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Abstract

An order-revealing encryption scheme gives a public procedure by which two ciphertexts
can be compared to reveal the ordering of their underlying plaintexts. We show how to use
order-revealing encryption to separate computationally efficient PAC learning from efficient
(ε, δ)-differentially private PAC learning. That is, we construct a concept class that is efficiently
PAC learnable, but for which every efficient learner fails to be differentially private. This answers
a question of Kasiviswanathan et al. (FOCS ’08, SIAM J. Comput. ’11).

To prove our result, we give a generic transformation from an order-revealing encryption
scheme into one with strongly correct comparison, which enables the consistent comparison
of ciphertexts that are not obtained as the valid encryption of any message. We believe this
construction may be of independent interest.
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1 Introduction

Many agencies hold sensitive information about individuals, where statistical analysis of this data
could yield great societal benefit. The line of work on differential privacy [DMNS06] aims to enable
such analysis while giving a strong formal guarantee on the privacy afforded to individuals. Noting
that the framework of computational learning theory captures many of these statistical tasks,
Kasiviswanathan et al. [KLN+11] initiated the study of differentially private learning. Roughly
speaking, a differentially private learner is required to output a classification of labeled examples
that is accurate, but does not change significantly based on the presence or absence of any individual
example.

The early positive results in private learning established that, ignoring computational complex-
ity, any concept class is privately learnable with a number of samples logarithmic in the size of the
concept class [KLN+11]. Since then, a number of works have improved our understanding of the
sample complexity – the minimum number of examples – required by such learners to simultane-
ously achieve accuracy and privacy. Some of these works showed that privacy incurs an inherent
additional cost in sample complexity; that is, some concept classes require more samples to learn pri-
vately than they require to learn without privacy [BKN10, CH11, BNS13, FX14, CHS14, BNSV15].
In this work, we address the complementary question of whether there is also a computational price
of differential privacy for learning tasks, for which much less is known. The initial work of Ka-
siviswanathan et al. [KLN+11] identified the important question of whether any efficiently PAC
learnable concept class is also efficiently privately learnable, but only limited progress has been
made on this question since then [BKN10, Nis14].

Our main result gives a strong negative answer to this question. We exhibit a concept class
that is efficiently PAC learnable, but under plausible cryptographic assumptions cannot be learned
efficiently and privately. To prove this result, we establish a connection between private learning
and order-revealing encryption. We construct a new order-revealing encryption scheme with strong
correctness properties that may be of independent learning-theoretic and cryptographic interest.

1.1 Differential Privacy and Private Learning

We first recall Valiant’s (distribution-free) PAC model for learning [Val84]. Let C be a concept
class consisting of concepts c : X → {0, 1} for a data universe X. A learner L is given n samples
of the form (xi, c(xi)) where the xi’s are drawn i.i.d. from an unknown distribution, and are
labeled according to an unknown concept c. The goal of the learner is to output a hypothesis
h : X → {0, 1} from a hypothesis class H that approximates c well on the unknown distribution.
That is, the probability that h disagrees with c on a fresh example from the unknown distribution
should be small – say, less than 0.05. The hypothesis class H may be different from C, but in the
case where H ⊆ C we call L a proper learner. Moreover, we say a learner is efficient if it runs in
time polynomial in the description size of c and the size of its examples.

Kasiviswanathan et al. [KLN+11] defined a private learner to be a PAC learner that is also
differentially private. Two samples S = {(x1, b1), . . . , (xn, bn)} and S′ = {(x′1, b′1), . . . , (x′n, b′n)} are
said to be neighboring if they differ on exactly one example, which we think of as corresponding to
one individual’s information. A randomized learner L : (X × {0, 1})n → H is (ε, δ)-differentially
private if for all neighboring datasets S and S′ and all sets T ⊆ H,

Pr[L(S) ∈ T ] ≤ eε Pr[L(S′) ∈ T ] + δ.

1



The original definition of differential privacy [DMNS06] took δ = 0, a case which is called pure
differential privacy. The definition with positive δ, called approximate differential privacy, first
appeared in [DKM+06] and has since been shown to enable substantial accuracy gains. Throughout
this introduction, we will think of ε as a small constant, e.g. ε = 0.1, and δ = o(1/n).

Kasiviswanathan et al. [KLN+11] gave a generic “Private Occam’s Razor” algorithm, showing
that any concept class C can be privately (properly) learned using O(log |C|) samples. Unfortu-
nately, this algorithm runs in time Ω(|C|), which is exponential in the description size of each
concept. With an eye toward designing efficient private learners, Blum et al. [BDMN05] made the
powerful observation that any efficient learning algorithm in the statistical queries (SQ) framework
of Kearns [Kea98] can be efficiently simulated with differential privacy. Moreover, Kasiviswanathan
et al. [KLN+11] showed that the efficient learner for the concept class of parity functions based
on Gaussian elimination can also be implemented efficiently with differential privacy. These two
techniques – SQ learning and Gaussian elimination – are essentially the only methods known for
computationally efficient PAC learning. The fact that these can both be implemented privately led
Kasiviswanathan et al. [KLN+11] to ask whether all efficiently learnable concept classes could also
be efficiently learned with differential privacy.

Beimel et al. [BKN10] made partial progress toward this question in the special case of pure
differential privacy with proper learning, showing that the sample complexity of efficient learners
can be much higher than that of inefficient ones. Specifically, they showed that assuming the
existence of pseudorandom generators with exponential stretch, there exists for any `(d) = ω(log d)
a concept class over {0, 1}d for which every efficient proper private learner requires Ω(d) samples, but
an inefficient proper private learner only requires O(`(d)) examples. Nissim [Nis14] strengthened
this result substantially for “representation learning,” where a proper learner is further restricted
to output a canonical representation of its hypothesis. He showed that, assuming the existence of
one-way functions, there exists a concept class that is efficiently representation learnable, but not
efficiently privately representation learnable (even with approximate differential privacy). With
Nissim’s kind permission, we give the details of this construction in Section 5.

Despite these negative results for proper learning, one might still have hoped that any efficiently
learnable concept class could be efficiently improperly learned with privacy. Indeed, a number of
works have shown that, especially with differential privacy, improper learning can be much more
powerful than proper learning. For instance, Beimel et al. [BKN10] showed that under pure
differential privacy, the simple class of Point functions (indicators of a single domain element)
requires Ω(d) samples to privately learn properly, but only O(log d) samples to privately learn
improperly. Moreover, computational separations are known between proper and improper learning
even without privacy considerations. Pitt and Valiant [PV88] showed that unless NP = RP, k-term
DNF are not efficiently properly learnable, but they are efficiently improperly learnable [Val84].

Under plausible cryptographic assumptions, we resolve the question of Kasiviswanathan et al.
[KLN+11] in the negative, even for improper learners. The assumption we need is the existence of
“strongly correct” order-revealing encryption (ORE) schemes, described in Section 1.3.

Theorem 1.1 (Informal). Assuming the existence of strongly correct ORE, there exists an ef-
ficiently computable concept class EncThresh that is efficiently PAC learnable, but not efficiently
learnable by any (ε, δ)-differentially private algorithm.

We stress that this result holds even for improper learners and for the relaxed notion of ap-
proximate differential privacy. We remark that cryptography has played a major role in shap-
ing our understanding of the computational complexity of learning in a number of models (e.g.
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[Val84, KV94, Kha95, Ser00]). It has also been used before to show separations between what is
efficiently learnable in different models (e.g. [Blu94, SG04]).

1.2 Our Techniques

We give an informal overview of the construction and analysis of the concept class EncThresh.
We first describe the concept class of thresholds Thresh and its simple PAC learning algorithm.

Consider the domain [N ] = {1, . . . , N}. Given a number t ∈ [N ], a threshold concept ct is defined
by ct(x) = 1 if and only if x ≤ t. The concept class of thresholds admits a simple and efficient
proper PAC learning algorithm LThresh. Given a sample {(x1, ct(x1)), . . . , (xn, ct(xn))} labeled by
an unknown concept ct, the learner LThresh identifies the largest positive example xi∗ and outputs
the hypothesis h = cxi∗ . That is, LThresh chooses the threshold concept that minimizes the empirical
error on its sample. To achieve a small constant error on any underlying distribution on examples,
it suffices to take n = O(1) samples.

A simple but important observation about LThresh is that it is completely oblivious to the actual
numeric values of its examples, or even to the fact that the domain is [N ]. In fact, LThresh works
equally well on any totally-ordered domain on which it can efficiently compare examples. In an
extreme case, the learner LThresh still works when its examples are encrypted under an order-
revealing encryption (ORE) scheme, which guarantees that LThresh is able to learn the order of
its examples, but nothing else about them. Up to small technical modifications, our concept class
EncThresh is exactly the class Thresh where examples are encrypted under an ORE scheme.

For EncThresh to be efficiently PAC learnable, it must be learnable even under distributions that
place arbitrary weight on examples corresponding to invalid ciphertexts. To this end, we require a
“strong correctness” condition on our ORE scheme. The strong correctness condition ensures that
all ciphertexts, even those that are not obtained as encryptions of messages, can be compared in
a consistent fashion. This condition is not met by current constructions of ORE, and one of the
technical contributions of this work is a generic transformation from weakly correct ORE schemes
to strongly correct ones.

