
Nearly Optimal Verifiable Data Streaming

Johannes Krupp1, Dominique Schröder1, Mark Simkin1, Dario Fiore2, Giuseppe Ateniese3,4, and Stefan
Nuernberger1

1 Saarland University, CISPA, Germany
{krupp,ds,simkin}@ca.cs.uni-saarland.de

nuernberger@cs.uni-saarland.de
2 IMDEA Software Institute, Madrid, Spain

dario.fiore@imdea.org
3 Sapienza - University of Rome, Italy

4 Johns Hopkins University, USA
ateniese@cs.jhu.edu

Abstract The problem of verifiable data streaming (VDS) considers a client with limited computa-
tional and storage capacities that streams an a-priori unknown number of elements to an untrusted
server. The client may retrieve and update any outsourced element. Other parties may verify each
outsourced element’s integrity using the client’s public-key. All previous VDS constructions incur a
bandwidth and computational overhead on both client and server side, which is at least logarithmic
in the number of transmitted elements. We propose two novel, fundamentally different approaches to
constructing VDS. The first scheme is based on a new cryptographic primitive called Chameleon Vector
Commitment (CVC). A CVC is a trapdoor commitment scheme to a vector of messages where both
commitments and openings have constant size. Using CVCs we construct a tree-based VDS protocol
that has constant computational and bandwidth overhead on the client side. The second scheme shifts
the workload to the server side by combining signature schemes with cryptographic accumulators. Here,
all computations are constant, except for queries, where the computational cost of the server is linear
in the total number of updates.

1 Introduction

In this work we study the problem of verifiable data streaming (VDS) [23,24], where a resource-constrained
device outsources large amounts of data to a possibly untrusted cloud storage provider in such a manner,
that the following three properties are maintained. First, the data is streamed from the client to the cloud
in a unidirectional fashion; namely, adding an element to the remote storage consists of a single message
including the data element and an authentication information (we call this property unidirectional upload).
The current state of the remote storage is succinctly represented by a verification key pk maintained by the
client. Second, the client must be able to update any element in the remote storage efficiently. In this case, any
update results in a new verification key pk ′, which invalidates the old data element so as to prevent rollback
(aka replay) attacks. In contrast, whenever a new element is streamed, the public key remains unchanged
(Updatability and Freshness). Third, the data owner, or any other client trusting the data owner, should be
able to retrieve arbitrary subsets of the outsourced data along with the corresponding proof and verify their
integrity using the data owner’s public key (Public Verifiability). Notably, such a verification must guarantee
that elements have not been altered and are maintained in the correct position in the stream (Integrity and
Order Enforcement).

Various applications for VDS protocols have been discussed in [23,24]. One further interesting application
for VDS protocols are wireless sensor networks, where a number of wireless sensors constantly monitor their
surrounding environment and stream the resulting data to a central server. These sensors usually only have
very limited computational capabilities and are powered by batteries. For such applications it is of key
importance to reduce the computational and bandwidth overhead, incurred by the cryptographic primitives
on the client side, to a bare minimum. In this work we propose novel solutions to the problem described
above that are asymptotically and practically faster than all known previous constructions.

Un- Stand. Assump. Stream Retrieve Verification Update Size
bounded Model time/space time/space time/space time/space π pk

[23] 7 3 Dlog O(log2 M) O(log2 M) O(log2 M) O(log2 M) O(log2 M) O(1)
[24] 3 7 Dlog O(log2 N) O(log2 N) O(log2 N) O(log2 N) O(log2 N) O(1)
CVC 3 3 CDH O(1) O(logq N) O(logq N) O(logq N) O(logq N) q2

ACC 3 3 q-strong DH O(1) O(U) O(1) O(1) O(1) O(1)
Table 1. Comparison of the different constructions. Unbounded indicates whether the construction can authenticate
an unbounded amount of elements. M is an upper bound on the number of streamed values, N denotes the number of
elements streamed so far, and U is the number of updates. The base of all logarithms is stated explicitly to highlight
the hidden factors.

1.1 Our Contribution

We propose two novel and fundamentally different approaches to VDS that result in the first practical
verifiable data streaming protocols in the standard model in which the length of the stream does not have to
be bounded a-priori (see Table 1 for a comparison). Somewhat surprisingly, our schemes are asymptotically
more efficient even compared with solutions in the random oracle model [24].

1. Our first scheme is based on a new cryptographic primitive called Chameleon Vector Commitments
(CVCs) which extends Vector Commitments (VCs) [6]. Informally, a VC allows anyone to commit to
a vector of messages and to prove that a certain message m is at a given position i. VCs satisfy two
main properties: conciseness guarantees that the size of the commitment as well as the size of the proofs
is constant, no matter of how large the vector is; position binding guarantees that it is not possible to
create two valid proofs for two different messages m 6= m′ for one position i. Our new notion of CVCs
extends VCs with the additional property that the owner of a trapdoor can open the commitment, at
any vector position, to an arbitrary message.
We use CVCs in combination with a novel approach of building tree-based VDS protocols to provide the
first unbounded VDS construction in the standard model that is asymptotically faster than all previously
known constructions.
We believe that CVCs may also be of independent interest in other contexts and we will provide a
comprehensive formal treatment of this primitive in section 3.

2. Our second VDS scheme shifts the workload to the server side by combining signature schemes with
cryptographic accumulators [15]. The basic idea of our scheme is to let the client sign all elements in the
stream. Whenever the client wishes to update an element, it “revokes” the signature on the old value by
adding it to the accumulator that is part of the public key. Whenever the client queries an outsourced
element, the server has to perform computation that is linear in the number of updates to compute a
proof of correctness.5 This scheme is asymptotically optimal w.r.t. to all operations apart from querying
of elements.
We have instantiated this construction with the accumulator based on the q-strong Diffie-Hellman as-
sumption in bilinear groups [15] in a nonblack-box way to obtain a public key of size O(1). That is, in
the original construction of [15], the public key consists of U elements, where U is an upper bound on
the number of accumulated values. In our case, we split the key between the client and the server to
obtain a scheme that supports an unbounded number of updates but still maintain constant-size public
key.

3. We evaluated our schemes based on a full implementation in Java running on Amazon EC2. Our
experiments show that the two constructions achieve practical performances. For instance, using our
accumulator-based VDS scheme a client can stream a data block of 256KB by spending 2.3ms in au-
thentication and by sending 236 more bytes. Retrieving and verifying the authenticity of about 8GB of
data can be performed in about 10 minutes.

1.2 Related Work

Verifiable data streaming is a generalization of verifiable databases (VDB) [2] and was first introduced by
Schröder and Schröder [23], who also presented a construction for an a-priori fixed number of elements
5 This cost can even be made sublinear using techniques from Papamanthou, Tamassia, and Triandopoulos [19].

2

M . The computational and bandwidth overhead of all their operations was logarithmic in M . Recently,
Schröder and Simkin suggested the first VDS protocol that supports streams of unbounded length [24], but
is only provably secure in the random oracle model. Their overhead is logarithmic in the number of already
outsourced elements. In Table 1, we compare previous constructions with ours.

VDBs were first introduced by Benabbas, Gennaro, and Vahlis [2] with the main difference, compared
to VDS, being that the size of the database is already defined during the setup phase, while in a streaming
protocol it is unknown. Furthermore, in a VDS protocol, data can be added to the database non-interactively
by sending a single message to the server. Notably this message does not affect the verification key of the
database. VDBs have been extensively investigated in the context of accumulators [16,4,5] and authenticated
data structures [14,12,18,26]. More recent works, such as [2] or [6], usually only support a polynomial number
of values instead of exponentially many, and the scheme of [2] is not publicly verifiable.

Other works like streaming authenticated data structures by Papamanthou et al. [17] or the Iris cloud file
system [25] consider untrusted cloud storage provider, but require key updates after each streamed element.

“Pure” streaming protocols between a sender and possibly multiple clients, such as TESLA and their
variants, e.g., [22,21], require the sender and receiver to be loosely synchronized and these protocols do not
offer public verifiability. The signature based solution of [22] does not support efficient updates.

1.3 Straw Man Approaches

One idea to construct a VDS protocol may be to use a Merkle tree with a signed root value. That is, for
each outsourced element we recompute the Merkle tree and sign the new root. Whenever we update some
outsourced element, we recompute the root node’s value, pick a new key pair for the signature scheme,
and sign the new root node value under the new key pair. Unfortunately, this approach requires one to
recompute the root node of the complete existing tree at each insertion. This is not a feasible approach for
resource-constrained devices and is asymptotically slower than the constructions we present. Another idea
might be to use digital signatures to sign elements in an interleaved fashion during outsourcing. While this
approach allows unidirectional upload, integrity, and order enforcement, it is not clear how to update an
already outsourced element efficiently. Simply signing the new element is not sufficient, since the old element
is not invalidated, i.e., upon a query for the updated index, the server can simply return the old element
instead of the new one. Forward-secure signature schemes [11] are not applicable here either. Either the root
of this tree should be part of the public-key, which would violate the unidirectional uploading property, or
if we do not update the public key after updating a data element, rollback attacks would be possible, i.e., it
would violate the freshness property.

2 Preliminaries

In this section we define our notation and describe some cryptographic primitives and assumptions used
in this work. The security parameter is denoted by λ. a||b refers to an encoding of that allows to uniquely
recover the strings a and b. If A(x; r) is an efficient (possibly randomized) algorithm, then y ← A(x; r) refers
to running A on input x using randomness r and assigning the output to y.

2.1 Bilinear Maps

Let G1,G2, and GT be cyclic multiplicative groups of prime order p, generated by g1 and g2, respectively.
Let e : G1 ×G2 7→ GT be a bilinear pairing with the following properties:

1. Bilinearity e(P a, Qb) = e(P,Q)ab for all P ∈ G1 and all Q ∈ G2 and a, b ∈ Zp;
2. Non-degeneracy e(g1, g2) 6= 1;
3. Computability: There exists an efficient algorithm to compute e(P,Q) for all P ∈ G1 and all Q ∈ G2.

If G1 = G2 then the bilinear map is called symmetric. A bilinear instance generator is an efficient algorithm
that takes as input the security parameter 1λ and outputs a random tuple (p,G1,G2,GT , g1, g2, e).

3

2.2 Computational Assumptions

Now we briefly recall the definitions of the Computational Diffie-Hellman (CDH) assumption, the Square-
Computational Diffie-Hellman (Square-CDH), and the q-strong Diffie-Hellman assumptions.

Assumption 1 (CDH). Let G be a group of prime order p, let g ∈ G be a generator, and let a, b be
two random elements from Zp. The Computational Diffie-Hellman assumption holds in G if for every PPT
adversary A the probability Prob

[
A(g, ga, gb) = gab

]
is negligible in λ.

Assumption 2 (Square-CDH assumption). Let G be a group of prime order p, let g ∈ G be a generator,
and let a be a random element from Zp. The Square Computational Diffie-Hellman assumption holds in G
if for every PPT adversary A the probability Prob

[
A(g, ga) = ga

2
]

is negligible in λ.

It is worth noting that the Square-CDH assumption has been shown equivalent to the standard CDH as-
sumption [1,13].

Assumption 3 (q-strong DH assumption). Let (p,G,GT , e, g) be a tuple generated by a bilinear instance
generator, and let s be randomly chosen in Z∗p. We say that the q-Strong DH (q-SDH) assumption holds if
every PPT algorithm A(p,G,GT , e, g, gs, gs

2
, . . . , gs

q) has negligible probability (in λ) of returning a pair
(c, g1/(s+c)) ∈ Z∗p ×G.

2.3 Chameleon Hash Functions

A chameleon hash function is a randomized collision-resistant hash function that provides a trapdoor to find
collisions. This means that given the trapdoor csk, a message m, some randomness r and another message
m′, it is possible to find a randomness r′ s.t. Ch(m; r) = Ch(m′; r′).

