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Abstract. Sprout is a lightweight stream cipher proposed by Armknecht and Mikhalev at FSE 2015. It
has a Grain-like structure with two State Registers of size 40 bits each, which is exactly half the state size
of Grain v1. In spite of this, the cipher does not appear to lose in security against generic Time-Memory-
Data Tradeoff attacks due to the novelty of its design. In this paper, we first present improved results
on Key Recovery with partial knowledge of the internal state. We show that if 50 of the 80 bits of the
internal state are guessed then the remaining bits along with the Secret Key can be found in a reasonable
time using a SAT solver. Thereafter we show that it is possible to perform a distinguishing attack on the
full Sprout stream cipher in the multiple IV setting using around 240 randomly chosen IVs on an average.
The attack requires around 248 bits of memory. Thereafter we will show that for every Secret Key, there
exist around 230 IVs for which the LFSR used in Sprout enters the all zero state during the Keystream
generating phase. Using this observation, we will first show that it is possible to enumerate Key-IV pairs
that produce keystream bits with period as small as 80. We will then outline a simple Key recovery attack
that takes time equivalent to 266.7 encryptions with negligible memory requirement. This although is not
the best attack reported against this cipher in terms of the Time complexity, it is the best in terms of the
memory required to perform the attack.
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1 Introduction

Lightweight stream ciphers have become immensely popular in the cryptological research community,
since the advent of the eStream project [1]. The three hardware finalists included in the final portfolio
of eStream i.e. Grain v1 [9], Trivium [5] and MICKEY 2.0 [4], all use bitwise shift registers to generate
keystream bits. After the design of Grain v1 was proposed, two other members Grain-128 [10] and
Grain-128a were added to the Grain family mainly with an objective to provide a larger security
margin and include the functionality of message authentication respectively. All the aforementioned
ciphers have one trait in common: the sizes of their internal states are at least twice the length of
the Key used in their designs. In FSE 2015, Armknecht and Mikhalev proposed the Grain-like stream
cipher Sprout [2] with a startlingly opposite trend, the size of the internal state of Sprout was equal
to the size of its Key. In [2], the authors argue that due to novel design strategy of the cipher, it can
resist generic Time-Memory-Data Tradeoff attacks. The security against some other known classes of
attacks was also discussed.

1.1 Previous Attacks on Sprout

To the best of our knowledge, four attacks have been reported against Sprout . We explain the feasibility
of these attacks a follows:

• In [7], a very obvious Related Key-Chosen IV distinguisher is reported against Sprout . Let K,V
denote a Key-IV pair and let K ′ denote K with the first bit flipped and similarly let V ′ denote V
with the first bit flipped. Then it is easy to see that the probability that the first 80n keystream
bits produced by K,V and K ′, V ′ are equal is given by 1

8·2n .



• In [11], a fault attack against Sprout is presented. Another attack based on solving a system of
non-linear equations by a SAT solver is also presented. The authors guess the values of 54 out
of the 80 bits of the internal state. The remaining 106 unknowns, i.e. the remaining 26 internal
state bits and the 80 Key bits are found as follows. The authors use the first 400 keystream bits
produced by the cipher to populate a bank of non-linear equations in the unknown variables. The
resulting system is solved via a SAT solver in around 77 seconds on average on a system running on
a 1.83 GHz processor and 4 GB RAM. The SAT solver on an average returns 6.6 candidate Keys.
Thus the authors argue that their findings amount to an attack on Sprout in 254 attempts, since 54
bits are initially guessed in this process. However, the authors do not discuss the computational
complexity associated with one attempt at solution by a SAT solver. If one can perform around 2e

Sprout encryptions in 77 seconds, then in terms of number of encryptions performed, the attack
takes time equivalent to 6.6 × 254 × 2e encryptions which is more than 280 if e > 23 (which may
be achievable with a good implementation of the cipher), and so it is not certain that the work in
[11] translates to a feasible attack on Sprout .

• In [8], a list merging technique is employed to determine the internal state and Secret Key of Sprout
that is faster than exhaustive search by 210. The attack has a memory complexity of 246 bits.