While a learner similar to LThresh is able to efficiently PAC learn the concept class EncThresh,
we argue that it cannot do so while preserving differential privacy with respect to its examples.
Intuitively, the security of the ORE scheme ensures that essentially the only thing a learner for
EncThresh can do is output a hypothesis that compares an example to one it already has. We make
this intuition precise by giving an algorithm that traces the hypothesis output by any efficient
learner back to one of the examples used to produce it. This formalization builds conceptually
on the connection between differential privacy and traitor-tracing schemes (see Section 1.4), but
requires new ideas to adapt to the PAC learning model.

1.3 Order-Revealing Encryption

Motivated by the task of answering range queries on encrypted databases, an order-revealing en-
cryption (ORE) scheme [BCO11, BLR+15] is a special type of symmetric key encryption scheme
where it is possible to publicly sort ciphertexts according to the order of the plaintexts. More pre-
cisely, the plaintext space of the scheme is the set of integers [N ] = {1, ..., N},1 and in addition to
the private encryption and decryption procedures Enc,Dec, there is a public comparison procedure
Comp that takes as input two ciphertexts, and reveals the order of the corresponding plaintexts.

1More generally, any totally-ordered plaintext space can be considered
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The notion of best-possible semantic security, defined in Boneh et al. [BLR+15], intuitively cap-
tures the requirement that, given a collection of ciphertexts, no information about the plaintexts
is learned, except for the ordering.

Known constructions of order-revealing encryption. Order-revealing encryption can be
seen as a special case of 2-input functional encryption. In such a scheme, there are several functions
f1, ..., fk, and given two ciphertexts c0, c1 encrypting m0,m1, it is possible to learn fi(m0,m1) for all
i ∈ [k]. General multi-input functional encryption schemes can be obtained from indistinguishability
obfuscation [GGG+14] or multilinear maps [BLR+15]. It is also possible to build ORE from single-
input functional encryption with function privacy, which means that f is kept secret. Such schemes
can be build from regular single-input schemes without function privacy by work of Brakerski and
Segev [BS15], and such single-input schemes can also be built from obfuscation [GGH+13b] or
multilinear maps [GGHZ14].

Unfortunately, the above constructions are insufficient for our purposes. The issue arises from
the fact that our learner needs to work for any distribution on ciphertexts, even distributions
whose support includes malformed ciphertexts. Unfortunately, previous constructions only achieve
a weak form of correctness, which guarantees that encrypting two messages and then comparing the
ciphertexts using Comp produces the same result (with overwhelming probability) as comparing the
plaintexts directly. This requirement only specifies how Comp works on valid ciphertexts, namely
actual encryptions of messages. Moreover, correctness is only guaranteed for these messages with
overwhelming probability, meaning even some valid ciphertexts may cause Comp to misbehave.

For our learner, this weak form of correctness means, for some distributions that place significant
weight on bad ciphertexts, the comparison procedure is completely useless, and thus the learner
will fail for these distributions.

We therefore need a stronger correctness guarantee. We need that, for any two ciphertexts, the
comparison procedure is consistent with decrypting the two ciphertexts and comparing the resulting
plaintexts. This correctness guarantee is meaningful even for improperly generated ciphertexts.

We note that none of the existing constructions of order-revealing encryption outlined above
satisfy this stronger notion. For the obfuscation-based schemes, ciphertexts consist of obfuscated
programs. In these schemes, it is easy to describe invalid ciphertexts where the obfuscated program
performs incorrectly, causing the comparison procedure to output the wrong result. In the multi-
linear map-based schemes, the underlying instantiation use current “noisy” multilinear maps, such
as [GGH13a]. An invalid ciphertext could, for example, have too much noise, which will cause the
comparison procedure to behave unpredictably.

Obtaining strong correctness. We first argue that, for all existing ORE schemes, the scheme
can be modified so that Comp is correct for all valid ciphertexts. We then give a generic conversion
from any ORE scheme with weakly correct comparison, including the tweaked existing schemes,
into a strongly correct scheme. We simply modify the ciphertext by adding a non-interactive
zero-knowledge (NIZK) proof that the ciphertext is well-formed, with the common reference string
added to the public comparison key. Then the decryption and comparison procedures check the
proof(s), and only output the result (either decryption or comparison) if the proof(s) are valid.
The (computational) zero-knowledge property of the NIZK implies that the addition of the proof
to the ciphertext does not affect security. Meanwhile, NIZK soundness implies that any ciphertext
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accepted by the decryption and comparison procedures must be valid, and the weak correctness
property of the underlying ORE implies that for valid ciphertexts, decryption and comparison are
consistent. The result is that comparisons are consistent with decryption for all ciphertexts, giving
strong correctness.

As we need strong correctness for every ciphertext, even hard-to-generate ones, we need the
NIZK proofs to have perfect soundness, as opposed to computational soundness. Such NIZK
proofs were built in [GOS12].

We note also that the conversion outlined above is not specific to ORE, and applies more
generally to functional encryption schemes.

1.4 Related Work

Hardness of Private Query Release. One of the most basic and well-studied statistical tasks
in differential privacy is the problem of releasing answers to counting queries. A counting query
asks,“what fraction of the records in a dataset D satisfy the predicate q?”. Given a collection of
k counting queries q1, . . . , qk from a family Q, the goal of a query release algorithm is to release
approximate answers to these queries while preserving differential privacy. A remarkable result of
Blum et al. [BLR08], with subsequent improvements by [DNR+09, DRV10, RR10, HR10, GRU12,
HLM12], showed that an arbitrary sequence of counting queries can be answered accurately with
differential privacy even when k is exponential in the dataset size n. Unfortunately, all of these
algorithms that are capable of answering more than n2 queries are inefficient, running in time
exponential in the dimensionality of the data. Moreover, several works [DNR+09, Ull13, BZ14]
have gone on to show that this inefficiency is likely inherent.

These computational lower bounds for private query release rely on a connection between the
hardness of private query release and traitor-tracing schemes, which was first observed by Dwork
et al. [DNR+09]. Traitor-tracing schemes were introduced by Chor, Fiat, and Naor [CFN94] to
help digital content producers identify pirates as they illegally redistribute content. Traitor-tracing
schemes are conceptually analogous to the example reidentification scheme we use to obtain our
hardness result for private learning. Instantiating this connection with the traitor-tracing scheme
of Boneh, Sahai, and Waters [BSW06], which relies on certain assumptions in bilinear groups,

Dwork et al. [DNR+09] exhibited a family of 2Õ(
√
n) queries for which no efficient algorithm can

produce a data structure which could be used to answer all queries in this family. Very recently,
Boneh and Zhandry [BZ14] constructed a new traitor-tracing scheme based on indistinguishability
obfuscation that yields the same infeasibility result for a family of n · 2O(d) queries on records of
size d. Extending this connection, Ullman [Ull13] constructed a specialized traitor-tracing scheme
to show that no efficient private algorithm can answer more than Õ(n2) arbitrary queries that are
given as input to the algorithm.

Dwork et al. [DNR+09] also showed strong lower bounds against private algorithms for pro-
ducing synthetic data. Synthetic data generation algorithms produce a new “fake” dataset, whose
rows are of the same type as those in the original dataset, with the promise that the answers to
some restricted set of queries on the synthetic dataset well-approximate the answers on the original
dataset. Assuming the existence of one-way functions, Dwork et al. [DNR+09] exhibited an effi-
ciently computable collection of queries for which no efficient private algorithm can produce useful
synthetic data. Ullman and Vadhan [UV11] refined this result to hold even for extremely simple
classes of queries.

Nevertheless, the restriction to synthetic data is significant to these results, and they do not rule
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out the possibility that other privacy-preserving data structures can be used to answer large families
of restricted queries. In fact, when the synthetic data restriction is lifted, there are algorithms (e.g.
[HRS12, TUV12, CTUW14, DNT14]) that answer queries from certain exponentially large families
in subexponential time. One can view the problem of synthetic data generation as analogous to
proper learning. In both cases, placing natural syntactic restrictions on the output of an algorithm
may in fact come at the expense of utility or computational efficiency.

Efficiency of SQ Learning. Feldman and Kanade [FK12] addressed the question of whether
information-theoretically efficient SQ learners – i.e., those making polynomially many queries –
could be made computationally efficient. One of their main negative results showed that unless
NP = RP, there exists a concept class with polynomial query complexity that is not efficiently
SQ learnable. Moreover, this concept class is efficiently PAC learnable, which suggests that the
restriction to SQ learning can introduce an inherent computational cost.

We show that the concept class EncThresh can be learned (inefficiently) with polynomially
many statistical queries. The result of Blum et al. [BDMN05] discussed above, showing that
SQ learning algorithms can be efficiently simulated by differentially private algorithms, thus shows
that EncThresh also separates SQ learners making polynomially many queries from computationally
efficient SQ learners.