Definition 1 (Chameleon Hash Function). A chameleon hash function is a tuple of PPT algorithms
CH = (CHGen,Ch,Col):

CHGen(1λ): The key generation algorithm returns a keypair (csk, cpk) and sets Ch(·) := Ch(cpk, ·).
Ch(m; r): The input of the hashing algorithm is a message m and some randomness r ∈ {0, 1}λ and it

outputs a hash value.
Col(csk,m, r,m′): Upon input of the trapdoor csk, a message m, some randomness r and another message

m′, the collision finding algorithm returns some randomness r′ s.t. Ch(m; r) = Ch(m′; r′).
Uniform Distribution: The output of Ch is uniformly distributed, thus the output of Ch(m; r) is indepen-

dent of m. Furthermore, the output of Col(csk,m, r,m′) also has the same distribution as r itself.

A chameleon hash is required to be collision-resistant, i.e., no PPT adversary should be able to find (m, r)
and (m′, r′) s.t. (m, r) 6= (m′, r′) and Ch(m; r) = Ch(m′; r′).

Definition 2 (Collision Resistance). A chameleon hash CH is collision-resistant if the success probability
for any PPT adversary A in the following game is negligible in λ:

Experiment HashColCHA (λ)
(csk, cpk)← CHGen(1λ)
(m,m′, r, r′)← A(Ch)
if Ch(m; r) = Ch(m′; r′) and (m, r) 6= (m′, r′)output 1
else output 0

4

2.4 Vector Commitments

A vector commitment is a commitment to an ordered sequence of messages, which can be opened at each
position individually. Furthermore, a vector commitment provides an interface to update single messages
and their openings.

Definition 3 (Vector Commitment). A vector commitment is a tuple of PPT algorithms VC = (VGen,
VCom,VOpen,VVer,VUpdate,VProofUpdate):

VGen(1λ, q): The key generation algorithm gets as input the security parameter λ and the size of the vector
q and outputs some public parameters pp.

VCompp(m1, . . . ,mq): Given q messages, the commitment algorithm returns a commitment C and some
auxiliary information aux, which will be used for proofs and updates.

VOpenpp(m, i, aux): The opening algorithm takes as input a message m, a position i and some auxiliary
information aux and returns a proof Λi that m is the message at position i.

VVerpp(C,m, i, Λi): The verification algorithm outputs 1 only if Λi is a valid proof that C was created to a
sequence with m at position i.

VUpdatepp(C,m,m′, i): The update algorithm allows to change the i-th message in C from m to m′. It
outputs an updated commitment C ′ and some update-information U .

VProofUpdatepp(C,Λj ,m′, i, U): The proof-update algorithm may be run by anyone holding a proof Λj that
is valid w.r.t. C to obtain the updated commitment C ′ and an updated proof Λ′j that is valid w.r.t. C ′.

The security definition of vector commitments requires a vector commitment to be position-binding, i.e.,
no PPT adversary A given pp can open a commitment to two different messages at the same position.
Formally:

Definition 4 (Position-Binding). A vector commitment is position-binding if the success probability for
any PPT adversary A in the following game is negligible in λ:

Experiment PosBdgVCA (λ)
pp← VGen(1λ, q)
(C,m,m′, i, Λ, Λ′)← A(pp)
if m 6= m′ ∧ VVerpp(C,m, i, Λ) ∧ VVerpp(C,m′, i, Λ′) output 1
else output 0.

2.5 The Bilinear-Map Accumulator

We briefly recall the accumulator based on bilinear maps first introduced by Nguyen [15]. For simplicity, we
describe the accumulator using symmetric bilinear maps. A version of the accumulator using asymmetric
pairings can be obtained in a straightforward way, and our implementation does indeed work on asymmetric
MNT curves.

For some prime p, the scheme accumulates a set E = {e1, . . . , en} of elements from Z∗p into an element
f ′(E) in G. Damg̊ard and Triandopoulos [7] extended the construction with an algorithm for issuing constant
size proofs of non-membership, i.e., proofs that an element e /∈ E . The public key of the accumulator is a
tuple of elements {gsi |0 ≤ i ≤ q}, where q is an upper bound on |E| = n that grows polynomially with the
security parameter λ = O(log p). The corresponding secret key is s. More precisely, the accumulated value
f ′(E) is defined as

f ′(E) = g(e1+s)(e2+s)...(en+s).

The proof of membership is a witness Aei which shows that an element ei belongs to the set E and it is
computed as

Aei
= g

∏
ej∈E:ej 6=ei

(ej+s)
.

5

Given the witness Aei , the element ei, and the accumulated values f ′(E), the verifier can check that

e(Aei , g
ei · gs) = e(f ′(E), g).

The proof of non-membership, which shows that ei 6∈ E , consists of a pair of witnesses ŵ = (w, u) ∈ G× Z∗p
with the requirement that: (i)u 6= 0, and (ii) (ei + s)|[

∏
e∈E(e + s) + u]. The verification algorithm in this

case checks that
e(w, gei · gs) = e(f ′(E) · gu, g).

The authors also show that the proof of non-membership can be computed efficiently without knowing the
trapdoor s. The security of this construction relies on the q-strong Diffie-Hellman assumption. In particular,
Nguyen showed that the accumulator is collision-resistant under the q-SDH assumption:

Lemma 1 ([15]). Let λ be the security parameter and t = (p,G,GT , e, g) be a tuple of bilinear pairings
parameter. Under the q-SDH assumption, given a set of elements E, the probability that, for some s chosen
at random in Z∗p, any efficient adversary A, knowing only t, g, gs, gs2

, . . . , gs
q (q ≥ |E|), can find a set E ′ 6= E

(q ≥ |E ′|) such that f ′(E ′) = f ′(E) is negligible.

We recall the security claim for the non-membership test:

Lemma 2 ([7]). Under the q-SDH assumption, for any set E there exists a unique non-membership witness
with respect to the accumulated value f ′(E) and a corresponding efficient and secure proof of non-membership
verification test.

2.6 Verifiable Data Streaming

A VDS protocol [23] allows a client, who possesses a private key, to store a large amount of ordered data
d1, d2, . . . on a server in a verifiable manner, i.e., the server can neither modify the stored data nor append
additional data. Furthermore, the client may ask the server about data at a position i, who then has to
return the requested data di along with a publicly verifiable proof π̃i, which proves that di was actually
stored at position i. Formally, a VDS protocol is defined as follows:

Definition 5 (Verifiable Data Streaming). A verifiable data streaming protocol VDS = (Setup,Append,
Query,Verify,Update) is a protocol between a client C and a server S, which are both PPT algorithms. The
server holds a database DB.

Setup(1λ): The setup algorithm takes as input the security parameter and generates a keypair (pk, sk), gives
the public verification key pk to the server S and the secret key sk to the client C.

Append(sk, d): The append protocol takes as input the secret key and some data d. During the protocol, the
client C sends a single message to the server S, who will then store the new item d in DB. This protocol
may output a new secret key sk ′ to the client, but the public key does not change.

Query(pk,DB, i): The query protocol runs between S(pk,DB) and C(i). At the end the client will output the
i-th entry of the database DB along with a proof π̃i.

Verify(pk, i, d, π̃i): The verification algorithm outputs d, iff d is the i-th element in the database according to
π̃i. Otherwise it outputs ⊥.

Update(pk,DB, sk, i, d′): The update protocol runs between S(pk,DB) and C(i, d′). At the end, the server will
update the i-th entry of its database DB to d′ and both parties will update their public key to pk ′. The
client may also update his secret key to sk ′.

Intuitively the security of a VDS protocol demands that an attacker should not be able to modify stored
elements nor should he be able to add further elements to the database. In addition the elements should be
fresh, meaning that outdated elements do not verify. This can be formalized in the following game VDSsec:

Setup: First, the challenger generates a keypair (sk, pk) ← Setup(1λ). It sets up an empty database DB
and gives the public key vp to the adversary A.

6

Streaming: In this adaptive phase, the adversary A can add new data by giving some data d to the
challenger, which will then run (sk ′, i, π̃i) ← Append(sk, d) to append d to its database. The challenger
then returns (i, π̃i) to the adversary. A may also update existing data by giving a tuple (d′, i) to the
challenger, who will then run the update protocol Update(pk,DB, sk, i, d′) with the adversary A. The
challenger will always keep the latest public key pk∗ and a ordered sequence of the database Q =
{(d1, 1), . . . , (dq(λ), q(λ))}.

Output: To end the game, the adversary A can output a tuple (d∗, i∗, π̂). Let d̂← Verify(pk∗, i∗, d∗, π̂). The
adversary wins iff d̂ 6= ⊥ and (d̂, i∗) 6∈ Q.

Definition 6 (Secure VDS). A VDS protocol is secure, if the success probability of any PPT adversary
in the above game VDSsec is at most negligible in λ.

3 Chameleon Vector Commitments

In this section we introduce chameleon vector commitments (CVCs). CVCs extend the notion of vector
commitments [9,6] in the sense that a CVC (like a VC) allows one to commit to an ordered sequence of
messages in such a way that: it is possible to open each position individually, and the commitment value as
well as the openings are concise, i.e., of size independent of the length of the message vector. In addition,
we require CVCs to satisfy a novel chameleon property saying that a CVC can come with a trapdoor with
which one can replace messages at individual positions without changing the commitment value.

3.1 Defining CVCs

We define CVCs as a tuple of seven efficient algorithms: a key generation algorithm CGen to compute a set
of public parameters and a trapdoor, a commitment algorithm CCom to commit to a vector of messages, an
opening algorithm COpen to open a position of a commitment, a collision finding algorithm CCol that uses
the trapdoor to output the necessary information for opening a commitment to a different value, an updating
algorithm CUpdate to update the values in a commitment without recomputing the entire commitment, a
proof update algorithm CProofUpdate to update proofs accordingly, and a verification algorithm CVer to
verify the correctness of an opening w.r.t. a commitment.

Definition 7 (Chameleon Vector Commitment). A chameleon vector commitment is a tuple of PPT
algorithms CVC = (CGen,CCom,COpen,CVer,CCol,CUpdate,CProofUpdate) working as follows:

Key Generation CGen(1λ, q): The key generation algorithm takes as inputs the security parameter λ and
the vector size q. It outputs some public parameters pp and a trapdoor td.

Committing CCompp(m1, . . . ,mq): On input of a list of q ordered messages, the committing algorithm
returns a commitment C and some auxiliary information aux.

Opening COpenpp(i,m, aux): The opening algorithm returns a proof π that m is the i-th committed message
in a commitment corresponding to aux.

Verification CVerpp(C, i,m, π): The verification algorithm returns 1 iff π is a valid proof that C was created
on a sequence of messages with m at position i.

Collision finding CColpp(C, i,m,m′, td, aux): The collision finding algorithm returns a new auxiliary in-
formation aux′ such that the pair (C, aux′) is indistinguishable from the output of CCompp on a vector
of q messages with m′ instead of m at position i.

Updating CUpdatepp(C, i,m,m′): The update-algorithm allows to update the i-th message from m to m′ in
the commitment C. It outputs a new commitment C ′ and an update information U , which can be used
to update both aux and previously generated proofs.

Updating Proofs CProofUpdatepp(C, πj , i, U): The proof-update-algorithm allows to update a proof πj that
is valid for position j w.r.t. C to a new proof π′j that is valid w.r.t. C ′ using the update information U .

A tuple CVC of algorithms as defined above is a chameleon vector commitment if it is correct, concise and
secure. Conciseness is a property about the communication efficiency of CVCs which is defined as follows:

7

Definition 8 (Concise). A CVC is concise, if both the size of the commitment C and the size of the proofs
πi are independent of the vector size q.

Informally, correctness guarantees that a CVC works as expected when its algorithms are honestly executed.
A formal definition follows:

Definition 9 (Correctness). A CVC is correct if for all q = poly(λ), all honestly generated parame-
ters (pp, td) ← CGen(1λ, q) and all messages (m1, . . . ,mq), if (C, aux) ← CCompp(m1, . . . ,mq) and π ←
COpenpp(i,m, aux), then the verification algorithm CVerpp(C, i,m, π) outputs 1 with overwhelming probability.
Furthermore, correctness must hold even after some updates occur. Namely, considering the previous setting,
any message m′ and any index i, if (C ′, U)← CUpdatepp(C, i,mi,m

′) and π′ ← CProofUpdatepp(C, π, i, U),
then the verification algorithm CVerpp(C ′, i,m′, π′) must output 1 with overwhelming probability

Security of CVCs Finally, we discuss the security of CVCs which is defined by three properties: indistin-
guishable collisions, position binding and hiding. Informally speaking, a CVC has indistinguishable collisions
if one is not able to find out if the collision finding algorithm had been used or not. Secondly, a scheme satisfies
position binding if, without knowing the trapdoor, it is not possible to open a position in the commitment
in two different ways. Thirdly, hiding guarantees that the commitment does not leak any information about
the messages that the commitment was made to. In what follows we provide formal definitions of these
properties.