• In [6], a TMD tradeoff attack is outlined using an online time complexity of 233 Encryptions and
770 TB of memory. The paper first observes that it is easy to deduce the Secret Key from the
knowledge of the internal state and the keystream. The paper then makes an elegant observation
on special states of Sprout that produce keystream without the involvement of the Secret Key. A
method to generate and store such states in tables is first outlined. The online stage consists of
inspecting keystream bits, retrieving the corresponding state from the table, assuming of course
that the state in question is a special state, and then computing the Secret Key. The process, if
repeated a certain number of times, guarantees that a special state is encountered, from where the
correct Secret Key is found.

1.2 Organization of the Paper

In Section 2, we present the structural and algebraic description of the Sprout stream cipher. In Section
3, we show that by guessing 50 out of the 80 bits of the internal state, one can determine the remaining
bits of the state and the Secret Key by using a SAT solver. This improves the results presented in
[11], but due to reasons mentioned earlier, this does not necessarily amount to Cryptanalysis of the
cipher. In 4, we show that it is possible to generate two IVs for every Secret Key that generate 80-bit
shifted Keystream sequences. Making use of this result we mount a distinguishing attack on Sprout
using keystream bits from around 240 randomly chosen IVs, and a memory complexity of around
248 bits. We also show that the Time complexity of this attack can be reduced at the cost of more
memory. Finally in Section 5, we observe that for every Secret Key there exist around 230 IVs that
result in the LFSR landing in the all zero state during the Keystream generating phase. Based on
this observation, we first show how it is possible to generate Key-IV pairs that generate Keystream
sequences with period as small as 80. Thereafter, we mount a simple Key recovery attack that requires
time equivalent to 266.7 encryptions and negligible memory. Section 6 concludes the paper.

2 Description of Sprout

The exact structure of Sprout is explained in Figure 1. It consists of a 40-bit LFSR and a 40-bit NFSR.
Certain bits of both the shift registers are taken as inputs to a combining Boolean function, whence
the keystream is produced. The keystream is produced after performing the following steps:

Initialization Phase: The cipher uses an 80 bit Key and a 70 bit IV. The first 40 most significant
bits of the IV is loaded on to the NFSR and the remaining IV bits are loaded on to the first 30 most



b b b

Round Key Function

NFSR LFSR

Counterg f

h

k0 k1 k2 k79

Initialization Phase Initialization Phase

72

7

29 6

3 7 3k∗t

Fig. 1: Block Diagram of Sprout

significant bits of the LFSR. The last 10 bits of the LFSR are initialized with the constant 0x3fe,
i.e. the string of nine 1′s followed by a 0. Let Lt = [lt, lt+1, . . . , lt+39] and Nt = [nt, nt+1, . . . , nt+39]
denote the 40-bit vectors that denote respectively LFSR and NFSR states at the tth clock interval.
During the initialization phase, the registers are updated as follows.

(a) In the first 320 rounds (i.e. 0 ≤ t ≤ 319) of the initialization phase the cipher produces the
keystream bit zt which is not produced as output. This is computed as

zt = lt+30 +
∑
i∈A

nt+i + h(Nt, Lt).

where A = {1, 6, 15, 17, 23, 28, 34} and h(Nt, Lt) = nt+4lt+6+ lt+8lt+10+ lt+32lt+17+ lt+19lt+23+
nt+4lt+32nt+38.

(b) The LFSR updates as lt+40 = zt + f(Lt), where

f(Lt) = lt + lt+5 + lt+15 + lt+20 + lt+25 + lt+34.

(c) The NFSR updates as nt+40 = zt + g(Nt) + c4t + k∗t + lt0, where c4t denotes the 4th LSB of
the modulo 80 up-counter which starts at t = 0, k∗t is the output of the Round Key function
defined as:

k∗t =

{
Kt mod 80, if t < 80,
Kt mod 80 · (lt+4 + lt+21 + lt+37 + nt+9 + nt+20 + nt+29), otherwise.

Here Ki simply denotes the ith bit of the Secret Key. The non-linear function g(Nt) is given as:

g(Nt) = nt+0 + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5 + nt+7nt+8+

nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38+

nt+10nt+11nt+12 + nt+27nt+30nt+31.