Corollary 1.2 (Informal). Assuming the existence of strongly correct ORE, the concept class
EncThresh is efficiently PAC learnable and has polynomial SQ query complexity, but is not effi-
ciently SQ learnable.

While our proof relies on much stronger hardness assumptions, it reveals ORE as a new barrier
to efficient SQ learning. As discussed in more detail in Section 3.3, even though their result is
about computational hardness, Feldman and Kanade’s choice of a concept class relies crucially
on the fact that parities are hard to learn in the SQ model even information-theoretically. By
contrast, our concept class EncThresh is computationally hard to SQ learn for a reason that appears
fundamentally different than the information-theoretic hardness of SQ learning parities.

Learning from Encrypted Data. Several works have developed schemes for training, testing,
and classifying machine learning models over encrypted data (e.g. [GLN13, BPTG14]). In a model
use case, a client holds a sensitive dataset, and uploads an encrypted version of the dataset to
a cloud computing service. The cloud service then trains a model over the encrypted data and
produces an encrypted classifier it can send back to the client, ideally without learning anything
about the examples it received. The notion of privacy afforded to the individuals in the dataset here
is complementary to differential privacy. While the cloud service does not learn anything about the
individuals in the dataset, its output might still depend heavily on the data of certain individuals.

In fact, our non-differentially private PAC learner for the class EncThresh exactly performs the
task of learning over encrypted data, producing a classifier without learning anything about its
examples beyond their order (this addresses the difficulty of implementing comparisons from prior
work [GLN13]). Thus one can interpret our results as showing that not only are these two notions
of privacy for machine learning training complementary, but that they may actually be in conflict.
Moreover, the strong correctness guarantee we provide for ORE (which applies more generally to
multi-input functional encryption) may help enable the theoretical study of learning from encrypted
data in other PAC-style settings.
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2 Preliminaries and Definitions

2.1 PAC Learning and Private PAC Learning

For each k ∈ N, let Xk be an instance space (such as {0, 1}k), where the parameter k represents
the size of the elements in Xk. Let Ck be a set of boolean functions {c : Xk → {0, 1}}. The
sequence (X1, C1), (X2, C2), . . . represents an infinite sequence of learning problems defined over
instance spaces of increasing dimension. We will generally suppress the parameter k, and refer to
the problem of learning C as the problem of learning Ck for every k.

A learner L is given examples sampled from an unknown probability distribution D over X,
where the examples are labeled according to an unknown target concept c ∈ C. The learner must
select a hypothesis h from a hypothesis class H that approximates the target concept with respect
to the distribution D. More precisely,

Definition 2.1. The generalization error of a hypothesis h : X → {0, 1} (with respect to a target
concept c and distribution D) is defined by errorD(c, h) = Prx∼D[h(x) 6= c(x)]. If errorD(c, h) ≤ α
we say that h is an α-good hypothesis for c on D.

Definition 2.2 (PAC Learning [Val84]). Algorithm L : (X × {0, 1})n → H is an (α, β)-accurate
PAC learner for the concept class C using hypothesis class H with sample complexity n if for all tar-
get concepts c ∈ C and all distributionsD onX, given an input of n samples S = ((xi, c(xi)), . . . , (xn, c(xn))),
where each xi is drawn i.i.d. fromD, algorithm L outputs a hypothesis h ∈ H satisfying Pr[errorD(c, h) ≤
α] ≥ 1−β. The probability here is taken over the random choice of the examples in S and the coin
tosses of the learner L.

The learner L is efficient if it runs in time polynomial in the size parameter k, the representation
size of the target concept c, and the accuracy parameters 1/α and 1/β. Note that a necessary (but
not sufficient) condition for L to be efficient is that its sample complexity n is polynomial in the
learning parameters.

If H ⊆ C then L is called a proper learner. Otherwise, it is called an improper learner.

Kasiviswanathan et al. [KLN+11] defined a private learner as a PAC learner that is also
differentially private. Recall the definition of differential privacy:

Definition 2.3. A learner L : (X×{0, 1})n → H is (ε, δ)-differentially private if for all sets T ⊆ H,
and neighboring sets of examples S ∼ S′,

Pr[L(S) ∈ T ] ≤ eε Pr[L(S′) ∈ T ] + δ.

The technical object that we will use to show our hardness results for differential privacy is what
we call an example reidentification scheme. It is analogous to the hard-to-sanitize database distri-
butions [DNR+09, UV11] and re-identifiable database distributions [BUV14] used in prior works
to prove hardness results for private query release, but is adapted to the setting of computational
learning. In the first step, an algorithm Genex chooses a concept and a sample S labeled according
to that concept. In the second step, a learner L receives either the sample S or the sample S−i
where an appropriately chosen example i is replaced by a junk example, and learns a hypothesis h.
Finally, an algorithm Traceex attempts to use h to identify one of the rows given to L. If Traceex
succeeds at identifying such a row with high probability, then it must be able to distinguish L(S)
from L(S−i), showing that L cannot be differentially private. We formalize these ideas below.
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Definition 2.4. An (α, ξ)-example reidentification scheme for a concept class C consists of a pair
of algorithms, (Genex,Traceex) with the following properties.

Genex(k, n) Samples a concept c ∈ Ck and an associated distribution D. Draws i.i.d. examples
x1, . . . , xn ←R D, and a fixed value x0. Let S denote the labeled sample ((x1, c(x1)), . . . , (xn, c(xn)),
and for any index i ∈ [n], let S−i denote the sample with the pair (xi, c(xi)) replaced with
(x0, c(x0)).

Traceex(h) Takes state shared with Genex as well as a hypothesis h and identifies an index in [n]
(or ⊥ if none is found).

The scheme obeys the following “completeness” and “soundness” criteria on the ability of Traceex
to identify an example given to a learner L.

Completeness. A good hypothesis can be traced to some example. That is, for every efficient
learner L,

Pr[errorD(c, h) ≤ α ∧ Traceex(h) = ⊥] ≤ ξ.

Here, the probability is taken over h←R L(S) and the coins of Genex and Traceex.

Soundness. For every efficient learner L, Traceex cannot trace i from the sample S−i. That is,
for all i ∈ [n],

Pr[Traceex(h) = i] ≤ ξ

for h←R L(S−i).

We may sometimes relax the completeness condition to hold only under certain restrictions on
L’s output (e.g. L is a proper learner or L is a representation learner). In this case, we say the
(Genex,Traceex) is an example reidentification scheme for (properly, representation) learning a class
C.

Theorem 2.5. Let (Genex,Traceex) be an (α, ξ)-example reidentification scheme for a concept class
C. Then for every β > 0 and polynomial n(k), there is no efficient (ε, δ)-differentially private
(α, β)-PAC learner for C using n samples when

δ <

(
1− β − ξ

n

)
− eεξ.

In a typical setting of parameters, we will take α, β, ε = O(1) and δ, ξ = o(1/n), in which case
the inequality in Theorem 2.5 will be satisfied for sufficiently large n.

Proof. Suppose instead that there were a computationally efficient (ε, δ)-differentially private (α, β)-
PAC learner L for C using n samples. Then there exists an i ∈ [n] such that Pr[Traceex(L(S)) =
i] ≥ (1− β − ξ)/n. However, since L is differentially private,

Pr[Traceex(L(S−i)) = i] ≥ e−ε
(

1− β − ξ
n

− δ
)
> ξ(n),

which contradicts the soundness of (Genex,Traceex).
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2.2 Order-Revealing Encryption

Definition 2.6. An Order-Revealing Encryption (ORE) scheme is a tuple (Gen,Enc,Dec,Comp)
of algorithms where:

• Gen(1λ, 1`) is a randomized procedure that takes as inputs a security parameter λ and plain-
text length `, and outputs a secret encryption/decryption key sk and public parameters
params.

• Enc(sk,m) is a potentially randomized procedure that takes as input a secret key sk and a
message m ∈ {0, 1}`, and outputs a ciphertext c.

• Dec(sk, c) is a deterministic procedure that takes as input a secret key sk and a ciphertext c,
and outputs a plaintext message m ∈ {0, 1}` or a special symbol ⊥.

• Comp(params, c0, c1) is a deterministic procedure that “compares” two ciphertexts, outputting
either “>”, “<”, “=”, or ⊥.

Correctness. An ORE scheme must satisfy two separate correctness requirements:

• Correct Decryption: This is the standard notion of correctness for an encryption scheme,
which says that decryption succeeds. We will only consider strongly correct decryption, which
requires that decryption always succeeds. For all security parameters λ and message lengths
`,

Pr[Dec(sk, Enc(sk,m) ) = m : (sk, params)← Gen(1λ, 1`)] = 1.

• Correct Comparison: We require that the comparison function succeeds. We will consider
two notions, namely strong and weak. In order to define these notions, we first define two
auxiliary functions:

– Compplain(m0,m1) is just the plaintext comparison function. That is, for m0 < m1,
Compplain(m0,m1) = “ < ”, Compplain(m1,m0) = “ > ”, and Compplain(m0,m0) = “ =
”.