Indistinguishable Collisions. This is the main novel property of CVCs: one can use the trapdoor to change a
message in the commitment without changing the commitment itself. Intuitively, however, when seeing proofs,
one should not be able to tell whether the trapdoor has been used or not. We call this notion indistinguishable
collisions, and we formalize it in the following game. Observe that we require the indistinguishability to hold
even when having knowledge of the trapdoor.

Definition 10 (Indistinguishable Collisions). A CVC has indistinguishable collisions if the success prob-
ability of any stateful PPT adversary A = (A0,A1) in the game ColInd is only negligibly bigger than 1/2 in
λ.

Experiment ColIndCVCA (λ)
(pp, td)← CGen(1λ, q)
b← {0, 1}
((m1, . . . ,mq), (i,m′i))← A0(pp, td)
(C0, aux∗)← CCompp(m1, . . . ,mi, . . . ,mq)
aux0 ← CColpp(C0, i,mi,m

′
i, td, aux∗)

(C1, aux1)← CCompp(m1, . . . ,m
′
i, . . . ,mq)

b′ ← A1(Cb, auxb)
if b = b′output 1
else output 0

Position-binding This property aims to capture that, without knowing the trapdoor, one should not be
able to open the same position of a chameleon vector commitment to two different messages. In particular,
we consider a strong definition of this notion in which the adversary is allowed to use an oracle CCol for
computing collisions. Namely, even when seeing collisions in some of the positions, an adversary must not
find two different openings for other positions. This notion, called position-binding, is formalized as follows:

Definition 11 (Position-Binding). A CVC satisfies position-binding if no PPT adversary A can out-
put two valid proofs for different messages (m,m′) at the same position i with non-negligible probabil-
ity. Formally, the success probability af any PPT adversary A in the following game PosBdg should be
negligible in λ. Whenever the adversary queries the collision oracle with a commitment, a position, two
messages and some auxiliary information (C, i,m,m′, aux), the game runs the collision finding algorithm
aux′ ← CColpp(C, i,m,m′, td, aux) and returns aux′ to the adversary.

8

Experiment PosBdgCVCA (λ)
(pp, td)← CGen(1λ, q)
(C, i,m,m′, π, π′)← ACCol(·,·,·,·,td,·)(pp)

store (C, i) queried to CCol in Q
if m 6= m′ ∧ (C, i) 6∈ Q
∧CVerpp(C, i,m, π)
∧CVerpp(C, i,m′, π′)
output 1

else output 0

Hiding A chameleon vector commitment is required to be hiding. Informally, this means that a PPT adversary
knowing the public parameters should not be able to tell the difference between two commitments to two
vectors of messages of his choice even after seeing openings for all positions where they agree.

Definition 12 (Hiding). A CVC is hiding if no stateful PPT adversary A = (A0,A1) is able to infer
information about messages at positions, at which the commitment has not been opened yet. Formally, the
success probability of A in the following game Hiding should be negligible in λ:

Experiment HidingCVCA (λ)
(pp, td)← CGen(1λ, q)
(M0,M1) = ((m0

1, . . . ,m
0
q), (m1

1, . . . ,m
1
q))← A0(pp)

b← {0, 1}
(C, aux)← CCompp(Mb)
for i = 1, . . . , q:

if m0
i = m1

i

πi ← COpenpp(i,mb
i , aux)

else
πi ← ⊥

Π ← (π1, . . . , πq)
b′ ← A1(C,Π)
if b = b′ output 1
else output 0

Note that we provided the definition of the hiding property for completeness, even though it is not needed
in our constructions.

3.2 Our Generic Scheme

The idea of our generic construction is to put a chameleon hash into each position of a vector commitment.
This allows to find collisions by finding a new randomness for the chameleon hash.

Construction 1. Let VC = (VGen,VCom,VOpen,VVer,VUpdate,VProofUpdate) be a vector commitment
scheme and CH = (CHGen,Ch,Col) a chameleon hash function.

CGen(1λ, q)
pp← VGen(1λ, q)
for i = 1, . . . , q

(cski, cpki)← CHGen(1λ)
set Chi(·) := Ch(cpki, ·)

td← (csk1, . . . , cskq)
Output (pp, td)

CCompp(m1, . . . ,mq)
(r1, . . . , rq)← ({0, 1}λ, . . . , {0, 1}λ)
(c1, . . . , cq)← (Ch1(m1; r1), . . . ,Chq(mq; rq))
(C, aux′)← VCompp(c1, . . . , cq)
aux← (aux′, (r1, . . . , rq))
Output (C, aux)

9

COpenpp(i,m, aux)
parse aux as (aux′, (r1, . . . , rq))
ci ← Chi(m; ri)
Λ← VOpenpp(ci, i, aux′)
π ← (Λ, ri)
Output π

CUpdatepp(C, i,m,m′, π)
parse π as (Λ, r)
r′ ← {0, 1}λ
c← Chi(m; r)
c′ ← Chi(m′; r′)
(C ′, U)← VUpdatepp(C, i, c, c′)
Output (C ′, (U, c′, r′))

CVerpp(C, i,m, π)
parse π as (Λ, ri)
c← Chi(m; ri)
Output VVerpp(C, i, c, Λ)

CColpp(C, i,m,m′, td, aux)
parse aux as (aux′, (r1, . . . , rq))
parse td as (csk1, . . . , cskq)
r′i ← Col(cski,m, ri,m′)
Output (aux′, (r1, . . . , r

′
i, . . . , rq))

CProofUpdatepp(C, πj , i, U)
parse πj as (Λj , r)
parse U as (U ′, c′, r′)
Λ′j ← VProofUpdatepp(C,Λj , c′, i, U ′)
If i = j output (Λ′j , r′)
else output (Λ′j , r)

The following theorem shows the security of this construction.

Theorem 1. If VC is a concise position-binding vector commitment and CH is a collision-resistant chameleon
hash, then the above construction is a concise, position-binding, and hiding chameleon vector commitment
with indistinguishable collisions.

We prove this theorem via the following lemmata.

Lemma 3. If VC is a vector commitment and CH is a collision-resistant chameleon hash, then the above
construction has indistinguishable collisions.

The idea of the proof is that any PPT adversary that wins against the game ColInd must be able to distinguish
between a truly random value and the output of Col. As this is impossible, such an adversary cannot exist.
The fact that for given m,m′ the output of Col(csk,m, r,m′) has the same distribution as r immediately
implies that no stateful PPT adversary A = (A0,A1) can distinguish the output of Col(csk,m, r,m′) from a
truly random r, i.e., has a success probability of 1/2 in the following game:

Experiment UniformDistCh
A (λ)

(csk, cpk)← CHGen(1λ)
(m,m′)← A0(cpk)
r0 ← {0, 1}λ
r1 ← Col(csk,m, r0,m

′)
b← {0, 1}
b′ ← A1(rb)
if b = b′ output 1
else output 0

Proof. Assume there exists a PPT adversary A that wins the game ColInd with probability non-negligibly
bigger than 1/2. From this we construct another adversary B against the game UniformDist as defined
above. To achieve this, B computes (pp, td) ← CGen(1λ, q) and invokes A(pp, td) in a black-box way,
who outputs ((m1, . . . ,mq), (i,m′i)). Our reduction B outputs (i,mi,m

′
i) and receives ri, which is either a

truly random value r or the output of Col(td,mi, r,m
′
i). B then chooses rj ← {0, 1}λ,∀j 6= i, computes

ci ← Ch(m′i; ri) and cj ← Ch(mj ; rj),∀j 6= i, computes the commitment (C, aux′)← VCompp(c1, . . . , cq) and
sets aux ← (aux′, (r1, . . . , rq)). It then invokes A(C, aux). Eventually A outputs a bit b′ and the reduction

10

then also outputs b′. Observe that the reduction is efficient and perfectly simulates the case b = 1 of the
game ColInd for A when given a truly random r and the case b = 0 when given the output of Col. This gives
that Prob

[
UniformDistCh

B (λ) = 1
]

= Prob
[

ColIndCVCA (λ, q) = 1
]
. Since the first probability equals 1/2, but

the second one was assumed to be non-negligibly bigger than 1/2, this is a contradiction. Therefore such an
adversary A cannot exist.

The following lemma shows that our generic construction also satisfies the position-binding property.

Lemma 4. If VC is a position-binding vector commitment and CH is a collision-resistant chameleon hash,
then the above construction is position-binding.

The main idea of the proof is that an adversary may win against the game PosBdg in two ways, either
by finding a collision in the chameleon hash, or by breaking the position-binding property of the underlying
vector-commitment. We then show that both cases only happen with negligible probability.

Proof. Let A be a PPT adversary against position-binding as defined in game PosBdg. Denote by coll the
event that A outputs (C, i,m,m′, π, π′) with π = (Λ1, r1) and π′ = (Λ2, r2) such that Ch(m, r1) = Ch(m′, r2)
and m 6= m′. Obviously

Prob
[
PosBdgA,CVC(λ) = 1

]
= Prob

[
PosBdgA,CVC(λ) = 1 ∧ coll

]
+ Prob

[
PosBdgA,CVC(λ) = 1 ∧ coll

]
≤Prob[coll] + Prob

[
PosBdgA,CVC(λ) = 1 ∧ coll

]
.

We now show that both parts of this sum are negligible. To see that Prob[coll] is negligible, consider the
following reduction BCH against the collision-resistance of CH: On input Ch, the reduction BCH chooses the
index i, for which the adversary A will output his collision, at random and computes (pp, td)← VGen(1λ, q).
It then computes (cskj , cpkj) ← CHGen(1λ) and sets Chj(·) := Ch(cpkj , ·) for j 6= i, sets Chi(·) := Ch, and
runs a black-box simulation of ACCol(·,·,·,·,td,·)(pp). Whenever the adversary asks for a collision at position
i the reduction aborts, otherwise it can compute the collision since it knows all the other trapdoors. The
algorithm A outputs (C, i,m,m′, π, π′) and BCH parses π = (Λ1, r1) and π′ = (Λ2, r2), and stops, outputting
(m,m′, r1, r2).

For the analysis observe that BCH is efficient and that

Prob[HashcollBCH,CH(λ) = 1] = 1
q

Prob[coll] .

This follows easily because BCH perfectly simulates the view of A as in the original game whenever it chooses
the correct index i. As CH is collision-resistant, this probability is negligible.

Now, to see that Prob
[
PosBdgA,CVC(λ) = 1 ∧ coll

]
is also negligible, consider the following reduction BVC

against the position-binding of VC: On input pp, BVC computes q key-pairs, (cski, cpki)← CHGen(1λ), sets
Chi(·) := Ch(cpki, ·) and runs ACCol(·,·,·,·,td,·)(pp) in a black-box way. Observe that the reduction BVC can
perfectly simulate the collision oracle using the chameleon-hash trapdoors. I.e. whenever A submits a query
(C, i,m,m′, aux) the reduction parses aux = (aux′, (r1, . . . , rq)) and computes r′i ← Col(cski,m, ri,m′). It
then outputs (aux′, (r1, . . . , r

′
i, . . . , rq)) to the adversary A. At the end A outputs (C, i,m,m′, π, π′) and

BVC parses π = (Λ1, r1) and π′ = (Λ2, r2), computes c1 ← Chi(m; r1), c2 ← Chi(m; r2), and outputs
(C, i, c1, c2, Λ, Λ

′).
For the analysis observe that BVC is efficient. Furthermore, it holds that

Prob
[
PosBdgBVC,VC(λ) = 1

]
= Prob

[
PosBdgA,CVC(λ) = 1 ∧ coll

]
,

because pp is perfectly distributed as in PosBdg and BVC wins only if c1 6= c2. As VC is position-binding,
this probability is also negligible.