Keystream Phase: After the Initialization phase is completed, the cipher discontinues the feedback
of the keystream bit zt to the update functions of the NFSR and LFSR and makes it available as
the output bit. During this phase, the LFSR and NFSR update themselves as lt+40 = f(Lt) and
nt+40 = g(Nt) + c4t + k∗t + lt0 respectively.

3 Key Recovery from partial knowledge of State

In [11], results were presented pertaining to the recovery of the Secret Key with partial knowledge of
the State. The authors claimed that if all the NFSR bits are known and 14 bits of the LFSR are also
known then by using the algebraic equations resulting from the first 450 keystream bits, the Keyspace
can be reduced to a set of 6.6 candidates on average, by solving the equations through a SAT solver. It
was also mentioned that the solver took around 77 seconds on average to solve the system. Although
this does not necessarily lead to an attack, we show in this section that it is possible to propose a
better algorithm. Before proceeding we present a brief outline of the algorithm used in [11]:

1. Assume that the entire NFSR state and around m bits of the LFSR are known just after the
completion of the Key Initialization phase. Let us label the time index as t = 0 at this instant.
The remaining 40 −m bits of the LFSR and the 80 bits of the Secret Key are unknown at this
point. The vectors Lt = [lt, lt+1, . . . , lt+39] and Nt = [nt, nt+1, . . . , nt+39]. So initially it is assumed
that N0 is completely known and L0 is known partially.

2. For t = 0 to Nr − 1 do

• Introduce two new unknowns l40+t, n40+t defined as l40+t = f(Lt) and n40+t = g(Nt)+c4t+k
∗
t +lt.

• Form the keystream equation

zt = lt+30 +
∑
i∈A

nt+i + nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38.

3. After forming the above bank of 3Nr equations, pass them to a SAT solver.

The authors of [11] claimed that for m = 14, Nr = 450, the SAT solver was able to narrow down
the set of candidate Secret Keys to 6.6 on average in around 77 seconds.

3.1 A few observations

The ease with which a SAT solver is able to solve a given bank of equations depends on the algebraic
degree of the equations so formed [12]. It is clear that the algebraic degree of zt with respect to the
unknowns in L0 and the Secret Key increases for increasing t. It is also known that, if the Key is known,
then the state update during both the Keystream phase and the Initialization phase are one-to-one
and invertible. Indeed, rewriting the functions f, g as f(Lt) = lt + f ′(L′t) and g(Nt) = nt + g′(N ′t)
(here L′t = [lt+1, lt+2, . . . , lt+39] and N ′t = [nt+1, nt+2, . . . , nt+39], then if Lt, Nt denote the state at
time t, then Lt−1 is given as [lt−1, lt, . . . , lt+38] where lt−1 = lt+39 +f ′(L′t−1), and since L′t−1 is a subset
of Lt, we can see that Lt−1 is completely defined by Lt. Similarly Nt−1 = [nt−1, nt, . . . , nt+38] where

nt−1 = nt+39 + lt−1 + k∗t−1 + c4t−1 + g′(N ′t−1).

Here too since N ′t−1 ⊂ Nt, the previous state Nt−1 is completely defined by Lt, Nt. Keeping this in
mind, we formulate the following strategy for Key recovery from the partial knowledge of state.

1. We assume that at t = 320, all the bits of N320 and m bits of L320 are known. Thereafter we do
the following:



2. For t = 0 to 319 do

• Introduce two new unknowns l360+t, n360+t defined as l360+t = f(Lt+320) and n360+t = g(Nt+320)+
c4t+320 + k∗t+320 + lt+320.

• Form the keystream equation zt+320 = lt+350 +
∑

i∈A nt+320+i + h(Nt+320, Lt+320).

3. We now take help of the keystream generated before t = 320

4. For t = 320 to 1 do

• Introduce two new unknowns lt−1, nt−1 defined as lt−1 = lt+39 + f ′(L′t−1) and nt−1 = nt+39 +
lt−1 + k∗t−1 + c4t−1 + g′(N ′t−1).

• Form the keystream equation zt−1 = lt+29 +
∑

i∈A nt−1+i + h(Nt−1, Lt−1).