– Compciph(sk, c0, c1) is a ciphertext comparison function which uses the secret key. If first
computes mb = Dec(sk, cb) for b = 0, 1. If either m0 = ⊥ or m1 = ⊥ (in other words,
if either decryption failed), then Compciph outputs ⊥. If both m0,m1 6= ⊥, then the
output is Compplain(m0,m1).

Now we define our comparison correctness notions:

– Weakly Correct Comparison: This informally requires that comparison is consis-
tent with encryption. For all security parameters λ, message lengths `, and messages
m0,m1 ∈ {0, 1}`,

Pr

[
Comp(params, c0, c1) = Compplain(m0,m1) :

(sk, params)← Gen(1λ, 1`)
cb ← Enc(sk,mb)

]
= 1.

In particular, for correctly generated ciphertexts, Comp never outputs ⊥.
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– Strongly Correct Comparison: This informally requires that comparison is consis-
tent with decryption. For all security parameters λ, message lengths `, and ciphertexts
c0, c1,

Pr
[
Comp(params, c0, c1) = Compciph(sk, c0, c1) : (sk, params)← Gen(1λ, 1`)

]
= 1.

Security. For security, we will consider a relaxation of the “best possible” security notion of
Boneh et al. [BLR+15]. Namely, we only consider static adversaries that submit all queries at once.
“Best possible” security is a modification of the standard notion of CPA security for symmetric
key encryption to block trivial attacks. That is, since the comparison function always leaks the
order of the plaintexts, the left and right sets of challenge messages must have the same order. In
our relaxation where all challenge messages are queried at once, we can therefore assume without
loss of generality that the left and right sequences of messages are sorted in ascending order. For
simplicity, we will also disallow the adversary from querying on the same message more than once.
This gives the following definition:

Definition 2.7. An ORE scheme (Gen,Enc,Dec,Comp) is statically secure if, for all efficient ad-
versaries A, |Pr[W0]−Pr[W1]| is negligible, where Wb is the event that A outputs 1 in the following
experiment:

• A produces two message sequences m
(L)
1 < m

(L)
2 < · · · < m

(L)
q and m

(R)
1 < m

(R)
2 < · · · < m

(R)
q

• The challenger runs (sk, params) ← Gen(1λ, 1`). It then responds to A with params, as well
as c1, . . . , cq where

ci =

{
Enc(sk,m

(L)
i ) if b = 0

Enc(sk,m
(R)
i ) if b = 1

• A outputs a guess b′ for b.

We also consider a weaker definition, which only allows the sequences m
(L)
i and m

(R)
i to differ

at a single point:

Definition 2.8. An ORE scheme (Gen,Enc,Dec,Comp) is statically single-challenge secure if, for
all efficient adversaries A, |Pr[W0]− Pr[W1]| is negligible, where Wb is the event that A outputs 1
in the following experiment:

• A produces a sequence of messages m1 < m2 < · · · < mq, and challenge messages mL,mR

such that mi < mL < mR < mi+1 for some i ∈ [q − 1].

• The challenger runs (sk, params) ← Gen(1λ, 1`). It then responds to A with params, as well
as c1, . . . , cq where ci = Enc(sk,mi) and

c∗ =

{
Enc(sk,mL) if b = 0

Enc(sk,mR) if b = 1

• A outputs a guess b′ for b.

We now argue that these two definitions are equivalent up to some polynomial loss in security.
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Theorem 2.9. (Gen,Enc,Dec,Comp) is statically secure if and only if it is statically single-challenge
secure.

Proof. We prove that single-challenge security implies many-challenge security through a sequence
of hybrids. Each hybrid will only differ in the messages mi that are encrypted, and each adjacent

hybrid will only differ in a single message. The first hybrid will encrypt m
(L)
i , and the last hybrid

will encrypt m
(R)
i . Thus, by applying the single-challenge security for each hybrid, we conclude

that the first and last hybrids are indistinguishable, thus showing many-challenge security.

Hybrid j for j ≤ q.

mi =

{
min(m

(L)
i ,m

(R)
i ) if i ≤ j

m
(L)
i if i > j

First, notice that all the mi are in order since both sequences m
(L)
i and m

(R)
i are in order. Second,

the only difference between Hybrid (j − 1) and Hybrid j is that mj = m
(L)
j in Hybrid (j − 1)

and mj = min(m
(L)
j ,m

(R)
j ) in Hybrid j. Thus, single-challenge security implies that each adjacent

hybrid is indistinguishable. Moreover, for j where m
(L)
j < m

(R)
j , the two hybrids are actually

identical.

Hybrid j for j > q.

mi =

{
min(m

(L)
i ,m

(R)
i ) if i ≤ 2q − j

m
(R)
i if i > 2q − j

Again, notice that all the mi are in order. Moreover, the only different between Hybrid (2q−j) and

Hybrid (2q− j + 1) is that mj = min(m
(L)
j ,m

(R)
j ) in Hybrid (2q− j) and mj = m

(R)
j in Hybrid

(2q− j + 1). Thus, single-challenge security implies that each adjacent hybrid is indistinguishable.

Moreover, for j where m
(L)
j > m

(R)
j , the two hybrids are actually identical.

3 The Concept Class EncThresh and its Learnability

Let (Gen,Enc,Dec,Comp) be a statically secure ORE scheme with strongly correct comparison. We
define a concept class EncThresh, which intuitively captures the class of threshold functions where
examples are encrypted under the ORE scheme. Throughout this discussion, we will take N = 2`

and regard the plaintext space of the ORE scheme to be [N ] = {1, . . . , N}. Ideally we would like,
for each threshold t ∈ [N + 1] and each (sk, params)← Gen(1λ), to define a concept

ft,sk,params(c) =

{
1 if Decsk(c) < t

0 otherwise.

However, we need to make a few technical modifications to ensure that EncThresh is efficiently PAC
learnable.
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1. In order for the learner to be able to use the comparison function Comp, it must be given the
public parameters params generated by the ORE scheme. We address this in the natural way
by attaching a set of public parameters to each example. Moreover, we define EncThresh so
that each concept is supported on the single set of public parameters that corresponds to the
secret key used for encryption and decryption.

2. Only a subset of binary strings form valid (sk, params) pairs that are actually produced by Gen
in the ORE scheme. To represent concepts, we need a reasonable encoding scheme for these
valid pairs. The encoding scheme we choose is the polynomial-length sequence of random
coin tosses used by the algorithm Gen to produce (sk, params).

We now formally describe the concept class EncThresh. Each concept is parameterized by a
string r, representing the coin tosses of the algorithm Gen, and a threshold t ∈ [N + 1] for N = 2`.
In what follows, let (skr, paramsr) be the keys output by Gen(1λ, 1`) when run on the sequence of
coin tosses r. Let

ft,r(params, c) =

{
1 if (params = paramsr) ∧ (Dec(skr, c) 6= ⊥) ∧ (Dec(skr, c) < t)

0 otherwise.

Notice that given t and r, the concept ft,r can be efficiently evaluated. The description length k of
the instance space Xk = {0, 1}k is polynomial in the security parameter λ and plaintext length `.

3.1 An Efficient PAC Learner for EncThresh

We argue that EncThresh is efficiently PAC learnable by formalizing the argument from the intro-
duction. Because we need to include the ORE public parameters in each example, the PAC learner
L (Algorithm 3) for EncThresh actually works in two stages. In the first stage, L determines whether
there is significant probability mass on examples corresponding to some public parameters params.
Recall that each concept in EncThresh is supported on exactly one such set of parameters. If there
is no significant mass on any params, then the all-zeroes hypothesis is a good hypothesis. On the
other hand, if there is a heavy set of parameters, the learner L applies Comp using those parameters
to learn a good comparator.

Theorem 3.1. Let α, β > 0. There exists a PAC learning algorithm L for the concept class
EncThresh achieving error α and confidence 1 − β. Moreover, L is efficient (running in time
polynomial in the parameters k, 1/α, log(1/β)).

Proof. Fix a target concept ft,r ∈ EncThreshk and a distribution D on examples. First observe
that the learner L always outputs a hypothesis with one-sided error, i.e. we always have h ≤ ft,r
pointwise. Also observe that ft′,r ≤ ft,r pointwise for any t′ < t. These both follow from the strong
correctness of the ORE scheme. Let (skr, paramsr) denote the keys output by Gen(1λ, 1`) when
run on the sequence of coin tosses r. Let POS denote the set of examples (params, c) on which
ft,r(params, c) = 1. We divide the analysis of the learner in to two cases based on the weight D
places on POS.
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Algorithm 1 Learner L for EncThresh

1. Request examples {(params1, c1, b1), . . . , (paramsn, cn, bn)} for n = dlog(1/β)/αe.

2. Identify an i for which bi = 1 and set params∗ = paramsi; if no such i exists, return h ≡ 0.

3. Let G = {j : paramsj = params∗, bj = 1}. Let j∗ ∈ G be an index with
Comp(params∗, cj , cj∗) ∈ {<,=,⊥} for all j ∈ G.

4. Return h defined by

h(params, c) =

{
1 if (params = params∗) ∧ (Comp(params∗, c, cj∗) ∈ {<,=})
0 otherwise.