As both probabilities are negligible, any adversary A wins only with negligible probability, therefore the
construction above is position-binding.

11

Lemma 5. If VC is a vector commitment and CH is a collision-resistant chameleon hash, then Construction
1 is hiding.

Proof. As the distribution of a chameleon hash is uniform and independent of the message, the above
construction is essentially a vector commitment to q independent random values. Therefore the vector com-
mitment is independent of the messages and no adversary A can win Hiding with probability non-negligibly
bigger than 1/2.

Lemma 6. If VC is a concise vector commitment, then Construction 1 is concise.

Proof. Since C is the output of VCom, and proofs consist of a proof from COpen plus some randomness, it
is easy to see that Construction 1 is concise exactly when the underlying VC is.

3.3 Construction of CVCs based on CDH

In this section we show a direct construction of CVCs based on the Square-CDH assumption in bilinear
groups, which – we note – has been shown equivalent to the standard CDH assumption [1,13]. Our direct
construction can be seen as an aggregated variant of the Krawczyk-Rabin chameleon hash function [8], or
as a generalization of the VC scheme due to Catalano and Fiore [6]. For simplicity we describe the scheme
in symmetric pairings, but we stress that this scheme can be expressed using asymmetric pairings and our
implementation does use asymmetric pairings.

Construction 2. Let G,GT be two groups of prime order p with a bilinear map e : G×G→ GT .

CGen(1λ, q): Let g ∈ G be a random generator. Choose z1, . . . , zq ← Zp at random, set hi = gzi for i =
1, . . . , q and hi,j = gzizj for i, j = 1, . . . , q, i 6= j. Finally, set pp = (g, {hi}i=1,...,q, {hi,j}i,j=1,...,q,i6=j) and
td = {zi}i=1,...,q.

CCompp(m1, . . . ,mq): Choose r ← Zp at random.
Set C = hm1

1 · · ·hmq
q gr and aux = (m1, . . . ,mq, r).

COpenpp(i,m, aux): Compute π = hri ·
q∏

j=1,j 6=i
h
mj

i,j .

CVerpp(C, i,m, π): If e(C/hmi , hi) = e(π, g) output 1, else output 0.
CColpp(C, i,m,m′, td, aux): Parse aux = (m1, . . . ,mq, r). Compute r′ = r + zi(m − m′) and set aux′ =

(m1, . . . ,m
′, . . . ,mq, r

′).
CUpdatepp(C, i,m,m′): Compute C ′ = C · hm

′−m
i , set U = (i, u) = (i,m′ −m).

CProofUpdatepp(C, πj , j, U): Parse U = (i, u). Compute C ′ = C · hui . If i 6= j compute π′j = πj · huj,i, else
π′j = πj.

We also show two additional algorithms that allow to “accumulate” several updates at different positions,
and then to apply these updates to a proof in constant time.

accumulateUpdatepp(AU,U): Parse AU = (j, au) and U = (i, u). If j 6= i, compute au = au · hui,j .
CProofUpdate′pp(πj , AU): Parse AU = (j, au). Compute π′j = πj · au.

Theorem 2. If the CDH assumption holds, Construction 2 is a chameleon vector commitment.

First, we show the correctness of this construction. To this end, observe that

C = hm1
1 · · ·hmq

q gr = g
r+

q∑
j=1

zjmj

and

πi = hri ·
q∏

j=1,j 6=i
h
mj

i,j = (gr ·
q∏

j=1,j 6=i
h
mj

j)zi = g
zi·(r+

q∑
j=1,j 6=i

zjmj)

12

Thereby

e(C/hmi
i , hi) = e(g

r+
q∑

j=1,j 6=i

zjmj

, gzi)

= e

gzi·

(
r+

q∑
j=1,j 6=i

zjmj

)
, g

 = e(πi, g)

Correctness after updates is almost the same as above: simply observe that by construction it holds C ′ =
C · hm

′−m
i = C · hUi and (for j 6= i) π′j = πj · hUj,i.

Second, it is easy to see that the construction is concise.

Lemma 7. Construction 2 is concise.

Proof. The proof is straightforward and follows from observing that both the commitment C and all proofs
πi are single elements of the group G, which is chosen independently of the vector size q.

Next, we proceed to show that our construction has indistinguishable collisions. Note that we actually
show that it has perfectly indistinguishable collisions, which means that even an unbounded adversary cannot
win the game ColInd with probability non-negligibly greater than 1/2.

Lemma 8. Construction 2 has perfectly indistinguishable collisions.

The main idea of the proof is that both cases in the game ColInd essentially give a random group element to
the adversary, who thereby cannot distinguish them.

Proof. In the game ColInd it holds that

C0 = hm1
1 · · ·hmi

i · · ·h
mq
q gr0 = hm1

1 · · ·hm
′
i

i · · ·h
mq
q gr

′
0

= g
r0+

q∑
j=1

zjmj

= g
r′0+zim

′
i+

q∑
j=1,j 6=i

zjmj

and

C1 = hm1
1 · · ·hm

′
i

i · · ·h
mq
q gr1 = g

r1+zim
′
i+

q∑
j=1,j 6=i

zjmj

The auxiliary information aux consists of all messages and r′0 resp. r1. Since r0 is a uniformly random element
from Zp, the element r′0 = r0 + zi(mi −m′i) is also a uniformly random element. Therefore, both r′0 and r1
are uniformly distributed in Zp, thus any adversary against ColInd has a success probability of exactly 1/2.

We continue by showing that our construction is position-binding.

Lemma 9. If the CDH assumption holds, Construction 2 is position-binding.

We prove this claim by giving a reduction against Square-CDH. As mentioned in Section 2.2, the Square-
CDH assumption has been shown equivalent to the standard CDH assumption. The main idea of the reduction
is to guess the index at which the adversary will break the position binding and to embed the challenge from
the Square-CDH problem.

Proof. Assume there exists an efficient adversary A that wins the game PosBdg by returning two valid
proofs with non-negligible probability ε. Given black-box access to A, we build an adversary B that breaks
the Square-CDH assumption with non-negligible probability ≥ ε/q. B is given (g, ga) as input. It then
tries to guess the index for which A will output the two proofs by choosing a random i ← {1, . . . , q}. For

13

j = 1, . . . , q, j 6= i the reduction B randomly chooses zj ← Zp, sets hj = gzj and hi,j = (ga)zj . It then sets
hi = ga, computes hj,k = gzkzj for j, k = 1, . . . , q, j, k 6= i, j 6= k, sets pp = (g, {hi}i=1,...,q, {hi,j}i,j=1,...,q,i6=j),
and runs ACCol(·,·,·,·,td,·)(pp). Whenever the adversary A asks for a collision at position i B aborts. Otherwise
B can perfectly simulate the collision oracle since it knows all the zj values, for j 6= i. The adversary A
is supposed to output (C,m,m′, j, π, π′). If j 6= i, i.e., if B did not guess the index correctly, B aborts.
Otherwise it outputs

(π′/π)(m−m′)−1
= ga

2
.

Observe that pp is perfectly distributed as the output of CGen(1λ), and thus the random index i chosen by
B is uniformly distributed in A’s view. Hence, the probability that A outputs j = i (and thus B does not
abort) is 1/q. Furthermore, since

e(C, hi) = e(hmi , hi) · e(π, g) = e(hm
′

i , hi) · e(π′, g)

= e(hi, hi)m · e(π, g) = e(hi, hi)m
′
· e(π′, g)

it holds that e(hi, hi)m−m
′ = e(π′/π, g). As e(hi, hi) = e(ga, ga) = e(ga2

, g) it is easy to see that ga2 =
(π′/π)(m−m′)−1 . Therefore, if B does not abort and A breaks position binding B successfully breaks the
Square-CDH assumption.

We go on by showing that our construction is also hiding. Again, note that we even prove our construction
to be perfectly hiding, i.e., even an unbounded adversary cannot win the game Hiding.

Lemma 10. Construction 2 is perfectly hiding.

The main idea of this proof is that for two fixed vectors of messages M0 and M1, we can find two random
values r0 and r1 such that (M0, r0) and (M1, r1) map to the same commitment value C. We then show that
the distribution of r0 and r1 are identical and therefore any adversary A has a success probability of exactly
1/2 to win the game Hiding with probability > 1/2.

Proof. Let M0 and M1 be the output of an adversary A against the hiding property as defined in the
game Hiding. Now set (C0, aux0) ← CCompp(M0), set (C1, aux0) = (C0, aux0), and compute auxi ←
CCol(C1, i,M0[i],M1[i], td, auxi−1) for i = 1, . . . , q. Finally set aux1 = auxq. Note that (C0, aux0) is a
chameleon vector commitment to M0 and (C1, aux1) is a chameleon vector commitment to M1. Further-
more, since this construction has indistinguishable collisions, the distribution of (C0, aux0) and (C1, aux1)
is identical to the case where aux1 is the output of CCom and aux0 is computed using the collision finding
algorithm.

It now holds that aux0 = (m0
1, . . . ,m

0
q, r

0) and aux1 = (m1
1, . . . ,m

1
q, r

1). Since C0 = C1 we also have

r0 +
q∑
j=1

zjm
0
j = r1 +

q∑
j=1

zjm
1
j .

For every position i with m0
i = m1

i proofs for the same position have the same value, i.e.,

π0
i = g

zi·

(
r0+

q∑
j=1,j 6=i

zjm
0
j

)
= g

zi·

(
r1+

q∑
j=1,j 6=i

zjm
1
j

)
= π1

i .

This means, that the view of the adversary A is completely identical in the case b = 0 ∧ r = r0 and in the
case b = 1 ∧ r = r1. Overall, for fixed (M∗0 ,M∗1), this gives

Prob
[
A(Π) = b′

∣∣ b = 0 ∧ r = r0 ∧ (M0,M1) = (M∗0 ,M∗1)
]

= Prob
[
A(Π) = b′

∣∣ b = 1 ∧ r = r1 ∧ (M0,M1) = (M∗0 ,M∗1)
]

14

and

Prob
[
A(Π) = 0

∣∣ b = 0 ∧ r = r0 ∧ (M0,M1) = (M∗0 ,M∗1)
]

+ Prob
[
A(Π) = 1

∣∣ b = 1 ∧ r = r1 ∧ (M0,M1) = (M∗0 ,M∗1)
]

= 1

Since this gives a bijective mapping from r0 to r1, i.e., r1 = fM0,M1(r0), and r0 and r1 are uniformly
distributed, we have that Prob

[
HidingCVCA = 1

∣∣∣ (M0,M1) = (M∗0 ,M∗1)
]

is

= 1
2p

∑
r0∈Zp

Pr[A(Π) = 0 | b = 0 ∧ r = r0 ∧ (M0,M1) = (M∗0 ,M∗1)]

+
∑

r1∈Zp

Prob
[
A(Π) = 1

∣∣ b = 1 ∧ r = r1 ∧ (M0,M1) = (M∗0 ,M∗1)
]

= 1
2p
∑

r0∈Zp

(
Prob

[
A(Π) = 0

∣∣ b = 0 ∧ r = r0 ∧ (M0,M1) = (M∗0 ,M∗1)
]

+ Prob
[
A(Π) = 1

∣∣ b = 1 ∧ r = fM0,M1 (r0) ∧ (M0,M1) = (M∗0 ,M∗1)
])

= 1
2p
∑

r0∈Zp

1 = 1
2

Thus the overall success-probability of A is

Prob
[

HidingCVCA = 1
]

=
∑

(M∗0 ,M∗1)←A(pp)

Prob
[

HidingCVCA = 1
∣∣ (M0,M1) = (M∗0 ,M∗1)

]
· Prob[(M0,M1) = (M∗0 ,M∗1)]

=
∑

(M∗0 ,M∗1)←A(pp)

1
2 · Prob[(M0,M1) = (M∗0 ,M∗1)] = 1

2

Therefore, no adversary can win Hiding with probability bigger than 1/2 and Construction 2 is hiding.