5. After preparing this bank of 320 ∗ 3 ∗ 2 = 1920 equations, we forward it to a SAT Solver.

Since the algebraic degrees of z320+t and z320−t are expected to be the same with respect to the
unknowns in L320 and the Secret Key, we achieve the dual purpose of populating our bank of equations
with more entries and at the same time control the algebraic degree of the equations to some extent.
We performed the experiments with Cryptominisat 2.9.5 [13] solver installed with the SAGE 5.7 [14]
computer algebra system on a computer with a 2.1 GHz CPU and 16 GB memory. For m = 10, (after
guessing 50 bits of the internal state), we were able to find the remaining bits of the state and the
correct Secret Key in around 31 seconds on average.

4 A Distinguishing Attack

Before we get into details of the distinguisher, let us revisit a few facts about Sprout . If the Secret
Key is known, then the state updates in both the Keystream and Initialization phases are one-to-one
and efficiently invertible. Before proceeding, we give an algorithmic description of the state update
inversion routines in the Keystream and Initialization phases. We denote the algorithms by KS−1 and
Init−1 respectively.

Input: Lt, Nt: The LFSR, NFSR state at time t;

Output: Lt−1, Nt−1: The LFSR, NFSR state at
time t− 1;

lt−1 ← lt+39 + f ′(L′t−1);

nt−1 ← nt+39 + lt−1 + k∗t−1 + c4t−1 + g′(N ′t−1);

Lt−1 ← [lt−1, lt, lt+1, . . . , lt+38];

Nt−1 ← [nt−1, nt, nt+1, . . . , nt+38];

Return Lt−1, Nt−1

Algorithm 1: Algorithm KS−1

Input: Lt, Nt: The LFSR, NFSR state at time t;

Output: Lt−1, Nt−1: The LFSR, NFSR state at
time t− 1;

zt−1 ← lt+29 +
∑
i∈A nt−1+i + h(Nt−1, Lt−1);

lt−1 ← lt+39 + f ′(L′t−1) + zt−1;

nt−1 ← nt+39+lt−1+k∗t−1+c4t−1+g′(N ′t−1)+zt−1;

Lt−1 ← [lt−1, lt, lt+1, . . . , lt+38];

Nt−1 ← [nt−1, nt, nt+1, . . . , nt+38];

Return Lt−1, Nt−1

Algorithm 2: Algorithm Init−1

We will use the above subroutines to generate Key-IV pairs that generate 80-bit shifted keystream
sequences. To do that we follow the following steps:



1. Fix the Secret Key K to some constant in {0, 1}80

2. Fix Success ← 0

3. Do the following till Success =1

• Select S = [s0, s1, . . . , s79]
R←− {0, 1}80 randomly.

• Assign N0 ←− [s0, s1, . . . , s39], L0 ←− [s40, s41, . . . , s79]
• Run Init−1 over N0, L0 for 320 rounds and store the result as U = [u0, u1, . . . , u79].

• Assign N80 ←− [s0, s1, . . . , s39], L80 ←− [s40, s41, . . . , s79]
• Run KS−1 over N80, L80 for 80 rounds, followed by Init−1 for 320 rounds.
• Store the result as V = [v0, v1, . . . , v79].

• If u70 = u71 = · · · = u78 = v70 = v71 = · · · = v78 = 1 and u79 = v79 = 0 then Success =1

The above algorithm fixes the Secret Key K, and randomly chooses a state S and assumes that
for two different IVs V1, V2, the state in the 0th round of the Keystream phase for (K,V1) and the 80th

round of the Keystream phase for (K,V2) are both equal to S. The algorithm then performs the State
inversion routines in each case and tries to find V1 and V2. A Success occurs when the last 10 bits of
both U, V are equal to the padding 0x3fe used in Sprout . In that case V1 = [u0, u1, . . . , u69] and
V2 = [v0, v1, . . . , v69] produces exactly 80-bit shifted Keystream sequences for the Key K. Of course,
a Success requires 20 bit conditions to be fulfilled and assuming that U,V are i.i.d, each iteration of
the the above algorithm has a success probability of 2−20 for any randomly selected S. So running the
iteration 220 times guarantees one Success on average. By running the above algorithm we were able
to obtain several Key-IV pairs that generates 80 bit shifted keystream sequences, which we tabulate
in Table 1.