Case 1: D places weight at least α on POS. Define t̂ ∈ [N + 1] as the largest t̂ ≤ t such that
errorD(ft̂,r, ft,r) ≥ α. Such a t̂ is guaranteed to exist since f0,r is the all-zeros function, and therefore
errorD(f0,r, ft,r) is equal to the weight D places on POS, which is at least α.

Suppose ft̂+1,r ≤ h pointwise. Since h has one-sided error (that is, h ≤ ft,r pointwise), we have
errorD(ft̂+1,r, ft,r) = errorD(ft̂+1,r, h) + errorD(h, ft,r), or

errorD(h, ft,r) = errorD(ft̂+1,r, ft,r)− errorD(ft̂+1,r, h) ≤ errorD(ft̂+1,r, ft,r) < α.

Therefore, it suffices to show that ft̂+1,r ≤ h with probability at least 1 − β. This is guar-

anteed as long as L receives a sample (paramsr, ci, 1) with t̂ ≤ Dec(skr, ci) < t. In other words,
ft,r(paramsr, ci) = 1 and ft̂,r(paramsr, ci) = 0. Since ft̂,r ≤ ft,r pointwise, such samples exactly
account for the error between ft̂,r and ft,r. Thus since errorD(ft̂,r, ft,r) ≥ α, for each i it must

be that t̂ ≤ Dec(skr, ci) < t with probability at least α. The learner L therefore receives some
sample ci with t̂ ≤ Dec(skr, ci) < t with probability at least 1 − (1 − α)n ≥ 1 − β (since we took
n ≥ log(1/β)/α).

Case 2: D places less than α weight on POS. Then the identically zero hypothesis has error at
most α, so the claim holds because 0 ≤ h ≤ ft,r.

3.2 Hardness of Privately Learning EncThresh

We now prove the hardness of privately learning EncThresh by constructing an example reidenti-
fication scheme for this concept class. Recall that an example reidentification scheme consists of
two algorithms, Genex, which selects a distribution, a concept, and examples to give to a learner,
and Traceex which attempts to identify one of the examples the learner received.

Our example reidentification scheme yields a hard distribution even for weak-learning, where
the error parameter α is taken to be inverse-polynomially close to 1/2.

Theorem 3.2. Let γ(n) and ξ(n) be noticeable functions. Let (Gen,Enc,Dec,Comp) be a stati-
cally single-challenge secure ORE scheme. Then there exists an (efficient) (α = 1

2 − γ, ξ)-example
reidentification scheme (Genex,Traceex) for the concept class EncThresh.
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We start with an informal description of the scheme (Genex,Traceex). The algorithm Genex sets
up the parameters of the ORE scheme, chooses the “middle” threshold concept corresponding to
t = N/2, and sets the distribution on examples to be encryptions of uniformly random messages
(together with the correct public parameters needed for comparison). Let m1 < m2 < · · · < mn

denote the sorted sequence of messages whose encryptions make up the sample produced by Genex
(with overwhelming probability, they are indeed distinct). We can thus break the plaintext space up
into buckets of the formBi = [mi,mi+1). Suppose L is a (weak) learner that produces a hypothesis h
with advantage γ over random guessing. Such a hypothesis hmust be able to distinguish encryptions
of messages m ≤ t from encryptions of messages m > t with advantage γ. Thus, there must be a
pair of adjacent buckets Bi−1, Bi for which h can distinguish encryptions of messages from Bi−1
from encryptions from Bi with advantage γ

n .
This observation leads to a natural definition for Traceex: locate a pair of adjacent buckets

Bi−1, Bi that h distinguishes, and output the identity i of the example separating those buckets.
Completeness of the resulting scheme, i.e. the fact that some example is reidentified when L
succeeds, follows immediately from the preceding discussion. We argue soundness, i.e. that an
example absent from L’s sample is not identified, by reducing to the static security of the ORE
scheme. The intuition is that if L is not given example i, then it should not be able to distinguish
encryptions from bucket Bi−1 from encryptions from bucket Bi.

To make the security reduction somewhat more precise, suppose for the sake of contradiction
that there is an efficient algorithm L that violates the soundness of (Genex,Traceex) with noticeable
probability ξ. That is, there is some i such that even without example i, the algorithm L manages to
produce (with probability ξ) a hypothesis h that distinguishes Bi−1 from Bi. A natural first attempt
to violate the security of the ORE is to construct an adversary that challenges on the message

sequences m1 < · · · < mi−1 < m
(L)
i < mi+1, <,mn and m1 < · · · < mi−1 < m

(R)
i < mi+1 < · · · <

mn, where m
(L)
i is randomly chosen from Bi−1 and m

(R)
i is randomly chosen from Bi. Then if h

can distinguish Bi−1 from Bi, the adversary can distinguish the two sequences. Unfortunately, this
approach fails for a somewhat subtle reason. The hypothesis h is only guaranteed to distinguish
Bi−1 from Bi with probability ξ. If h fails to distinguish the buckets – or distinguishes them in the
opposite direction – then the adversary’s advantage is lost.

To overcome this issue, we instead rely on the security of the ORE for sequences that differ on
two messages. For the “left” challenge, our adversary samples two messages from the same randomly
chosen bucket, Bi−1 or Bi (in addition to requesting encryptions of m1, . . . ,mi−1,mi, . . . ,mn). For
the “right” challenge, it samples one message from each bucket Bi−1 and Bi. Let c0 and c1 be the
ciphertexts corresponding to thee challenge messages. If h agrees on c0 and c1, then this suggests
the messages are from the same bucket, and the adversary should guess “left”. On the other hand,
if h disagrees on c0 and c1, then the adversary should guess “right”. If h distinguishes the buckets
Bi−1 and Bi, this adversary does strictly better than random guessing. On the other hand, even
if h fails to distinguish the buckets, the adversary does at least as well as random guessing. So
overall, it still has a noticeable advantage at the ORE security game.

We now give the formal proof of Theorem 3.2.

Proof. We construct an example reidentification scheme for EncThresh as follows. The algorithm
Genex fixes the threshold t = N/2 and samples (skr, paramsr) ←R Gen(1λ, 1`), yielding a concept
ft,r. Let D be the distribution of (paramsr,Enc(skr,m)) for uniformly random m ∈ [N ]. Let
m′1, . . . ,m

′
n ←R [N ], and let m1 ≤ · · · ≤ mn be the result of sorting the m′i. Let m0 = 0 and
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mn+1 = N . Since n = poly(k)� N , these random messages will be well-spaced. In particular, with
overwhelming probability, |mi+1−mi| > 1 for every i, so we assume this is the case in what follows.
Genex then sets the samples to be (x1 = (paramsr,Enc(skr,m′1)), . . . , xn = (paramsr,Enc(skr,m′n))).
Let x0 = (paramsr,Enc(skr,m0)) be a “junk” example.

The algorithm Traceex creates buckets Bi = [mi,mi+1). For each i, let

pi = Pr
m∈Bi,coins of Enc

[h(paramsr,Enc(sk,m)) = 1].

By sampling random choices of m in each bucket, Traceex can efficiently compute a good estimate
p̂i ≈ pi for each i (Lemma 3.3). It then accuses the least i for which p̂i−1 − p̂i ≥ γ

n , and ⊥ if none
is found.

Lemma 3.3. Let K = 8n2

γ2
log(9n/ξ). For each i = 0, . . . , n, let

p̂i =
1

K

K∑
j=1

h(xj)

where xj = (paramsr,Enc(skr,mj)) for i.i.d. m1, . . . ,mK ←R Bi. Then |p̂i − pi| ≤ γ
4n for every i

with probability at least 1− ξ/4.

Proof. By a Chernoff bound, the probability that any given p̂i deviates from pi by more than γ
4n is

at most 2 exp(−Kγ2/8n2) ≤ ξ
4(n+1) . The lemma follows by a union bound.

We first verify completeness for this scheme. Let L be a learner for EncThresh using n examples.
If the hypothesis h produced by L is (12−γ)-good, then there exists i0 < i1 such that pi0−pi1 ≥ 2γ.

If this is the case, then there must be an i for which pi−1 − pi ≥ 2γ
n . Then with probability all but

ξ(n)/2 over the estimates p̂i, we have p̂i−1 − p̂i ≥ γ
n , so some index is accused.

Now we verify soundness. Fix a PPT L, and let j∗ ∈ [n]. Suppose L violates the soundness of
the scheme with respect to j∗, i.e.

Pr
h←RL(S−j∗ ),coins of Genex

[Traceex(h) = j∗] > ξ.

We will use L to construct an adversary A for the ORE scheme that succeeds with noticeable
advantage. It suffices to build an adversary for the static (many-challenge) security of ORE,
with Theorem 2.9 showing how to convert it to a single-challenge adversary. This many-challenge
adversary is presented as Algorithm 2. (While not explicitly stated, the adversary should halt and
output a random guess whenever the messages it samples are not well-spaced.)