Remark 1. We stress that our security definitions only guarantee hiding and position-binding if the attacker
has not seen collisions for a position. For instance, in our construction if the attacker has seen a collision s.t.
both (πi,m) and (π′i,m′) are valid w.r.t. C, he can extract gz2

i = (π′/π)(m−m′)−1 . However, we stress that
this is not an issue for our application.

4 VDS From CVCs

In this section we present our VDS protocol from CVCs. The section is structured as follows: in Section 4.1
we explain the main idea of the construction; the formal description is given in Section 4.2..

4.1 Intuition

We explain the intuition of our construction with the help of Figure 1. The main idea is to build a q-ary
tree where each node of the tree is a CVC of size q + 1 that “stores” some data in the first component and
q pointers to its q children in the q remaining components (or 0 as a dummy value for children that do not
yet exist). The root of the tree is treated as the public verification key, while the CVC trapdoor acts as the
private key which enables the client to add further elements to the tree.

15

The tree is constructed in such a way that it grows dynamically from top to bottom and works as follows.
Initially, the tree is completely empty. Elements are inserted into the tree from left to right and new children
are “inserted” into the parent by finding a collision in the appropriate position. Consider for example the
tree shown in Figure 1 where q = 2. The first element d1 is stored in the first node together with two pointers
p11 and p12. When the client wishes to add the next element d2, it generates a new CVC to the vector of
three elements consisting of d2 and two pointers p21 and p22. Next, the client finds a collision in p02 such
that the new CVC belongs to the root CVC.

0 p01 p02

d1 p11 p12 d2 p21 p22

d3 p31 p32

Figure 1. The authenticated data structure for q = 2 that is used to construct VDS from CVCs, where d refers to a
data item and p is a pointer to the next node.

The proof that a data element d is stored at a certain position in the tree consists of a list of CVC-proofs
and intermediate nodes of the tree, i.e. π̃i ← (πl, nl, . . . , n1, π0), where πl is a proof, that the element d is
“stored” in the first component of node nl, πl−1 is a proof that the node nl is a child of node nl−1, and
eventually π0 is a proof that node n1 is a child of the root node. The whole proof π̃i is called an authentication
path.

To reduce the amount of data the client has to store, we exploit the key-features of our CVCs. Adding a
new node to the tree requires knowledge of the parent of the new node, i.e., the value and the corresponding
auxiliary information, but storing the entire tree at the client would defeat the purpose of a VDS protocol. To
circumvent this problem, we make nodes recomputable. Namely, to create a new node ni with value di, we first
derive the randomness ri of the commitment deterministically using a pseudorandom function, and then we
compute the node (ni, aux∗i)← CCompp(0, 0, . . . , 0; ri) and find a collision auxi ← CColpp(ni, 1, 0, d, td, aux∗i).

This idea allows us to split the tree between the client and the server in the following way: The client
only stores the secret key sp = (k, td, cnt), whereas the server simply stores all data d1, d2, . . . and all nodes
n1, n2, . . . along with their insertion paths. Now, whenever the client wants to add a new data element d, it
determines the next free index i = cnt+1 and the level l of the new node, as well as the index p of its parent
and the position j this node will have in its parent. The client then computes the new node as (ni, aux∗i)←
CCompp(0, 0, . . . , 0; ri), where the randomness ri is computed using the PRF. It adds the new data element
by finding a collision for the first component auxi ← CColpp(ni, 1, 0, d, td, aux∗i). With this, the client then
can compute a proof, that d is indeed stored in ni in the first component: πl ← COpenpp(1, d, auxi). To insert
this new node ni in the tree, the client recomputes the parent node as (np, aux∗p) ← CCompp(0, 0, . . . , 0; rp)
and finds a collision in the j-th position: auxp ← CColpp(np, j, 0, ni, td, aux∗p). From there, the client can
then compute a proof for the new node: πl−1 ← COpenpp(j, ni, auxp). We call (πl, ni, πl−1) an insertion path
(since it is a partial authentication path).

The client then streams the new data element and the insertion path (d, (πl, ni, πl−1)) to the server, that
stores this tuple in its database. To answer a query on index i, the server computes a full authentication
path for i by concatenating the insertion paths of all nodes in the path from i until the root. Note that each
insertion path is of constant size due to the conciseness requirement for CVCs (see Definition 8), and thus
the size of a full authentication path is only in O(logq N), where N is the number of elements outsourced so
far.

At first glance, the idea described so far seems to work. However, there is one more issue that needs
to be overcome. That is, the client may perform updates (i.e., change a data value from d to d′) and
continue streaming new elements afterwards. Although update queries do not affect the pointers values in

16

the commitments, they do change the value of a commitment and its related proofs. Basically, the issue is
that the client may not be able to recompute the commitment and the updated proofs of the parent node
np anymore (without storing all update information locally). We solve this issue by letting the server store
“an aggregate” of all update information. This way, the client can compute an “outdated” proof (i.e., a proof
as before any update) and then this proof can be updated by the server in constant time. Precisely, in the
general case the server should store a list of all updates and apply them one by one on incoming proofs.
However, in the case of our CDH-based CVCs, we exploit their homomorphic property to “accumulate”
update-information by only storing its sum, thus achieving constant insertion time.

4.2 Formal Description of our Construction

In this section, we present the formal description of our construction.

Construction 3. Let CVC = (CGen,CCom,COpen,CVer,CCol,CUpdate,CProofUpdate) be a CVC. Define
VDS = (Setup,Append,Query,Verify,Update) as follows:

Setup(1λ, q) This algorithm picks a random PRF key k ← {0, 1}λ, computes a key-pair for the chameleon
vector commitment (pp, td)← CGen(1λ, q + 1), and sets the counter cnt := 0. It computes r0 ← f(k, 0),
sets the root as (ρ, auxρ) ← CCompp(0, . . . , 0; r0), the secret key sk := (k, td, cnt), and the public key
pk := (pp, ρ). Finally, the secret key sk is kept by the client while the public key pk is given to the server.
Before proceeding with the remaining algorithms, we summarize the information stored by the server.
The server maintains a database DB consisting of tuples (i, di, ni, πi, πp,j , AUi, {AUi,j}q+1

j=1) where: i ≥ 0
is an integer representing the index of every DB element, di is DB value at index i, ni is a CVC
commitment, πi is a CVC proof that di is the first committed message in ni, πp,j is a CVC proof that ni
is the the message at position j + 1 committed in np (which is the CVC of ni’s parent node), AUi is the
accumulated update information that can be used to update the proof πi, and AUi,j are the accumulated
update informations that can be used to update the children’s proofs πi,j.

Append(sk, d) The algorithm parses sk = (k, td, cnt) and determines the index i = cnt + 1 of the new
element, the index p = b i−1

q c of its parent node, the position j = ((i − 1) mod q) + 2 that this element
will have in its parent, and then it increases the counter cnt′ = cnt + 1. Next, it computes the new node
as (ni, aux∗i) ← CCompp(0, 0, . . . , 0; ri) where ri ← f(k, i) and inserts the data d by finding a collision
auxi ← CColpp(ni, 1, 0, d, td, aux∗i). To insert the node ni in the tree, the algorithm recomputes the parent
node as (np, aux∗p)← CCompp(0, 0, . . . , 0; rp) and inserts ni as the j-th child of np by finding a collision in
the parent node at position j, i.e., the client runs auxp ← CColpp(np, j, 0, ni, td, aux∗p). It then computes
πi,1 ← COpenpp(1, d, auxi) and πp,j ← COpenpp(j, ni, auxp), and sets the insertion path (πi,1, ni, πp,j).
The client C sends the above insertion path and the new element d to the server S. S then applies the
accumulated update AUp,j to πp,j (i.e., compute π′p,j ← CProofUpdate′pp(πp,j , AUp,j)) and stores these
items in its database DB.

Query(pk,DB, i) In the query protocol, the client sends i to the server, who determines the level l← dlogq((q−
1)(i+ 1) + 1)− 1e and constructs an authentication path:

π̃i ← (πi,1)
a← i
b← ba−1

q c
for h = l − 1, . . . , 0

c← ((a− 1) mod q) + 2
π̃i ← π̃i :: (na, πb,c)
a← b
b← b b−1

q c

Finally, the server returns π̃i to the client.
Verify(pk, i, d, π̃i) This algorithm parses pk = (pp, ρ) and π̃i = (πl, nl, . . . , n1, π0). It then proceeds by verify-

ing all proofs in the authentication path:

17

v ← CVerpp(ni, 1, d, πl) ∧ ni 6= 0
a← i
b← ba−1

q c
for h = l − 1, . . . , 0

c← ((a− 1) mod q) + 2
v ← v ∧ CVerpp(nb, c, na, πh) ∧ nb 6= 0
a← b
b← b b−1

q c

If v = 1 then output d. Otherwise output ⊥.
Update(pk,DB, sk, i, d′) In the update protocol, the client, on input the secure key sk, sends an index i and

a value d′ to the server. The server answers by sending the value d currently stored at position i and the
corresponding authentication path π̃i = (πl, nl, . . . , n1, π0) (this is generated as in the Query algorithm).
The client then checks the correctness of π̃i by running Verify(pk, i, d, π̃i). If the verification fails, the
client stops running. Otherwise, it continues as follows. First, it parses sk as (k, td, cnt), it determines
the level of the updated node l ← dlogq((q − 1)(i + 1) + 1) − 1e, and computes the new root ρ′ = n′0 as
follows:

(n′l, Ul)← CUpdatepp(ni, 1, d, d′, πl)
a← i
b← ba−1

q c
for h = l − 1, . . . , 0

c← ((a− 1) mod q) + 2
(n′h, Uh)← CUpdatepp(nh, c, nh+1, n

′
h+1, πh)

a← b
b← b b−1

q c

On the other side, after receiving (i, d′), the server runs a similar algorithm to update all stored elements
and proofs along the path of the new node. It also accumulates the new update information for every node
in this path:

(n′i, Ui)← CUpdatepp(ni, 1, d, d′)
for j = 1, . . . , q + 1

AUi,j ← accumulateUpdate(AUi,j , Ui)
π′i,j ← CProofUpdate′pp(πi,j , AUi,j)

(·, π′i)← CProofUpdatepp(ni, πi, i, Ui)
a← i
b← ba−1

q c
for h = l − 1, . . . , 0

c← ((a− 1) mod q) + 2
(n′b, Ub)← CUpdatepp(nb, c, na, n′a)
for j = 1, . . . , q + 1

AUb,j ← accumulateUpdate(AUb,j , Ub)
π′b,j ← CProofUpdate′pp(πb,j , Ub)

a← b
b← b b−1

q c

In the above algorithms, a is the index of the changed node, b the index of its parent node, and c the
position of node a in b. Basically, the algorithms change the value of node i, and then this change
propagates up to the root (ρ′ = n′0).
Finally, both the client and the server compute the new public key as pk = (pp, ρ′).

Theorem 3. If f is a pseudorandom function and CVC is a secure CVC, then Construction 3 is a secure
VDS.

18

Proof. We prove the theorem by first defining a hybrid game in which we replace the PRF with a random
function. Such hybrid is computationally indistinguishable from the real VDSsec security game by assuming
that f is pseudorandom. Then, we proceed to show that any efficient adversary cannot win with non-negligible
probability in the hybrid experiment by assuming that the CVC scheme is secure. In what follows we use
Gmi,A(λ) to denote the experiment defined by Game i run with adversary A.