# K V1 V2

1 8b0b c4c3 781e fe4b 925c 1 03c2cb34d8b8870e5 1 f208a4661d50a1f72

2 be8d d8e2 a818 80c5 eda7 2 d7d0162c62f256ad7 2 5f7c58576e05e3c52

Table 1: Key-IV pairs that produce 80 bit shifted Keystream bits. (Note that the first hex character
in V1, V2 encodes the first 2 IV bits, the remaining 17 hex characters encode bits 3 to 70)

Note that it is possible to generate such a Key-IV pair in 210 attempts instead of 220, if instead
of choosing S, we first choose K,V1 randomly, run the forward Initialization algorithm to generate
S, and then assume that S is the 80th Keystream phase state for some K,V2 and thereafter run 80
rounds of KS−1 and 320 rounds of Init−1 to generate V. In such a case, Success would be dependent
on only the last 10 bits of V and hence expected once in 210 attempts. However we stick with the first
algorithm in order to explain the distinguishing attack.

4.1 The Distinguisher

In the above algorithm for determining Key-IV pairs that generate shifted Keystream sequences, once
the Key is fixed, a Success is expected every 220 attempts and since there are 280 ways of choosing
S, this implies that for every Key K, there exist 280−20 = 260 IV pairs V1, V2 such that the Key-IV
pairs (K,V1) and (K,V2) produce exactly 80-bit shifted Keystream sequences. So our Distinguisher is
as follows



1. Generate around 240 keystream bits for the unknown Key K and some randomly generated Initial
Vector V .

2. Store the Keystream bits in some appropriate data structure like a Binary Search Tree.

3. Continue the above steps with more randomly generated IVs V till we obtain two Initial Vectors
for K that generate 80-bit shifted Keystream.

The only question now remains how many random Initial Vectors do we need to try before we get
a match. The answer will become clearer if (for a fixed K) we imagine the the space of Initial Vectors
as an undirected Graph G = (W,E), where W = {0, 1}70 is the Vertex set which contains all the
possible 70 bit Initial vector values as nodes. An edge (V1, V2) ∈ E if and only if (K,V1) and K(V2)
produce 80-bit shifted Keystream sequence. From the above discussion, it is clear that the cardinality
of E is expected to be 260. When we run the Distinguisher algorithm for N different Initial Vectors,
we effectively add

(
N
2

)
edges to the coverage and a match occurs when one of these edges is actually

a member of the Edge-set E. Since there are potentially
(
270

2

)
edges in the IV space, by the Birthday

bound, a match will occur when the product of
(
N
2

)
and the cardinality of E which is around 260 is

equal to
(
270

2

)
. From this equation solving for N , we get N ≈ 240. This gives a bound for the Time

and Memory complexity of the Distinguisher. The Time complexity is around 240 encryptions, and
the memory required is of the order of 240 ∗ 240 ≈ 248 bits.

In general for Sprout like structures that have an n bit LFSR and NFSR with a 2n-bit Secret Key

and 2n−∆ bit IV (for some ∆ > 0), the above equation boils down to
(
N
2

)
∗ 22n−2∆ =

(
22n−∆

2

)
, which

gives N ≈ 2n. In order to verify our theoretical results, we performed experiments on smaller versions
of Sprout with n = 8, 9, 10, 11 to find the expected value of N in each case. The results have been
tabulated in Table 2.

# n N (Experimental) N (Theoretical)

1 8 222.4 256

2 9 446.9 512

3 10 911.7 1024

4 11 1865.7 2048

Table 2: Experimental values of N for smaller versions of Sprout

4.2 Decreasing the Time Complexity

So far we have been restricting ourselves to 80-bit shifts of Keystream sequences. We could easily
consider shifts of the form 80 ∗ P where P can be any positive integer. The algorithm to find two
Initial Vectors V1, V2 for any Key K that generates 80 ∗ P -bit shifted Keystream sequence is not very
different from the one which finds IVs that generate 80-bit shifted Keystream. We present the explicit
form of the algorithm for convenience.