Let i∗ be such that mi∗ = m′j∗ . With probability at least ξ over the parameters (skr, paramsr),
the choice of messages, the choice of the hypothesis h, and the coins of Traceex, there is a gap
p̂i∗−1 − p̂i∗ ≥ γ

n . Hence, by Lemma 3.3, there is a gap pi∗−1 − pi∗ ≥ γ
2n with probability at least ξ

2 .
We now calculate the advantage of the adversary A. Fix a hypothesis h. For notational

simplicity, let p = pi∗−1 and let q = pi∗ . Let y0 = h(paramsr, c0i∗) and y1 = h(paramsr, c1i∗). Then
the adversary’s success probability is:
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Algorithm 2 ORE adversary A

1. Sample m′1, . . . ,m
′
n ←R [N ], and let m1 ≤ · · · ≤ mn be the result of sorting the m′j . Let π

be the permutation on {1, . . . , n} such that mπ(j) = m′j . Let m0 = 0. Let i∗ = π(j∗) so that
mi∗ = m′j∗ .

2. Construct pairs (m0
L,m

1
L) and (m0

R,m
1
R) as follows. Let B0 = (mi∗−1,mi∗) and B1 =

(mi∗ ,mi∗+1). Sample m0
L ≤ m1

L at random from the same Bj , for a random choice of
j ∈ {0, 1}. Sample m0

R ←R B0 and m1
R ←R B1.

3. Challenge on the pair of sequences m0,m1, . . . ,mi∗−1,m
1
L,m

2
L,mi∗ , . . . ,mn and

m0,m1, . . . ,mi∗−1,m
1
R,m

2
R,mi∗ , . . . ,mn, receiving ciphertexts c1, . . . , c

0
i∗ , c

1
i∗ , . . . , cn. For

j 6= j∗, let c′j = cπ(j) so that c′j is an encryption of m′j .

4. Set t = N/2 and let

S−j∗ =
{

(paramsr, c′1, χ(m′1 ≤ t)), . . . , (paramsr, c′j∗−1, χ(m′j∗−1 ≤ t)),
(paramsr, c0, 1), (paramsr, c′j∗+1, χ(m′j∗+1 ≤ t)), . . . , (paramsr, c′n, χ(m′n ≤ t))

}
=
{

(paramsr, cπ(1), χ(mπ(1) ≤ t)), . . . , (paramsr, cπ(j∗−1), χ(mπ(j∗−1) ≤ t)),
(paramsr, c0, 1), (paramsr, cπ(j∗+1), χ(mπ(j∗+1) ≤ t)), . . . , (paramsr, cπ(n), χ(mπ(n) ≤ t))

}
Obtain h←R L(S−j∗).

5. Guess b′ = 0 if h(paramsr, c0i∗) = h(paramsr, c1i∗). Otherwise guess b′ = 1.

Pr[b′ = b] =
1

2
(Pr[y0 = y1|b = 0] + Pr[y0 6= y1|b = 1])

=
1

2
(
1

2
(p2 + (1− p)2 + q2 + (1− q)2) + (1− pq − (1− p)(1− q)))

=
1

2
+

1

2
(p− q)2.

Thus if p− q ≥ γ
2n , then the adversary’s advantage is at least γ2

4n2 . On the other hand, even for
arbitrary values of p, q, the advantage is still nonnegative. Therefore, the advantage of the strategy

is at least ξγ2

8n2 − negl(k) (the negl(k) term coming from the assumption that the m′i sampled where
distinct), which is a noticeable function of the parameter k. This contradicts the static security of
the ORE scheme.

3.3 The SQ Learnability of EncThresh

The statistical query (SQ) model is a natural restriction of the PAC model by which a learner
is able to measure statistical properties of its examples, but cannot see the individual examples
themselves. We recall the definition of an SQ learner.
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Definition 3.4 (SQ learning [Kea98]). Let c : X → {0, 1} be a target concept and let D be
a distribution over X. In the SQ model, a learner is given access to a statistical query oracle
STAT(c,D). It may make queries to this oracle of the form (ψ, τ), where ψ : X ×{0, 1} → {0, 1} is
a query function and τ ∈ (0, 1) is an error tolerance. The oracle STAT(c,D) responds with a value
v such that |v − Prx∈D[ψ(x, c(x)) = 1]| ≤ τ . The goal of a learner is to produce, with probability
at least 1 − β, a hypothesis h : X → {0, 1} such that errorD(c, h) ≤ α. The query functions must
be efficiently evaluable, and the tolerance τ must be lower bounded by an inverse polynomial in k
and 1/α.

The query complexity of a learner is the worst-case number of queries it issues to the statistical
query oracle. An SQ learner is efficient if it also runs in time polynomial in k, 1/α, 1/β.

Feldman and Kanade [FK12] investigated the relationship between query complexity and com-
putational complexity for SQ learners. They exhibited a concept class C which is efficiently PAC
learnable and SQ learnable with polynomially many queries, but assuming NP 6= RP, is not
efficiently SQ learnable. Concepts in this concept class take the form

gφ,y(x, x
′) =

{
PARy(x

′) if x = φ

0 otherwise.

Here, PARy(x
′) is the inner product of y and x′ modulo 2. The concept class C consists of gφ,y

where φ is a satisfiable 3-CNF formula and y is the lexicographically first satisfying assignment
to φ. The efficient PAC learner for parities based on Gaussian elimination shows that C is also
efficiently PAC learnable. It is also (inefficiently) SQ learnable with polynomially many queries:
either the all-zeroes hypothesis is good, or an SQ learner can recover the formula φ bit-by-bit and
determine the satisfying assignment y by brute force. On the other hand, because parities are
information-theoretically hard to SQ learn, the satisfying assignment y remains hidden to an SQ
learner unless it is able to solve 3-SAT.

In this section, we show that the concept class EncThresh shares these properties with C. Namely,
we know that EncThresh is efficiently PAC learnable and because it is not efficiently privately
learnable, it is not efficiently SQ learnable [BDMN05]. We can also show that EncThresh has an SQ
learner with polynomial query complexity. Making this observation about EncThresh is of interest
because the hardness of SQ learning EncThresh does not seem to be related to the (information-
theoretic) hardness of SQ learning parities.

Proposition 3.5. The concept class EncThresh is (inefficiently) SQ learnable with polynomially
many queries.

As with C there are two cases. In the first case, the target distribution places nearly zero weight
on examples with params = paramsr, and so the all-zeroes hypothesis is good. In the second case, the
target distribution places noticeable weight on these examples, and our learner can use statistical
queries to recover the comparison parameters paramsr bit-by-bit. Once the public parameters are
recovered, our learner can determine a corresponding secret key by brute force. Lemma 3.6 below
shows that any corresponding secret key – even one that is not actually skr – suffices. The learner
can then use binary search to determine the threshold value t.

Proof. Let ft,r be the target concept, D be the target distribution, and α be the target error rate.
With the statistical query (x× b 7→ b, α/4), we can determine whether the all-zeroes hypothesis is
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accurate. That is, if we receive a value that is less than α/2, then Prx∈D[ft,r(x) = 1] ≤ α. If not,
then we know that Prx∈D[ft,r(x) = 1] ≥ α/4, so D places significant weight on examples prefixed
with paramsr. Suppose now that we are in the latter case.

Let m = |params|. For i = 1, . . . ,m, define ψi(params, c, b) = 1 if paramsi = 1 and b = 1, and
ψi(params, c, b) = 0 otherwise. Then by asking the queries (ψi, α/16), we can determine each bit
paramsri of paramsr.

Now by brute force search, we determine a secret key sk for which (sk, paramsr) ∈ Range(Gen).
The recovered secret key sk may not necessarily be the same as skr. However, the following lemma
shows that sk and skr are functionally equivalent:

Lemma 3.6. Suppose (Gen,Enc,Dec,Comp) is a strongly correct ORE scheme. Then for any pair
(sk1, params), (sk2, params) ∈ Range(Gen), we have that Decsk1(c) = Decsk2(c) for all ciphertexts c.

With the secret key sk in hand, we now conduct a binary search for the threshold t. Recall that
we have an estimate v for the weight that ft,r places on positive examples, i.e. |v−Prx∈D[ft,r(x) =
1]| ≤ α/4. Starting at t1 = N/2, we issue the query (ϕ1, α/4) where ϕ1(params, c, b) = 1 iff
params = paramsr and Dec(sk, c) < t. Let ht1 denote the hypothesis

ht1(params, c) =

{
1 if (params = paramsr) ∧ (Dec(sk, c) 6= ⊥) ∧ (Dec(sk, c) < t1)

0 otherwise.

Thus, the query (ϕ1, α/4) approximates the weight ht1 places on positive examples. Let the answer
to this query be v1. If |v1 − v| ≤ α/2, then we can halt and output the good hypothesis ht1 .
Otherwise, if v1 < v − α/2, we set the next threshold to t2 = 3N/4, and if v1 > v + α/2, we set
the next threshold to t2 = N/4. We recurse up to logN = ` = poly(k) times, yielding a good
hypothesis for ft,r.