Game 0 : this identical to the experiment VDSsec.
Game 1 : this is the same as Game 0 except that the PRF f is replaced with a random function (via lazy

sampling). It is straightforward to see that this game is negligibly close to Game 0 under the pseudo
randomness of f, i.e., Prob[Gm0,A(λ) = 1]− Prob[Gm1,A(λ) = 1] = negl(λ).
Now, consider Game 1. Let (i∗, d∗, π̂) be the tuple returned by the adversary at the end of the game, d be
the value currently stored in the database at index i∗. Recall that Game 1 outputs 1 if Verify(pk, i∗, d∗, π̂) =
1 and d 6= d∗. Consider a honestly computed authentication path π̃ for (i∗, d) (this is the path which
can be computed by the challenger), and observe that by construction the sequence in π̂ ends up at the
public root. Intuitively, this means that π̂ and π̃ must deviate at some point in the path from i∗ up to
the root. We define dcol as the event that the two authentication paths deviate exactly in i∗, i.e., that
ni = n∗i . Dually, if dcol does not occur, it intuitively means that the adversary managed to return a valid
authentication path that deviates from a honestly computed one in some internal node. Clearly, we have:

Prob[Gm1,A(λ) = 1] = Prob[Gm1,A(λ) = 1 ∧ dcol]
+ Prob

[
Gm1,A(λ) = 1 ∧ dcol

]
Our proof proceeds by showing that both Prob[Gm1,A(λ) = 1 ∧ dcol] and Prob

[
Gm1,A(λ) = 1 ∧ dcol

]
are

negligible under the assumption that the CVC is position-binding.

Case dcol. In this case we build a reduction B against the position-binding property of the underlying CVC.
On input pp, the reduction B computes the root node as described in the catGen algorithm, sets the

counter cnt := 0, and sets pk ← (pp, ρ). It then runs A(vp) by simulating the VDSsec game.
Whenever the adversary A streams some data element d, the reduction proceeds as described in the

catAdd algorithm (except that pseudorandom values are now sampled randomly, as per Game 1). However,
B does not know the full secret key sk – it does not know the CVC trapdoor – but it can use its collision-oracle
to compute the necessary collisions in the CVC in order to add new nodes to the tree. So, the reduction B
returns (i, π̃i) to the adversary and stores the tuple (d, i, π̃i) in a list L.

Whenever the adversary A wants to update the element at position i to the new value d′, the reduction
proceeds as described in the Update algorithm. Note that the CVC trapdoor is not needed in this phase. B
then returns the updated proof π̃′i to A and updates the tuple (d′, i, π̃′i) in L.

Eventually the adversary outputs (d∗, i∗, π̂∗). The reduction then finds the actual data d and the cor-
responding proof π̃i for position i by searching for the tuple (d, i∗, π̃i) in L, parses π̂∗ = (π∗, n∗i , . . .) and
π̃i = (π, ni, . . .) and outputs (ni, 1, d, d∗, π, π∗).

For the analysis now observe that B is efficient as so is A, and searching for a tuple in an ordered list
can be done in polynomial time. It is easy to see that B perfectly simulates the view for A as in the game
VDSsec. Now, whenever dcol happens, we know that n∗i = ni. Hence both (π, d) and (π∗, d∗) must verify
correctly whenever A wins. Furthermore, observe that B never uses its collision-oracle on position 1, since
the Append algorithm always uses CCol on index j > 1. This means essentially means that

Prob[Gm1,A(λ) = 1 ∧ dcol] ≤ Prob[PosBdgB(λ, q) = 1]
= negl(λ)

Case dcol Recall that in this case Game 1 outputs 1 only if the adversary wins by returning an authentication
path which deviates from the correct one at some internal node in the path from i∗ up to the root. In this
case too, we build a reduction B against the position-binding property of the underlying CVC.

19

On input pp, the reduction B. It then tries to set an upper limit on the number of elements the adversary
will authenticate in the tree by choosing its depth l = λ. The reduction then builds a tree of CVCs of size l
from bottom to top, where in each CVC every position which does not point to a child (especially the first
position) is set to 0. Denote the root of this tree by ρ. Finally, the reduction B sets cnt := 0, sets pk ← (pp, ρ)
and runs A(pk) by simulating Game 1 to it.

Whenever the adversary A streams some data element d to the reduction, the reduction determines
the index i = cnt + 1 for the new data element, increases cnt by one and inserts the new element into
the tree by finding a collision in the first component of node ni using its collision-oracle. It then computes
an authentication path π̃i for d as described in the Append algorithm. The reduction returns (i, π̃i) to the
adversary and stores (d, i, π̃i) in some list L. If the adversary exceeds the number of elements l, the reduction
stops the adversary A, increases l← l · λ, and starts again.

Whenever the adversary A wants to update the element at position i to some new value d′ the reduction
proceeds as described in the Update algorithm. It then returns the updated proof π̃′i to the adversary and
updates the tuple (d′, i, π̃′i) in L.

At the end of the game the adversary outputs (d∗, i∗, π̂∗). The reduction parses π̂∗ = (π∗0 , n∗0, π∗1 , . . .)
and finds the largest j for which n∗i = nj , i.e., for which the authentication path π̂∗ still agrees with the
actual tree. Also B finds the authentication path π̃i∗ = (πi∗0 , ni

∗

0 , π
i∗

1 , . . .) up to i∗, if i∗ was streamed by
the adversary, or otherwise up to the deepest ancestor of i∗. Clearly, π∗i then must be a proof that n∗i−1 is
“stored” in n∗i at some position h.

If nj is the deepest node in the path towards i∗ that is stored by the challenger then the h-th message
committed in nj by the challenger is 0. In this case B can produce a honest proof πh,0 that 0 is the h-th
message committed in nj , and then outputs (nj , h, 0, n∗i−1, πh,0, π

∗
i).

Otherwise, if nj is not the deepest node, the honest path π̃i∗ must contain a node ni∗k = nj as well as
a proof πi∗k that the node ni∗k−1 is the h-th child of nj . In this case B outputs (nj , h, ni

∗

k−1, n
∗
i−1, π

i∗

k , π
∗
i). As

one can check, this case also captures the on in which h = 1 and ni
∗

k−1 = d 6= d∗ = n∗i−1.
For the analysis see that B is efficient because A is and because the limit l will be large enough after a

polynomial number of times. Now observe that B perfectly simulates the view of A in Game 1 (otherwise
the underlying CVC would not have indistinguishable collisions). It is easy to see that whenever A wins the
pair (π∗i , n∗i−1) verifies w.r.t. nj . As B honestly computed ni

∗

k−1 and πi
∗

k , this pair will also verify w.r.t. nj .
Note that B only asks for collisions at position 1, but h > 1. Therefore B wins whenever A does. Since the
underlying CVC is position-binding, this probability is at most negligible.

Prob
[
Gm1,A(λ) = 1 ∧ dcol

]
≤ Prob[PosBdgB(λ, q) = 1]

= negl(λ)

Since both parts are at most negligible in λ, the overall success probability of any efficient adversary can
only be negligible in λ, hence Construction 3 is secure according to Definition 6.

5 VDS from Accumulators

Our second construction is conceptually very different from all previous VDS constructions, since it does
not rely on any tree structure. The basic idea is to let the client sign each element of the stream with a
regular signature scheme, and to use a cryptographic accumulator to “invalidate” (aka revoke) the signatures
of all elements that have been updated. That is, the verification key consists of the verification key of the
signature scheme and the accumulator. Whenever a client retrieves an element from the server, then the
server attaches a proof of non-membership which shows that the signature is not part of the accumulator,
i.e., the signature is still valid.

However, this idea does not work immediately. One reason is that some accumulators only support the
accumulation of an a-priori fixed number of elements such as [15]. Another issue is that the size of the public-
key is typically linear in the number of accumulated values, and thus the client might not be able to store
it. In our construction we solve this issue by exploiting the specific algebraic properties of the bilinear-map

20

accumulator. Somewhat interestingly, this allows us to reduce the size of the public-key to O(1), and to
support an unbounded number of updates.

5.1 Our Scheme

In this section we show how to use the bilinear-map accumulator described in Section 2.5 to build a VDS
protocol.

Construction 4. Let Sig = (SKg,Sign,Vrfy) be a signature scheme and H : {0, 1}∗ 7→ Z∗p be a hash function.
The VDS protocol VDS = (Setup,Append,Query,Verify,Update) is defined as follows:

Setup(1λ) The setup algorithm first generates a tuple of bilinear the parameters (p,G,GT , e, g). Second,
it chooses s at random from Z∗p and computes gs. Next, it generates a key-pair (ssk, vk) ← SKg(1λ),
initializes two counters cnt := 0 and upd := 0, and sets Slast = g. It also generates an initially empty
accumulator f ′(E) := g. Note that during the lifetime of the scheme, the server will increasingly store
g, gs, . . . , gs

upd while the client stores Slast = gs
upd . Finally, the algorithm outputs the secret key sk =

(g, p, s, ssk, Slast, cnt, upd) which is kept by the client, and the public key pk = (p,G,GT , e, g, gs, vk, f ′(E))
which is given to the server.

Append(sk, d) The append algorithm increases the counter cnt := cnt + 1, chooses a random tag tag ←
{0, 1}λ, and signs the value m := d‖tag‖cnt by computing σ ← Sign(ssk,m). The pair ((d, tag, cnt), σ)
is finally sent to S, who stores it at position cnt in DB.

Query(pk,DB, i) To retrieve the i-th element from DB, the client sends i to S, who computes the response
as follows: S retrieves the pair (m,σ) from DB and computes a proof of non-membership (w, u) for the
element ei ← H(σ) as described in Section 2.5. Finally, S returns (d, π) = ((d′, tag, i), (σ,w, u)).

Verify(pk, i, d, π) This algorithm parses pk = (p,G,GT , e, g, gs, vk, f ′(E)), d = (d′, tag, i), and π = (σ,w, u).
It sets ei ← H(σ), and outputs d′ iff Vrfy(vk, d′||tag||i, σ) = 1 and e(w, gei · gs) = e(f ′(E) · gu, g).

Update(sk,DB, sk, i, d′) The clients runs (d, π)← Query(pk,DB, i) to retrieve the ith entry from DB. After-
wards, C verifies the correctness of the entry running the verification algorithm Verify(pk, i, d, π). If Verify
outputs 1, then C increases the counter upd := upd + 1, signs the new element σ′ ← Sign(ssk, d′||tag||i)
using a random tag tag← {0, 1}λ, and adds the old signature to the accumulator as follows. The client
computes gsupd = Slast := (Slast)s, ei ← H(σ), and f ′′(E) := f ′(E)ei+s. The client sends (gsupd

, f ′′(E), σ′)
to S. The server stores (σ′, d′) at position i in DB, and gs

upd in its parameters. The public key is then
updated to pk ′ := (p,G,GT , e, g, gs, vk, f ′′(E)).

Theorem 4. If Sig is a strongly unforgeable signature scheme, H a collision-resistant hash function, and
ACC the collision-resistant accumulator as defined in Section 2.5, then Construction 4 is a secure VDS
protocol.

Proof. Let A be an efficient adversary against the security of Construction 4 as defined in game VDSsec,
denote by pk∗ := (p,G,GT , ei, g, gs, vk, f∗(E)) the public-key hold by the challenger at the end of the game,
and let Q := ((d1||tag1||1, σ1), (d2||tag2||2, σ2), . . . , (dn||tagn||n, σn)) be the state of the database DB at
the end of the game. By (w1, u1), . . . , (wn, un) we denote the witnesses of the non-membership proofs that
be can be computed by the challenger using public values only, as discussed in Section 2.5, and denote by
Q′ := ((d′1||tag′1||i′1, σ′1), (d′2||tag′2||i′2, σ′2), . . . , (d′n||tag′n||in, σ′n)) all queries sent by A. Clearly, Q ⊆ Q′ and
let O := Q′\Q be the set of queries that have been sent by the adversary and which are not in the current
database. Let A be an efficient adversary that outputs ((d∗, tag∗, i∗), (σ∗, w∗, u∗)) such that (d̂, i∗) 6∈ Q,
Vrfy(vk, d∗||tag∗||i∗, σ) = 1, and e(w∗, ge∗i · gs) = e(f ′(E) · gu∗ , g), with e∗i := H(σ∗). Then, we define the
following events:

– hcol is the event that there exists an index 1 ≤ i ≤ n such that H(σ∗) = H(σ′i) and σ∗ 6= σ′i.
– fake is the event that e(w∗, ge∗i · gs) = e(f ′(E) · gu∗ , g) and ei ∈ E .