1. Fix the Secret Key K to some constant in {0, 1}80

2. Fix Success ← 0



3. Do the following till Success =1

• Select S = [s0, s1, . . . , s79]
R←− {0, 1}80 randomly.

• Assign N0 ←− [s0, s1, . . . , s39], L0 ←− [s40, s41, . . . , s79]
• Run Init−1 over N0, L0 for 320 rounds and store the result as U = [u0, u1, . . . , u79].

• Assign N80∗P ←− [s0, s1, . . . , s39], L80∗P ←− [s40, s41, . . . , s79]
• Run KS−1 over N80∗P , L80∗P for 80 ∗ P rounds, followed by Init−1 for 320 rounds.
• Store the result as V = [v0, v1, . . . , v79].

• If u70 = u71 = · · · = u78 = v70 = v71 = · · · = v78 = 1 and u79 = v79 = 0 then Success =1

The only change is that we assume that S is the round 0 state for some K,V1 and the round 80 ∗ P
state for some K,V2. We perform the inversion operations accordingly and look for a Success. Arguing
just as before, we can say that, for any fixed K and P , there exist 260 IV pairs that generate 80∗P -bit
shifted Keystream Sequences. So we redefine our Distinguishing attack as follows:

1. Generate around 80 ∗ P keystream bits for the unknown Key K and some randomly generated
Initial Vector V .

2. Store the Keystream bits in some appropriate data structure like a Binary Search Tree.

3. Continue the above steps with more randomly generated IVs V till we obtain two Initial Vectors
for K that generate 80 ∗ i-bit shifted Keystream for some 1 ≤ i ≤ P .

We can calculate the expected number of attempts N before we get a match as follows. Redefine the
undirected graph G = (W,E), where W = {0, 1}70 is the Vertex set which contains all the possible 70
bit Initial vector values as nodes. An edge (V1, V2) ∈ E if and only if (K,V1) and K(V2) produce 80∗ i-
bit shifted Keystream sequence for some 0 ≤ i ≤ P . The expected cardinality of E is approximately
P ∗ 260. Again choosing N Initial Vectors adds

(
N
2

)
edges to the coverage and so the required value of

N is given by
(
N
2

)
∗P ∗ 260 =

(
270

2

)
⇒ N ≈ 240√

P
. This implies that the Time complexity can be reduced

to 240√
P

encryptions with the Memory complexity at 80 ∗ P ∗ 240 bits. For P = 210 say, this results in a

Time Complexity of 235 Encryptions and Memory of 257 bits.

5 A Key Recovery Attack

We make another observation to begin this Section. During the Keystream phase, the LFSR pretty
much runs autonomously. Which means that if after the Initialization phase, the LFSR lands on the all
zero state then it remains in this state for the remainder of the Keystream phase, i.e. if L0 = 0, then
Lt = 0 for all t > 0. Assuming uniform distribution of L0, we can argue that for every Key K, this
event occurs for 2−40 fraction of IVs on average. So for each K, there exists on an average 270−40 = 230

IVs which lead to an all zero LFSR after the Initialization phase. We shall see two implications of this
event.

5.1 Keystream with period 80

Now once the LFSR enters the all zero state the NFSR runs autonomously. Since the NFSR is a
finite state machine of 40 bits only, we can always expect Keystream of period less than 80 ∗ 240, once



the LFSR becomes all zero. Hence for every Key, we expect to find 230 Initial vectors that produce
keystream sequences of less than 80∗240. With some effort, we can even find Key-IV pairs that produce
Keystream with period 80. We will take help of SAT solvers for his. The procedure may be outlined
as follows:

1. Select a Key K
R←− {0, 1}80 randomly.

2. Assume L0 = [0, 0, 0, . . . , 0].
3. Assign N0 ← [n0, n1, n2, . . . , n39], where all the ni are unknowns.
4. For i = 0 to 79 do
• Introduce the unknown n40+i, and add the equation n40+i = g(Ni) + c4i + k∗i to the equation

bank.
5. Add the 40 Equations ni = n80+i, ∀ i ∈ [0, 39] to the equation bank.
6. Pass the equations to the Solver. This effectively asks the solver to solve the vector equation
N0 = N80 for the given Key K.