Proof of Lemma 3.6. Suppose the lemma is not true. First suppose that there exists a ciphertext
c such that Dec(sk1, c) = p1 < p2 = Dec(sk2, c). Let c′ ∈ Enc(sk1, p2). Then by strong correctness
applied to the parameters (sk1, params), we must have Comp(params, c, c′) = “<”. Now by strong
correctness applied to (sk2, params), we must have Dec(sk2, c

′) > p2. Thus, p1 < Dec(sk1, c
′) =

p2 < Dec(sk2, c
′). Repeating this argument, we obtain a contradiction because the message space

is finite.
Now suppose instead that there is a ciphertext c for which Dec(sk1, c) = p ∈ [N ], but Dec(sk2, c) =

⊥. Let c′ ∈ Enc(sk1, p
′) for some p′ > p. Then Comp(params, c, c′) = “<” by strong correctness ap-

plied to (params, sk1). But Comp(params, c, c′) = “⊥” by strong correctness applied to (params, sk2),
again yielding a contradiction.

4 ORE with Strong Correctness

We now explain how to obtain ORE with strongly correct comparison, as all prior ORE schemes
only satisfy the weaker notion of correctness. The lack of strong correctness is easiest to see with
the scheme of Boneh et al. [BLR+15]. The protocol is built from current multilinear map construc-
tions, which are noisy. If the noise terms grow too large, the correctness of the multilinear map
is not guaranteed. The comparison function in [BLR+15] is computed by performing multilinear
operations, and for correctly generated ciphertexts, the operations will give the right answer. How-
ever, there exist ciphertexts, namely those with very large noise, for which the comparison function
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gives an incorrect output. The result is that the comparison operation is not guaranteed to be
consistent with decrypting the ciphertexts and comparing the plaintexts.

As described in the introduction, we give a generic conversion from any ORE scheme with weakly
correct comparison into a strongly correct scheme. We simply modify the encryption algorithm by
adding a non-interactive zero-knowledge (NIZK) proof that the resulting ciphertext is well-formed.
Then the decryption and comparison procedures check the proof(s), and only output a non-⊥ result
(either decryption or comparison) if the proof(s) are valid.

Instantiating our scheme. In our construction, we need the (weak) correctness of the underly-
ing ORE scheme to hold with probability one. However, the existing protocols only have correctness
with overwhelming probability, so some minor adjustments need to be made to the protocols. This
is easiest to see in the ORE scheme of Boneh et al. [BLR+15]. The Boneh et al. scheme uses
noisy multilinear maps [GGH13a] which may introduce errors. Therefore, the protocol described
in [BLR+15] only achieves the (weak) correctness property with overwhelming probability, whereas
we will require (weak) correctness with probability 1 for the conversion. However, it is straightfor-
ward to generate the parameters for the protocol in such a way as to completely eliminate errors.
Essentially, the parameters in the protocol have an error term that is generated by a (discrete)
Gaussian distribution, which has unbounded support. Instead, we truncate the Gaussian, resulting
in a noise distribution with bounded support. By truncating sufficiently far from the center, the
resulting distribution is also statistically close to the full Gaussian, so security of the protocol with
truncated noise follows from the security of the protocol with un-truncated noise. By truncating
the noise distribution, it is straightforward to set parameters so that no errors can occur.

It is similarly straightforward to modify current obfuscation candidates, which are also built
from multilinear maps, to obtain perfect (weak) correctness by truncating the noise distributions.
Thus, our scheme has instantiations using multilinear maps or iO.

4.1 Conversion from Weakly Correct ORE

We describe our generic conversion from an order-revaling encryption scheme with weak correctness
using NIZKs. We will need the following additional tools:

Perfectly binding commitments. A perfectly binding commitment Com is a randomized al-
gorithm with two properties. The first is perfect binding, which states that if Com(m; r) =
Com(m′; r′), then m = m′. The second requirement is computational hiding, which states that
the distributions Com(m) and Com(m′) are computationally indistinguishable for any messages
m,m′. Such commitments can be built, say, from any injective one-way function.

Perfectly sound NIZK. A NIZK protocol consists of three algorithms:

• Setup(1λ) is a randomized algorithm that outputs a common reference string crs.

• Prove(crs, x, w) takes as input a common reference string crs, an NP statement x, and a
witness w, and produces a proof π.

• Ver(crs, x, π) takes as input a common reference string crs, statement x, and a proof π, and
outputs either accept or reject.
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We make three requirements for a NIZK:

• Perfect Completeness. For all security parameters λ and any true statement x with witness
w,

Pr[Ver(crs, x, π) = accept : crs← Setup(1λ);π ← Prove(crs, x, w)] = 1.

• Perfect Soundness. For all security parameters λ, any false statement x and any (invalid)
proof π,

Pr[Ver(crs, x, π) = accept : crs← Setup(1λ)] = 0.

• Computational Zero Knowledge. There exists a simulator S1,S2 such that for any com-
putationally bounded adversary A, the quantity

‖Pr[AProve(crs,·,·)(crs) = 1 : crs← Setup(1λ)]− Pr[ASim(crs,τ,·,·)(crs) = 1 : (crs, τ)← S1(1λ)]‖

is negligible, where Sim(crs, τ, x, w) outputs S2(crs, τ, x) if w is a valid witness for x, and
Sim(crs, τ, x, w) = ⊥ if w is invalid.

NIZKs satisfying these requirements can be built from bilinear maps [GOS12].

4.1.1 The Construction

We now give our conversion. Let (Setup,Prove,Ver) be a perfectly sound NIZK and (Gen′,Enc′,Dec′,Comp′)
and ORE with weakly correct comparison. We will assume that Enc′ is deterministic; if not, we can
derandomize Enc′ using a pseudorandom function. Let Com be a perfectly binding commitment.
We construct a new ORE scheme (Gen,Enc,Dec,Comp) with strongly correct comparison:

• Gen(1λ, 1`): run (sk′, params′) ← Gen′(1λ, 1`). Let σ = Com(sk; r) for randomness r, and
run crs ← Setup(1λ). Then the secret key is sk = (sk′, r, crs) and the public parameters are
params = (params′, σ, crs).

• Enc(sk,m): Compute c′ = Enc′(sk′,m). Let xc′ be the statement ∃m̂, ŝk′, r̂ : σ = Com(ŝk
′
, r̂)∧

c′ = Enc′(ŝk
′
, m̂). Run πc′ = Prove(crs, xc′ , (m, sk′, r) ). Output the ciphertext c = (c′, πc′).

• Dec(sk, c): Write c = (c′, πc′). If Ver(crs, xc′ , πc′) = reject, output ⊥. Otherwise, output
m = Dec′(sk′, c′).

• Comp(params, c0, c1); white cb = (c′b, πc′b) and params = (params′, σ, crs). If Ver(crs, xc′b , πc
′
b
) =

reject for either b = 0, 1, then output ⊥. Otherwise, output Comp′(params′, c′0, c
′
1).

Correctness. Notice that, for each plaintext m, the ciphertext component c′ = Enc′(sk′,m) is
the unique value such that Dec(sk, (c′, π)) = m for some proof π. Moreover, the completeness of the
zero knowledge proof implies that Enc(sk,m) outputs a valid proof. Decryption correctness follows.

For strong comparison correctness, consider two ciphertexts c0, c1 where cb = (c′b, πc′b). Sup-
pose both proofs πc′b are valid, which means that verification passes when running Comp and so
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Comp(params, c0, c1) = Comp′(params′, c′0, c
′
1). Verification also passes when decrypting cb, and so

Dec(sk, cb) = Dec′(sk′, c′b).
Since the proofs are valid, c′b = Enc′(sk′,mb) for some mb for both b = 0, 1. The weak correctness

of comparison for (Gen′,Enc′,Dec′,Comp′) implies that Comp′(params′, c′0, c
′
1) = Compplain(m0,m1).

The decryption correctness of (Gen′,Enc′,Dec′,Comp′) then implies that Dec(sk′, c′b) = mb, and
therefore Dec(sk, cb) = mb. Thus Compciph(sk, c0, c1) = Compplain(m0,m1). Putting it all together,
Comp(params, c0, c1) = Compciph(sk, c0, c1), as desired.

Now suppose one of the proofs πc′b are invalid. Then Comp(params, c0, c1) = ⊥ and Dec(sk, cb) =
⊥. This means Compciph(sk, c0, c1) = ⊥ = Comp(params, c0, c1), as desired.

Security. To prove security, we first use the zero-knowledge simulator to simulate the proofs π′c
without using a witness (namely, the secret decryption key). Then we use the hiding property
of the commitment to replace σ with a commitment to 0. At this point, the entire game can be
simulated using an Enc′ oracle, and so the security reduces to the security of Enc′.

Theorem 4.1. If (Gen′,Enc′,Dec′,Comp′) is a (statically) secure ORE, (Setup,Prove,Ver) is com-
putationally zero knowledge, and Com is computationally hiding, then (Gen,Enc,Dec,Comp) is a
statically secure ORE.

Proof. We will prove security through a sequence of hybrids. Let A be an adversary with advantage
ε in breaking the static security of (Gen,Enc,Dec,Comp).

Hybrid 0. This is the real experiment, where σ ← Com(sk), crs ← Setup(1λ), and the proofs
πc′ are answered using Prove and valid witnesses. A has advantage ε in distinguishing the left and
right ciphertexts.