21

Observe that the case where the adversary finds a collision in the accumulator and the one where he finds a
fake witness for a membership of a non-member of E , do not help to break the security of the VDS scheme.
Given these events, we can bound A’s success probability as follows:

Prob
[

VDSsecVDSA (λ) = 1
]
≤ Prob[hcol] + Prob[fake] +

Prob
[

VDSsecVDSA (λ) = 1 ∧ hcol ∧ fake
]

In the following we show that the parts of the sum are negligible. The fact that Prob[hcol] is negligible,
follows trivially by the collision-resistance of the hash function. Furthermore, it is also easy to see that
Prob[fake] is negligible as well due to proof of non-membership properties of the accumulator.

Claim. Prob
[

VDSsecVDSA (λ) = 1 ∧ hcol ∧ fake
]
≈ 0.

This claim follows from the strong unforgeability of the underlying signature scheme. The intuition is that
the correct proof non-membership guarantees that the signature is not stored in the accumulator. Since it is
not stored in the accumulator, the adversary did not receive this signature from the signing oracle and thus,
is a valid forger w.r.t. strong unforgeabiility.

More formally, let A be an efficient adversary against the security of the VDS protocol. Then we construct
an algorithm B against the strong unforgeability as follows. The input of B is a public-key vk and it has
access to a signing oracle. It generates random elements (p,G,GT , e, g, gs) for some s chosen at random from
Z∗p, counters cnt := 0 and upd := 0, and B also generates an initially empty accumulator f ′(E) := g. In runs
A on pk = (p,G,GT , e, g, gs, vk, f ′(E)) in a black-box way. Whenever A wishes to append an element d, then
B increments the counter cnt := cnt + 1, chooses a fresh tag tag, sends m′ := d||tag||cnt to its signing
oracle and forwards the response σ together with the corresponding proof of non-membership to A. It is
understood that B records alls queries and answers. If A wants to update the ith element, then B adds the
corresponding signature σi to the accumulator, increases the counter upd := upd + 1, picks a fresh tag tag′

at random, sends m′ := d′||tag′||cnt to its singing oracle and forwards the response together with a proof of
non-membership and gs

upd to A. Eventually, A stops, outputting ((d∗, tag∗, i∗), (σ∗, w∗, u∗)). The algorithm
B stops, outputting ((d∗||tag∗||i∗), σ∗).

For the analysis, it’s easy to see that B is efficient and performs a perfect simulation fromA’s point of view.
In the following, let’s assume that B succeeds with non-negligible probability, i.e., ((d∗, tag∗, i∗), (σ∗, w∗, u∗))
satisfies the following: (d̂, i∗) 6∈ Q, Vrfy(vk, d∗||tag∗||i∗, σ) = 1, and e(w∗, ge∗i · gs) = e(f ′(E) · gu∗ , g), with
e∗i := H(σ∗). We now argue, that B succeeds whenever A does. To see this observe that (d̂, i∗) 6∈ Q and that
the proof of non-membership verifies. Thus, conditioning on fake and on hcol the claim follows.

6 Experimental Results

We implemented the construction based on chameleon vector commitments (section 3) and on accumulators
(section 5) in Java 1.7.

In this section, we provide comprehensive benchmarks of all proposed schemes to evaluate their prac-
ticality. We investigate the computational and bandwidth overhead induced by our protocols. We use the
PBC library [10] in combination with a java wrapper for pairing-based cryptographic primitives (using a
type D-201 MNT curve), and the Bouncy Castle Cryptographic API 1.50 [3] for all other primitives. For the
construction based on accumulators, we used RSA-PSS with 1024 bit long keys as our underlying signature
scheme, and SHA-1 as our hash function. Our experiments were performed on an Amazon EC2 r3.large
instance equipped with 2 vCPUs Intel Xeon Ivy Bridge processors, 15 GiB of RAM and 32 GB of SSD
storage running Ubuntu Server 14.04 LTS (Image ID ami-0307d674).

We stress that this is an unoptimized, prototype implementation, and that better performance results
may be achieved by further optimizations.

22

Dataset: We evaluated our schemes by outsourcing and then retrieving 8GB, using chunk-sizes of 256kB,
1MB, and 4MB. We measured the insertion and the verification time on the client side, as well as the sizes
of all transmitted proofs.
Branching Factor: The CVC-based VDS was instantiated with branching factors of q = 32, 64, 128, and
256, and the public-key consists of q2 elements that amount to 2.7MB (for q = 256). This is in contrast to
the public key size in the accumulator-based VDS which is about 350bytes.
Number of Updates: To quantify the impact of updates on the accumulator-based construction, we per-
formed separate experimental runs. Therefore, we performed 0, 10, 50 and 100 updates prior to retrieving
and verifying the outsourced data set.
Block Sizes: The block size is a parameter which depends heavily on the application. Larger block sizes
reduce the number of authenticated blocks, and thus yield a smaller tree with more efficient bandwidth
and computation performance in the CVC-based VDS. However, larger blocks decrease the granularity of
on-the-fly verification, since one has to retrieve an entire block prior to verification.

We took measurements for block sizes of 256kB, 1MB and 4MB, which we believe is a sensible range of
block sizes for various applications. For example, consider HD-video streaming with a bandwidth of 8MB/s.
Using a block size of 4MB means that one can perform a verification every 0.5 seconds. However, in other
applications such as the verifiable stock market, one may want to only retrieve a small fraction of the
outsourced data set, for which a smaller block size such as 256kB might be more desirable.

6.1 Streaming Data

Both proposed constructions have constant client-side insertion times as well as constant bandwidth over-
heads. The insertion proofs in the accumulator-based and the CVC-based construction are respectively 236
and 1070 bytes large. Rather than processing each block directly, we first compute its hash value and pass
it to our VDS protocol. Since the insertion time is dominated by this hash function, we give the average
insertion times for our different block sizes in Figure 2. As one can see, the accumulator-based construc-
tion performs slightly better than the CVC-based one, and both give rise to quite practical timings for the
insertion phase.

6.2 Verifying Retrieved Elements

The time needed for verifying the correctness of 8GB data retrieved from the server is depicted in Figure 3.
In this figure, various insights about the performance behavior of our protocols are visible.

Firstly, the block size plays a crucial role for the overall performance, since the number of verifications
needed to authenticate the 8GB dataset depends linearly on the inverse of the block size.

Secondly, in the CVC-based construction higher tree arity results in shorter proofs, and therefore faster
verification.

Thirdly, we observe the impact of updates on our accumulator-based construction. While without updates
the accumulator-based construction is faster than the CVC-based one, adding just 10 updates decreases the
performance of the accumulator dramatically. Still, for applications where only a few updates are expected,
our accumulator-based construction is preferable.

These effects can also be observed in Figure 4. Here the time required per block for retrieving a constant
number of blocks is depicted (in contrast to a constant amount of data, as in Figure 3). From top to
bottom, the influence of the block size is visible, whereas from left to right the performance of our different
constructions is shown in a comparable manner. To remove outliers from our measurements, we used a
Hampel-filter [20] with a window-size of 5.

23

ACC
CVC

(q=128)

0
2

4
6

8
10

12
14

16
18

20
22

24

Blocksize

256 kB
1024 kB
4096 kB

tim
e

in
 m

ill
is

ec
on

ds

Figure 2. Average insertion time for different block sizes

ACC
0 updates

ACC
10 updates

CVC
q=32

CVC
q=64

CVC
q=128

CVC
q=256

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28 Blocksize

256 kB
1024 kB
4096 kB

tim
e

in
 m

in
ut

es

Figure 3. Accumulated verification time for retrieving 8GB

6.3 Bandwidth Overhead

The bandwidth overhead incurred by retrieving 8GB of data is shown in Figure 5. As in Figure 3 the impact
of the block size is visible, as is the impact of the branching factor of the CVC-based construction. This
figure also shows that the accumulator-based construction, although slower when handling updates, achieves
a much smaller bandwidth overhead compared to the CVC-based construction. However, in this scenario for
a block-size of 4MB, both constructions introduce a total bandwidth overhead of less than 4MB, or 0.05%.

24

Figure 4. Influence of block size and branching factor/number of updates on the verification time. From top to
bottom, the results for a block size of 256kB and 1MB are shown.

References

1. F. Bao, R. Deng, and H. Zhu. Variations of diffie-hellman problem. In S. Qing, D. Gollmann, and J. Zhou,
editors, Information and Communications Security, volume 2836 of Lecture Notes in Computer Science, pages
301–312. Springer Berlin Heidelberg, 2003. 2.2, 3.3

2. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. pages 111–131,
2011. 1.2

3. Bouncy Castle. The Legion of the Bouncy Castle. online at https://www.bouncycastle.org. 6
4. J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and efficient revocation

for anonymous credentials. pages 481–500, 2009. 1.2
5. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous

credentials. pages 61–76, 2002. 1.2
6. D. Catalano and D. Fiore. Vector commitments and their applications. In K. Kurosawa and G. Hanaoka, editors,

Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 55–72. Springer, 2013. 1,
1.2, 3, 3.3

7. I. Damg̊ard and N. Triandopoulos. Supporting non-membership proofs with bilinear-map accumulators. Cryp-
tology ePrint Archive, Report 2008/538, 2008. http://eprint.iacr.org/. 2.5, 2

8. H. Krawczyk and T. Rabin. Chameleon signatures. 2000. 3.3
9. B. Libert and M. Yung. Concise mercurial vector commitments and independent zero-knowledge sets with short

proofs. pages 499–517, 2010. 3
10. B. Lynn. PBC - C Library for Pairing Based Cryptography. online at http://crypto.stanford.edu/pbc/. 6
11. T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatures with an unbounded number

of time periods. pages 400–417, 2002. 1.3
12. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for authenti-

cated data structures. Algorithmica, 39:2004, 2001. 1.2
13. U. M. Maurer and S. Wolf. Diffie-Hellman oracles. pages 268–282, 1996. 2.2, 3.3
14. M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE Journal on Selected Areas in

Communications, 18(4):561–570, 2000. 1.2
15. L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, volume 3376 of Lecture Notes in

Computer Science, pages 275–292. Springer, 2005. 2, 2.5, 1, 5
16. L. Nguyen. Accumulators from bilinear pairings and applications. pages 275–292, 2005. 1.2
17. C. Papamanthou, E. Shi, R. Tamassia, and K. Yi. Streaming authenticated data structures. In EUROCRYPT,

volume 7881 of Lecture Notes in Computer Science, pages 353–370. Springer, 2013. 1.2
18. C. Papamanthou and R. Tamassia. Time and space efficient algorithms for two-party authenticated data struc-

tures. In Proceedings of the 9th international conference on Information and communications security, ICICS’07,
pages 1–15, Berlin, Heidelberg, 2007. Springer-Verlag. 1.2

19. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. pages 437–448, 2008. 5
20. R. K. Pearson. Outliers in process modeling and identification. Control Systems Technology, IEEE Transactions

on, 10(1):55–63, 2002. 6.2

25

https://www.bouncycastle.org
http://eprint.iacr.org/
http://crypto.stanford.edu/pbc/

ACC
0 updates

ACC
10 updates

CVC
q=32

CVC
q=64

CVC
q=128

CVC
q=256

0
5

10
15

20
25

30
35

40
45

Blocksize

256 kB
1024 kB
4096 kB

ov
er

he
ad

 in
 M

B

Figure 5. Accumulated bandwidth overhead for retrieving 8GB

21. A. Perrig, R. Canetti, D. X. Song, and J. D. Tygar. Efficient and secure source authentication for multicast.
pages 35–46, 2001. 1.2

22. A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song. Efficient authentication and signing of multicast streams
over lossy channels. pages 56–73, 2000. 1.2

23. D. Schröder and H. Schröder. Verifiable data streaming. In ACM Conference on Computer and Communications
Security, pages 953–964. ACM, 2012. 1, 1.1, 1.2, 2.6

24. D. Schröder and M. Simkin. Veristream - a framework for unbounded verifiable data streaming. In Financial
Cryptography. Springer, 2015. 1, 1.1, 1.1, 1.2

25. E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: A scalable cloud file system with efficient integrity checks.
In Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC ’12, pages 229–238, New
York, NY, USA, 2012. ACM. 1.2

26. R. Tamassia and N. Triandopoulos. Certification and authentication of data structures. In AMW, 2010. 1.2

A Multi-collision indistinguishability

Definition 10 implies indistinguishability in the case where A is allowed to output p = poly(λ) collision pairs
(ij ,m′ij), j ∈ {1, . . . , p} instead of only one pair. Denote by Mj the vector of messages after the j-th collision
query (i.e. M0 = (m0, . . . ,mq), Mp is the vector where all replacements have been made). Denote by Mj [i]
the i-th message in such a vector. Then construct the following hybrids:

(Cj , auxj)← CCompp(Mj)
for k = (j + 1) . . . p :

auxj ← CColpp(Cj , ik,Mk−1[ik],m′ik , td, auxj)

Now, if any PPT adversary A is able to distinguish (C0, aux0) from (Cp, auxp) with non-negligible probability
then there must exist an index j such that A can distinguish between (Cj , auxj) and (Cj+1, auxj+1) with
non-negligible probability, which contradicts the security definition of ColInd. Therefore, such an A cannot
exist and the claim holds.

