwSigner2(privKey2);
RWSS<P1363_EMSA2, SHA256>::Verifier rwVerifier2 (pubKey2);

s_lenl = rwSignerl.SignMessage(rng2, (const byte*)msg.c_str(),
msg.length(), signaturel);

Integer sngl(signaturel, s_lenl);

s_len2 = rwSigner2.SignMessage(rng2, (const byte*)msg.c_str(),
msg.length (), signature2);

Integer sng2(signature2, s_len2);

Integer gcd = Integer::Gcd((sngl - sng2), paramsl.GetModulus());

http://cryptopp.com

6 How to fix the issue

To fix the bug one should ensure that the value used for blinding is a quadratic
residue modulo p and modulo ¢. This condition guarantees that the blinding
value will be removed at the unblinding step and won’t affect the result of
the signing procedure.

In terms of the code the while loop should be implemented as follows.

do
{
r.Randomize (rng, Integer::0ne(), m_n - Integer::0ne());
rInv = modn.MultiplicativeInverse(r);
}
while (rInv.IsZero() ||
(Jacobi(r % m_p, m_p) == -1) || (Jacobi(r % m_q, m_q) == -1));

This approach definitely reduces the performance of the signing function,
but it seems to be the easiest way to fix the bug. Actually the function itself
is quite slow and can be reimplemented without calculations of the Legendre
and Jacobi symbols. The faster algorithm can be found in [6].

7 Conclusions

The authors of Crypto++ aimed at improving the security of the Rabin-
Williams signature system implementation but eventually made the system
completely insecure. Some researchers call such bugs “bugdoors” as on the
one hand they are usual backdoors (allow to break the system for those who
know about them), but on the other hand such issues remain bugs that are
likely to be made unconsciously. This case proves once again that “open”
doesn’t mean “secure” and all popular crypto frameworks should be carefully
audited, especially if they are used in other security systems.

8 Acknowledgements

[am grateful to Martijn Grooten and the Yandex Product Security Team
members for their encouragement, helpful comments and useful suggestions.

References

[1] Crypto++ Library 5.6.2 - a Free C++ Class Library of Cryptographic
Schemes. URL: http://cryptopp.com/.

10

http://cryptopp.com
http://cryptopp.com/

2]

[10]

IEEE Standard Specifications for Public-Key Cryptography - Amend-
ment 1: Additional Techniques. IEEE Std. P1363a-2004,
2004. URL: http://standards.ieee.org/findstds/standard/
1363a-2004.html.

Information technology - Security techniques - Digital signatures with
appendix - Part 2: Integer factorization based mechanisms. ISO/IEC
14888-2:2008, 2008. URL: http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=44227.

M. Bellare and P. Rogaway. The Exact Security of Digital Signatures-
how to Sign with RSA and Rabin. In Proceedings of the 15th An-
nual International Conference on Theory and Application of Crypto-
graphic Techniques, EUROCRYPT 96, pages 399416, Berlin, Heidel-
berg, 1996. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?1d=1754495.1754541.

D. J. Bernstein. Proving Tight Security for Rabin-Williams Signatures.
In N. P. Smart, editor, FUROCRYPT, volume 4965 of Lecture Notes in
Computer Science, pages 70-87. Springer, 2008.

D. J. Bernstein. RSA signatures and Rabin-Williams signatures: the
state of the art. 2008. URL: http://cr.yp.to/papers.html#rwsota.

P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual Inter-
national Cryptology Conference on Advances in Cryptology, CRYPTO
96, pages 104-113, London, UK, 1996. Springer-Verlag. URL: http:
//dl.acm.org/citation.cfm?id=646761.706156.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of ap-
plied cryptography. CRC Press, 1996. URL: http://cacr.uwaterloo.
ca/hac/.

M. O. Rabin. Digitalized signatures and public-key functions as in-
tractable as factorization. Technical Report 212, MIT Laboratory for
Computer Science, 1979. URL: http://ncstrl.mit.edu/Dienst/UI/
2.0/Describe/ncstrl.mit_lcs/MIT/LCS/TR-212.

H. Williams. A modification of the RSA public-key encryption procedure
(Corresp.). Information Theory, IEEE Transactions on, 26(6):726-729,
Nov 1980. doi:10.1109/TIT.1980.1056264.

11

http://standards.ieee.org/findstds/standard/1363a-2004.html
http://standards.ieee.org/findstds/standard/1363a-2004.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44227
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44227
http://dl.acm.org/citation.cfm?id=1754495.1754541
http://dl.acm.org/citation.cfm?id=1754495.1754541
http://cr.yp.to/papers.html#rwsota
http://dl.acm.org/citation.cfm?id=646761.706156
http://dl.acm.org/citation.cfm?id=646761.706156
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://ncstrl.mit.edu/Dienst/UI/2. 0/Describe/ncstrl.mit_lcs/MIT/LCS/TR-212
http://ncstrl.mit.edu/Dienst/UI/2. 0/Describe/ncstrl.mit_lcs/MIT/LCS/TR-212
http://dx.doi.org/10.1109/TIT.1980.1056264

	Introduction
	Modular square roots
	Rabin-Williams digital signature system
	Public and private keys
	The signing algorithm
	The verification algorithm
	EMSA2 encoding scheme

	Timing attacks on modular exponentiation
	The Rabin-Williams digital signature system implementation
	How to fix the issue
	Conclusions
	Acknowledgements