7. If the solver returns the solution N0 = [s0, s1, . . . , s39] then run the Init−1 routine 320 times on
N0 = [s0, s1, . . . , s39], L0 = [0, 0, . . . , 0].

8. Store the result in B = [b0, b1, . . . , b79].
9. If b70 = b71 = · · · = b78 = 1 and b79 = 0 then Exit else repeat the above steps with another random

Secret Key.

The steps in the above the above algorithm can be summarized as follows. First select a random
Secret Key K. Then assume that the LFSR is all zero after the Initialization phase, and fill the cor-
responding NFSR state with unknowns. We then populate the equation bank accordingly for the first
80 rounds and ask the solver to solve the vector equation N0 = N80, in the unknowns n0, n1, . . . , n119.
If the solver returns the solution N0 = [s0, s1, . . . , s39] then N0 = [s0, s1, . . . , s39], L0 = [0, 0, . . . , 0] is a
valid initial state for the Sprout Keystream phase if we can find an IV for the given Key K that results
in this state. So we run the Init−1 routine 320 times and obtain the resultant vector B. Now if the last
ten bits of B are equal to the 0x3fe pattern used in Sprout , then we can be sure that for the Key
K and the Initial Vector V = [b0, b1, . . . , b69], the Keystream sequence produced is of period exactly
80 since the same state N0 = [s0, s1, . . . , s39], L0 = [0, 0, . . . , 0] will repeat in the Keystream phase
every 80 iterations. The above process is expected to produce one such Key-IV pair in 210 attempts.
For example, for K = 2819 5612 323c 2357 3518 and V = 2 fbfc75bfcb4396485, we do obtain a
Keystream sequence of period 80 (Note that the first hex character of V encodes the first 2 bits, the
remaining 17 hex characters encode bits 3 to 70).

5.2 Application to Key recovery

It is clear, that for every Key, on average one out of every 240 Initial Vectors lands the LFSR in the all
zero state after Initialization. In such a situation the algebraic structure of the cipher becomes simpler
to analyze. The NFSR update equation becomes

nt+40 = g(Nt) + c4t + k∗t ,

where k∗t = Kt mod 80 · (nt+9 + nt+20 + nt+29) and the output Keystream bit is generated as

zt = nt+1 + nt+6 + nt+15 + nt+17 + nt+23 + nt+28 + nt+34.

Given such a situation, this greatly simplifies the guess and determine approach of [8] both in terms
of time and memory. To explain the attack better let us define xi = ni+1, for all i ≥ 0 and so we have
N1 = [x0, x1, x2, . . . , x39]. So for i = 0 to 6 we have

zi = xi + xi+5 + xi+14 + xi+16 + xi+22 + xi+27 + xi+33.



This means that if the attacker knows that L0 = 0, then the first 7 Keystream bits z0, z1, z2, . . . , z6
is dependent on only N1 and the Secret Key is not involved directly in the computation. This implies
that if the attacker intends to guess N1 then by observing the first seven keystream bits he can narrow
down N1 to a set of 233 possible candidates in the following way:

1. Guess x0, x1, x2, . . . , x32 first. There are 233 possible candidates.
2. Calculate xi+33 = zi + xi + xi+5 + xi+14 + xi+16 + xi+22 + xi+27 for i = 0 to 6.

For each of these 233 candidates, the attacker proceeds as follows: he calculates x40 from the
equation for z7 as x40 = z7 + x7 + x12 + x21 + x23 + x24 + x31 and from x40 he calculates k∗0 as
k∗0 = x40 +c40 +g(N1). Now we know that k∗0 = K0 · (x8 +x19 +x28). So if k∗0 = 0 and x8 +x19 +x28 = 0
then nothing can be deduced. If k∗0 = 0 and x8 + x19 + x28 = 1 then it can be deduced that K0 = 0. If
k∗0 = 1 and x8 + x19 + x28 = 1 then it can be deduced that K0 = 1. If k∗0 = 1 and x8 + x19 + x28 = 0,
then a contradiction is reached and it is concluded that the guess for N1 was incorrect. Thereafter the
same procedure with x41, x42 . . . is followed sequentially. We outline the above procedure formally as
follows:

1. For Each of the 233 choices of N1 do the following till a contradiction is arrived at

A. Assign i← 0

B. Do the following:

• Calculate xi+40 = zi+7 + xi+7 + xi+12 + xi+21 + xi+23 + xi+24 + xi+31

• Calculate k∗i = xi+40 + c4i + g(Ni+1)
• If k∗i = 0 and xi+8 + xi+19 + xi+28 = 0 ⇒ No Deduction
• If k∗i = 0 and xi+8 + xi+19 + xi+28 = 1 ⇒ Ki mod 80 = 0
• If k∗i = 1 and xi+8 + xi+19 + xi+28 = 1 ⇒ Ki mod 80 = 1
• If k∗i = 1 and xi+8 + xi+19 + xi+28 = 0 ⇒ we have a contradiction. In this case we restart

the process with a new guess of N1.
• If there is no contradiction then assign i← i+ 1 and repeat the process if the entire Secret

Key has not already been found.

Analysis of Time Complexity: In the above algorithm, the probability that any guess for N1 is
eliminated in 1 round itself is 1

4 , i.e. when k∗i = 1 and xi+8 + xi+19 + xi+28 = 0. The probability
therefore that it takes 2 rounds to eliminate is

(
1− 1

4

)
∗ 1

4 . In general, the probability that it takes

i steps is roughly
(
1− 1

4

)i−1 ∗ 1
4 . Therefore the average number of rounds θ that a guess takes to

eliminate is given by

θ =

∞∑
i=1

i

4
∗
(

1− 1

4

)i−1
= 4.

The attacker obtains the Keystream for some random IV and then tries all the possible 233 guesses.
This takes θ · 233 = 235 steps for any IV that does not lead to L0 = 0. It has already been pointed out
in [6], clocking each Sprout step is equivalent to 2−8.34 encryptions. And so for every any IV that does
not yield L0 = 0 the total work done is equivalent to 235−8.34 = 226.66 encryptions. Now the attacker
has to try out around 240 IVs to succeed in getting L0 = 0, and so the total Time complexity in this
process equals 240+26.66 = 266.66 encryptions.

Analysis of Memory Complexity: The memory complexity of the algorithm is surprisingly negli-
gible. Testing each guess of N1 can be done on the fly and hence the memory complexity is limited
to that required to run the loop and store the computed values of the Key and the values of the xi



bits. This is in stark contrast to the 246 bits (8 TB) required in [8] or the 770 TB required in [6]. Thus
although, the algorithm that we provide is not the best in terms of Time complexity, it is certainly
best in terms of Memory.

6 Discussion and Conclusion

In this paper we outline a Distinguishing attack and a Key Recovery attack on the Sprout stream
cipher. We also present some results on Key Recovery from partial knowledge of the state, shifted
Keystream sequence producing Key-IV pairs and Key-IV pairs producing Keystream sequences with
period 80. The Key recovery attack that we propose is not the best in terms of Time complexity
but certainly best in terms of the total memory required. It can be pointed out that the attack in
[6] was possible due to the non-linear mixing of the Secret Key during the Keystream phase, i.e.
k∗t = Kt mod 80 · (lt+4 + lt+21 + lt+37 + nt+9 + nt+20 + nt+29). This enabled the attacker to identify
and generate special internal states that for 40 rounds or so do not involve the Secret Key bit in the
computation of the Keystream bit, i.e. those for which lt+4+lt+21+lt+37+nt+9+nt+20+nt+29 = 0, for 40
consecutive rounds. The attack in [6] would not be directly applicable if the Key mixing was linear, for
example if k∗t = Kt mod 80. However even if the Key mixing were done linearly, all the attacks presented
in this paper would still hold. This reiterates the point that when it comes to designing stream ciphers
with shorter internal states, the Sprout architecture is possibly the wrong choice. However this does
open up a fascinating new research discipline of designing stream ciphers with reduced internal state
sizes, one in which the scope to experiment could be boundless.
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