26

B Separating our Security Definitions

In the following let CVC = (CGen,CCom,COpen,CVer,CCol,CUpdate,CProofUpdate) be a concise, hiding,
and position-binding chameleon vector commitment with indistinguishable collisions.

B.1 ColInd ∧ PosBdg 6=⇒ Hiding

Consider CVC′ = (CGen′,CCom′,COpen′,CVer′,CCol′,CUpdate′,CProofUpdate′):

Construction 5. CGen′(1λ, q): Output CGen(1λ, q).

CCom′pp(m1, . . . ,mq): (C, aux∗)← (CCompp(m1, . . . ,mq), set aux← (aux∗,
q⊕
j=1

mj), output (C, aux).

COpen′pp(i,m, aux): Parse aux = (aux∗, x), compute π∗i ← COpenpp(i,m, aux∗), output (π∗i , x).
CVer′pp(C, i,m, π): Parse π = (π∗, x), output CVerpp(C, i,m, π∗).
CCol′pp(C, i,m,m′, td, aux): Parse aux = (aux∗, x), compute aux∗′ ← CColpp(C, i,m,m′, td, aux∗), set x′ ←

x⊕m⊕m′, output (aux∗′, x′).
CUpdate′pp(C, i,m,m′, π): Parse π = (π∗, x), compute (C ′, U∗) ← CUpdatepp(C, i,m,m′, π∗), set U ←

(U∗,m⊕m′), output (C ′, U).
CProofUpdate′pp(C, πj , i, U): Parse πj = (π∗j , x) and U = (U∗, y), compute x′ ← x ⊕ y and (C ′, π∗j

′) ←
CProofUpdatepp(C, π∗j , i, U∗), set π′j ← (π∗j

′, x′). Output (C ′, π′j).

Lemma 11. Construction 5 has indistinguishable collisions.

Proof. Assume there exists a PPT adversary A = (A0,A1) against ColIndCVC
′

that has a success probability
which is non-negligibly bigger than 1/2. We can then construct the following reduction B against ColIndCVC .

On input (pp, td) the reduction invokesA0(pp, td). The adversary is expected to output ((m1, . . . ,mq), (i,m′i)).

The reduction B then computes x = m′i ⊕
q⊕

j=1,j 6=i
mj and outputs ((m1, . . . ,mq), (i,m′i)). The game then

returns (Cb, aux∗b). The reduction sets aux ← (aux∗b , x) and invokes A1(Cb, aux). Eventually A1 outputs a
bit b and the reduction then also outputs this bit.

Observe that B is efficient and simulates the view of A perfectly as in ColIndCVC
′
. Therefore it holds that

Prob
[

ColIndCVCB (λ) = 1
]

= Prob
[

ColIndCVC
′

A (λ) = 1
]
.

Since CVC has indistinguishable collisions, we have

Prob
[

ColIndCVCB (λ) = 1
]

= Prob
[

ColIndCVC
′

A (λ) = 1
]
≤ 1

2 + negl(λ).

This contradicts the assumption that A wins with non-negligible probability bigger than 1/2, therefore such
an adversary cannot exist.

Lemma 12. Construction 5 is position-binding.

Proof. For the sake of contradiction assume there exists a PPT adversary against PosBdgCVC
′

that wins
with non-negligible probability. We can then construct a reduction B against the position-binding property
of CVC.

On input pp, the reduction B invokes ACColpp(·,·,·,·,td,·)(pp). To simulate the collision-oracle, the reduction
B parses aux = (aux∗, x), computes aux∗′ using its own collision-oracle, and sets x′ = x ⊕m ⊕m′. It then

27

returns (aux∗′, x′) to the adversary. The adversary A is expected to output (C, i,m,m′, π, π′). The reduction
then parses π = (π∗, x) and π′ = (π∗′, x′) and outputs (C, i,m,m′, π∗, π∗′).

It is easy to see that B is efficient and perfectly simulates the view of A as in PosBdgCVC
′
. It also holds

for π = (π∗, x) that CVerpp(C, i,m, π∗) verifies whenever CVer′pp(C, i,m, π) does. Therefore B always wins
exactly when A does, i.e.

Prob
[

PosBdgCVCB (λ) = 1
]

= Prob
[

PosBdgCVC
′

A (λ) = 1
]
.

Again, since CVC is position-binding, we have that

Prob
[

PosBdgCVCB (λ) = 1
]

= Prob
[

PosBdgCVC
′

A (λ) = 1
]
≤ negl(λ).

Therefore, such an adversary A cannot exist, hence CVC′ is position-binding as well.

Lemma 13. Construction 5 is not hiding.

Proof. Assume q = 2 and consider the following adversary A: First, A outputs ((0, 0), (0, 1)). It then receives
back Π = (π1,⊥), since both vectors only agree in the first position. The adversary A then simply parses
π = (π′, x) and outputs x. Clearly, if the first vector was chosen, we have x = 0⊕ 0 = 0, therefore A is right.
Also, if the second vector was chosen, we have x = 0⊕ 1 = 1, so A is right as well. This means that A wins
with probability 1 which is non-negligibly bigger than 1/2 in λ.

B.2 ColInd ∧ Hiding 6=⇒ PosBdg

Consider CVC′ = (CGen′,CCom′,COpen′,CVer′,CCol′,CUpdate′,CProofUpdate′):

Construction 6. CGen′(1λ, q): Output CGen(1λ, q).
CCom′pp(m1, . . . ,mq): Output CCompp(m1, . . . ,mq).
COpen′pp(i,m, aux): compute π∗i ← COpenpp(i,m, aux), output (π∗i , 0).
CVer′pp(C, i,m, π): Parse π = (π∗, x), output CVerpp(C, i,m⊕ x, π∗).
CCol′pp(C, i,m,m′, td, aux): Output CColpp(C, i,m,m′, td, aux).
CUpdate′pp(C, i,m,m′, π): Parse π = (π∗, x), output CUpdatepp(C, i,m,m′, π∗).
CProofUpdate′pp(C, πj , i, U): Parse πj = (π∗j , x), compute (C ′, π∗j

′) ← CProofUpdatepp(C, π∗j , i, U), set π′j ←
(π∗j
′, x). Output (C ′, π′j).

Lemma 14. Construction 6 has indistinguishable collisions.

Proof. It is easy to see that each adversary A against ColIndCVC
′

is also an adversary against ColIndCVC
that wins with the same probability. Since CVC is assumed to have indistinguishable collisions, CVC′ has
indistinguishable collisions as well.

Lemma 15. Construction 6 is hiding.

Proof. Assume there exists a PPT adversary A = (A0,A1) against HidingCVC
′

that has a success probability
which is non-negligibly bigger than 1/2. We can then construct the following reduction B against HidingCVC .

On input pp, the reduction invokesA0(pp), which is expected to output two vectors of messages (M0,M1) =
((m0

1, . . . ,m
0
q), (m1

1, . . . ,m
1
q)). The reduction B then outputs M0,M1. The game returns a commitment C and

vector of proofs Π∗ which the reduction parses as Π∗ = (π∗1 , . . . , π∗q). The reduction then sets πi ← (π∗i , 0),

28

if π∗i 6= ⊥, and πi ← ⊥ otherwise for i = 1, . . . , q. It finally sets Π ← (π1, . . . , πq) and invokes A1(C,Π).
Eventually, A1 outputs a bit b and the reduction B then outputs this bit as well.

Observe that B is efficient and perfectly simulates the view of A as in HidingCVC
′
. Furthermore, B wins

exactly when A does, i.e.

Prob
[

HidingCVCB (λ) = 1
]

= Prob
[

HidingCVC
′

A (λ) = 1
]
.

Since CVC is hiding, we have that

Prob
[

HidingCVCB (λ) = 1
]

= Prob
[

HidingCVC
′

A (λ) = 1
]
≤ 1

2 + negl(λ).

Therefore, such an adversary A cannot exists, hence Construction 6 is hiding.

Lemma 16. Construction 6 is not position-binding.

Proof. Consider the following adversary A against the position-binding property of CVC′:
Upon input pp, the adversaryA chooses q random messagesm1, . . . ,mq, computes (C, aux)← CCom′pp(m1, . . . ,mq),

and also computes the opening π1 ← COpen′pp(1,m1, aux). It then parses π1 = (π∗1 , 0) and sets m′1 ← m1⊕ 1
and π′1 ← (π∗1 , 1). Finally, the adversary A outputs (C, 1,m1,m

′
1, π1, π

′
1).

Observe that A is obviously efficient. Since m1 ⊕ 0 = m′1 ⊕ 1, both (m1, π1) and (m′1, π′1) verify. Because
m1 6= m′1, the adversary A wins with probability 1, which is non-negligibly bigger than 1/2. Hence CVC′ is
not position-binding.

B.3 PosBdg ∧ Hiding 6=⇒ ColInd

Consider CVC′ = (CGen′,CCom′,COpen′,CVer′,CCol′,CUpdate′,CProofUpdate′):

Construction 7. CGen′(1λ, q): Output CGen(1λ, q).
CCom′pp(m1, . . . ,mq): Compute (C, aux∗)← CCompp(m1, . . . ,mq), set aux← (aux∗, 1), output (C, aux).
COpen′pp(i,m, aux): Parse aux = (aux∗, x), output COpenpp(i,m, aux∗).
CVer′pp(C, i,m, π): output CVerpp(C, i,m, π).
CCol′pp(C, i,m,m′, td, aux): Parse aux = (aux∗, x), compute aux∗′ ← CColpp(C, i,m,m′, td, aux∗), output

(aux∗′, 0).
CUpdate′pp(C, i,m,m′, π): Output CUpdatepp(C, i,m,m′, π).
CProofUpdate′pp(C, πj , i, U): Output CProofUpdatepp(C, πj , i, U).

Lemma 17. Construction 7 is position-binding.

Proof. Since CVC and CVC′ only differ in the fact that CVC′ adds a bit to the auxiliary information, a reduc-
tion against the position-binding property of CVC can be constructed trivially (i.e. whenever the adversary
asks his oracle for a collision, the reduction computes the collision using its own oracle and appends a 0).
Hence no efficient adversary which breaks the position-binding of CVC′ can exist.

Lemma 18. Construction 7 is hiding.

Proof. Since CVC and CVC′ only differ in the auxiliary information, any adversary against the hiding property
of CVC′ is also an adversary against the hiding property of CVC that wins with the same probability. Hence
no efficient adversary which breaks hiding of CVC′ can exist.

29

Lemma 19. Construction 7 does not have indistinguishable collisions.

Proof. Consider the following adversaryA against ColInd (assume q = 2): First,A outputs ((m1,m2), (1,m′1))
where m1,m

′
1,m2 are chosen at random. He then receives back (Cb, auxb), parses aux = (aux∗, x) and outputs

x.
If he was given (C0, aux0) then x = 1, since aux0 is found using the collision finding algorithm. Hence A

wins in this case. If he was given (C1, aux1) then x = 1, since aux1 is the output of CCom′. Therefore A also
wins in this case. This means that A wins with probability 1, which is non-negligibly bigger than 1/2 in λ.

30

	Nearly Optimal Verifiable Data Streaming