Hybrid 1. This is the same as Hybrid 0, except that crs is generated as (crs, τ)← S1(1λ), and
all proofs are generated using S2(crs, τ, ·). The zero knowledge property of (Setup,Prove,Ver) shows
that this is indistinguishable from Hybrid 0.

Hybrid 2. This is the same as Hybrid 1, except that σ ← Com(0). Since the randomness for
computing σ is not needed for simulation, this change is undetectable using the hiding of Com.

Thus the advantage of A in Hybrid 2 is at least ε−negl for some negligible function negl. Now
consider the following adversary cB that attempts to break the security of (Gen′,Enc′,Dec′,Comp′).

B simulates A, and forwards the message sequences m
(L)
1 < m

(L)
2 < · · · < m

(L)
q and m

(R)
1 < m

(R)
2 <

· · · < m
(R)
q produced by A to its own challenger. In response, it receives params′, and ciphertexts c′i,

where c′i encrypts either m
(L)
i if b = 0 or m

(R)
i if b = 1, for a random bit b chosen by the challenger.

B now generates σ ← Com(0) and (crs, τ)← S1(1λ), and lets params = (params′, σ, crs). It also
computes πc′i ← S2(crs, τ, xc′i), and defines ci = (c′i, πc′i), and gives params and the ci to A. Finally
when A outputs a guess b′ for b, B outputs the same guess b′.

We see that the view of A as a subroutine of B is exactly the same view as in Hybrid 2. Thus,
b′ = b with probability at least ε− negl. The security of (Gen′,Enc′,Dec′,Comp′) implies that this
quantity, and hence ε, must be negligible. Thus A must have negligible advantage in breaking the
security of (Gen,Enc,Dec,Comp).

21



5 A Separation for Representation Learning

In this section, we show how to construct a concept class ValidSig that separates efficient repre-
sentation learning from efficient private representation learning, assuming only the existence of
one-way functions. Here by “representation learning” we mean a restricted form of proper learn-
ing where a learner must output a particular representation (i.e. encoding) of a hypothesis h in
the concept class C. As with proper learning, this is a natural syntactic restriction to place on
a learner: for instance, if one wants to learn linear threshold functions (LTF), it makes sense to
require a learner to produce the actual coefficients of an LTF, rather than an arbitrary circuit that
happens to compute an LTF.

The construction is based on the following elegant idea due to Kobbi Nissim [Nis14]. Suppose
H : D → R is a cryptographic hash function with the property that given x1, . . . , xn with y =
H(x1) = · · · = H(xn), it is infeasible for an efficient adversary to find another x for which H(x) = y.
Consider the concept class HashPoint consisting of the concepts

fx(x′) =

{
1 if H(x) = H(x′)

0 otherwise.

for every x ∈ R. The representation of a concept fx is the point x. The concept class HashPoint is
very easy to learn (by representation) without privacy: a learner can identify any positive example
xi and output the representation xi. Since H(xi) = H(x), the concept fxi is actually equal to the
target concept fx. On the other hand, a learner that identifies an index x∗ for which fx∗ = fx
cannot be differentially private, since the security of the hash function means it is infeasible to
produce such an x∗ that is not present in the sample.

Note that this argument breaks down if one tries to show that HashPoint is not privately
properly learnable. While it is infeasible to privately produce a representation x∗ for which fx∗ is a
good hypothesis, the hypothesis h(x) = χ(H(x) = h(xi)) is equal as a function to every good fx∗ .
Moreover, this hypothesis can be constructed privately as long as the sample contains sufficiently
many positive examples.

We make this discussion formal by constructing a concept class ValidSig based on super-secure
digital signature schemes, which can be constructed from one-way functions. Our use of signatures
to derive hardness results for private proper learning is very analogous to prior hardness results for
synthetic data generation [DNR+09, UV11].

Definition 5.1. A digital signature scheme is a triple of algorithms (Gen,Sign,Ver) where

• Gen(1λ) produces a key pair (sk, vk).

• Sign(sk,m) takes the private signing key sk and a message m ∈ {0, 1}∗ and produces a
signature σ for the message m.

• Ver(vk,m, σ) takes the public verification key vk, a message m, and a signature σ, and (de-
terministically) outputs a bit indicating whether σ is a valid signature for m.

The correctness property of a digital signature scheme is that for every (sk, vk)←R Gen(1λ), every
message m ∈ {0, 1}∗, and every signature σ ←R Sign(sk,m), we have Ver(vk,m, σ) = 1.

Definition 5.2. A digital signature scheme is super-secure under adaptive chosen-plaintext attacks
if all efficient adversaries A win the following weak forgery game with negligible probability:
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• The challenger samples (sk, vk)←R Gen(1λ).

• The adversary A is given vk and oracle access to Sign(sk, ·). It adaptively queries the signing
oracle, obtaining a sequence of message-signature pairs A. It then outputs a forgery (m∗, σ∗).

• The value of the game is 1 iff Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) /∈ A.

It is known that super-secure digital signature schemes can be constructed from one-way func-
tions [NY89, Rom90, KK05, Gol04].

We now describe our concept class ValidSig. Let (Gen,Sign,Ver) be a super-secure digital sig-
nature scheme. We define a concept class ValidSig as follows. Fix the message length `. For every
(vk,m, σ) with m ∈ {0, 1}` and Ver(vk,m, σ) = 1, define the concept

fvk,m,σ(vk′,m′, σ′) =

{
1 if (vk = vk′) ∧ (Ver(vk,m′, σ′) = 1)

0 otherwise.

For convenience, we also include the all-zeroes hypothesis in ValidSig, with representation ⊥.

Theorem 5.3. Let α, β > 0. There exists a proper PAC learning algorithm L for the concept
class ValidSig achieving error α and confidence 1 − β. Moreover, L is efficient (running in time
polynomial in the parameters k, 1/α, log(1/β)).

Algorithm 3 Learner L for ValidSig

1. Request examples {((vk′1,m′1, σ′1), b1), . . . , ((vk′n,m′n, σ′n), bn)} for n = dlog(1/β)/αe.

2. Identify an i for which bi = 1 and return the representation (vk′i,m
′
i, σ
′
i). If no such i exists,

return ⊥ representing the all-zeroes hypothesis.

Proof. Fix a target concept fvk,m,σ ∈ ValidSigk and a distribution D on examples. Let POS denote
the set of examples (vk′,m′, σ′) on which fvk,m,σ(vk′,m′, σ′) = 1. We divide the analysis of the
learner into three cases based on the weight D places on the sets POS.

Case 1: D places at least α weight on POS. Then L receives a positive example with probability
at least 1− (1−α)n ≥ 1− β, and is thus able to identify a concept that equals the target concept.

Case 2: D places less than α weight on POS. If L gets a positive example, then the analysis of
Case 1 applies. Otherwise, the all-zeroes hypothesis is α-good.

We now prove the hardness of properly privately learning ValidSig by constructing an example
reidentification scheme for properly learning this concept class. Our example reidentification scheme
yields a hard distribution even when the error parameter α is taken to be inverse-polynomially close
to 1.

Theorem 5.4. Let γ(n) and ξ(n) be noticeable functions. Let (Gen,Sign,Ver) be a super-secure
digital signature scheme. Then there exists an (efficient) (α = 1 − γ, ξ)-example reidentification
scheme (Genex,Traceex) for representation learning the concept class ValidSig.
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We now give the proof of Theorem 5.4.

Proof. We construct an example reidentification scheme for ValidSig as follows. The algorithm Genex
samples (sk, vk) ←R Gen(1λ), a message m ∈ {0, 1}`, and a signature σ ←R Sign(sk,m), yielding
a concept fvk,m,σ. Let D be the distribution of (vk,m,Sign(sk,m)) for random m ←R {0, 1}`.
Genex then samples x0, x1, . . . , xn i.i.d. from D. Given a representation (vk∗,m∗, σ∗), the algorithm
Traceex simply identifies an index i for which xi = (vk∗,m∗, σ∗), and outputs ⊥ if none is found.

We first verify completeness for this scheme. Let L be a learner for ValidSig using n examples. If
the representation (vk∗,m∗, σ∗) produced by L represents an (1− γ)-good hypothesis, then it must
be the case that vk∗ = vk and Ver(vk,m∗, σ∗) = 1. Thus, if L violates the completeness condition,
it can be used to construct the weak forgery adversary A (Figure 4) that succeeds with noticeable
probability ξ.

Algorithm 4 Weak forgery adversary A

1. Query the signing oracle on random messages m′1, . . . ,m
′
n ←R {0, 1}`, obtaining signatures

σ′1, . . . , σ
′
n.

2. Run L on the labeled examples ((vk,m′1, σ
′
1), 1), . . . , ((vk,m′n, σ

′
n), 1), obtaining a representa-

tion (m∗, σ∗).

3. Output the forgery (m∗, σ∗).

Now we verify soundness for the scheme. Observe that for any i, the sample S−i contains no
information about message mi. Therefore, the learner has a 2−` = negl(k) probability at producing
a representation containing message mi, proving soundness.
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