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ABSTRACT:  
 
The high-dimensional feature vectors of hyper spectral data often impose a high computational cost as well as the risk of “over 
fitting” when classification is performed. Therefore it is necessary to reduce the dimensionality through ways like feature selection. 
Currently, there are two kinds of feature selection methods: filter methods and wrapper methods. The form kind requires no feedback 
from classifiers and estimates the classification performance indirectly. The latter kind evaluates the “goodness” of selected feature 
subset directly based on the classification accuracy. Many experimental results have proved that the wrapper methods can yield 
better performance, although they have the disadvantage of high computational cost. In this paper, we present a Genetic Algorithm 
(GA) based wrapper method for classification of hyper spectral data using Support Vector Machine (SVM), a state-of-art classifier 
that has found success in a variety of areas. The genetic algorithm (GA), which seek to solve optimization problems using the 
methods of evolution, specifically survival of the fittest, was used to optimize both the feature subset, i.e. band subset, of hyper 
spectral data and SVM kernel parameters simultaneously. A special strategy was adopted to reduce computation cost caused by the 
high-dimensional feature vectors of hyper spectral data when the feature subset part of chromosome was designed. The GA-SVM 
method was realized using the ENVI/IDL language, and was then tested by applying to a HYPERION hyper spectral image. 
Comparison of the optimized results and the un-optimized results showed that the GA-SVM method could significantly reduce the 
computation cost while improving the classification accuracy. The number of bands used for classification was reduced from 198 to 
13, while the classification accuracy increased from 88.81% to 92.51%. The optimized values of the two SVM kernel parameters 
were 95.0297 and 0.2021, respectively, which were different from the default values as used in the ENVI software. In conclusion, 
the proposed wrapper feature selection method GA-SVM can optimize feature subsets and SVM kernel parameters at the same time, 
therefore can be applied in feature selection of the hyper spectral data.  
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1. INTRODUCTION 

The rich and detailed spectral information provided by 
hyperspectral images can be used to identify and quantify a 
large range of surface materials which cannot be identified by 
multispectral images. However, the high-dimensional feature 
vectors of hyperspectral data also impose high computational 
cost as well as the risk of “over fitting” when classification is 
performed (Chen et al., 2006). Therefore it is necessary to 
reduce the dimensionality of hyperspectral data, which can be 
done by feature selection (Yang et al., 2006; Wang et al., 2006).  
Currently, there are two kinds of feature selection methods: 
filter methods and wrapper methods (Liu & Zheng, 2006). The 
filter methods require no feedback from classifiers and estimate 
the classification performance by some indirect assessments, 
such as distance measures which reflect how well the classes 
separate from each other. The wrapper methods, on the contrary, 
are classifier-dependent. The “goodness” of the selected feature 
subset are evaluated directly based on the classification 
accuracy. The main advantage of the filter methods is that the 
computation cost is low, because only a small number of 
features are used in classification. However, a small number of 

features, even the “best” ones, do not necessarily guarantee 
high classification accuracy (Cover, 1974; Elashoff et al., 1967; 
Toussaint, 1971). The wrapper methods can yield better 
performance, which, as a matter of fact, has been proved by 
many experimental results (Kohavi & John, 1997; Huang & 
Wang, 2006; Mao, 2004; Yu & Cho, 2006; Bi et al., 2003; 
Sikora & Piramuthu, 2007). But the high computational 
complexity involved have limited their applications. 
 
Currently, feature selection for hyperspectral data primarily use 
the filter methods, which, however, can not meet the need of 
high classification accuracy. Meanwhile, fast and efficient 
computation methods have been developing, therefore more and 
more researches are focusing on the wrapper methods. 
As a state-of-art classifier that has found success in a variety of 
areas, Support Vector Machines (SVM) were frequently used as 
the classifier in the wrapper feature selection method (Vapnik, 
1995; Cortes & Vapnik, 1995; Bradley et al., 1998; Pontil & 
Verri, 1998; Guyon et al., 2002; Mao, 2004). Among the many 
wrapper algorithms used, the Genetic Algorithm (GA), which 
solves optimization problems using the methods of evolution, 
specifically “survival of the fittest”, has proved as a promising 
one thanks to its prominent capability in solving global 
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optimization problems (Raymer et al., 2000; Yang & Li, 2007; 
Yu & Cho, 2003). However, existing GA-based wrapper 
methods were primarily developed for non spatial datasets. 
There is few wrapper feature selection method for spatial data, 
especially hyperspectral data. And most of the existing studies 
focused on feature subset only. But the efficiency and accuracy 
of the SVM classifier are not only affected by the feature subset, 
but also the kernel function, or the kernel parameters if the 
function has been specified (Weston et al., 2001). Moreover, 
feature subset and kernel parameters should be optimized 
simultaneously to get the optimal results (Huang & Wang, 
2006). Existing methods for optimizing the kernel parameters, 
like the leave-one-out method, the Step-size Gradient-descent 
Algorithm etc., are not ideal solutions for reasons of large 
computation cost, localized optimal results, or requirement of 
proper initial values (Lee & Lin, 2000; Bengio, 2000; Keerthi, 
2002). 
 
In this paper, we present a new wrapper feature selection 
method for hyperspectral data, which integrates the Genetic 
Algorithm and the SVM classifier through properly designed 
chromosome and fitness function. The purpose is to optimize 
both the feature subset, i.e. band subset, of hyperspectral data 
and SVM kernel parameters simultaneously and finally achieve 
higher classification accuracy.  
 
 

2. GENETIC ALGORITHMS FOR FEATURE 
SELECTION USING SVM 

2.1 Brief introduction to SVM 

Support Vector Machines (SVM) is a classification system 
derived from statistical learning theory. It has been applied 
successfully in fields such as text categorisation, hand-written 
character recognition, image classification, biosequences 
analysis, etc.  
 
The SVM separates the classes with a decision surface that 
maximizes the margin between the classes. The surface is often 
called the optimal hyperplane, and the data points closest to the 
hyperplane are called support vectors. The support vectors are 
the critical elements of the training set. The SVM can be 
adapted to become a nonlinear classifier through the use of 
nonlinear kernels. While SVM is a binary classifier in its 
simplest form, it can function as a multiclass classifier by 
combining several binary SVM classifiers (creating a binary 
classifier for each possible pair of classes). For multiclass 
classification, the pairwise classification strategy is often used. 
The output of SVM classification is the decision values of each 
pixel for each class, which are used for probability estimates. 
The probability values represent "true" probability in the sense 
that each probability falls in the range of 0 to 1, and the sum of 
these values for each pixel equals 1. Classification is then 
performed by selecting the highest probability.  
 
SVM includes a penalty parameter that allows a certain degree 
of misclassification, which is particularly important for non-
separable training sets. The penalty parameter controls the 
trade-off between allowing training errors and forcing rigid 
margins. It creates a soft margin that permits some 
misclassifications, such as it allows some training points on the 
wrong side of the hyperplane. Increasing the value of the 
penalty parameter increases the cost of misclassifying points 
and forces the creation of a more accurate model that may not 
generalize well. 

 
There are different types of SVM classifier kernel functions, 
such as linear, polynomial, radial basis function (RBF), and 
sigmoid. In this study, we chose the radial basis function kernel 
because it works well in most cases and has only two 
parameters, C and  (Hsu, Chang, & Lin, 2003).　  
 
2.2 Brief introduction to GA 

Genetic algorithms (GA) is a general adaptive optimization 
search methodology based on a direct analogy to Darwinian 
natural selection and genetics in biological systems. It has been 
proved to be a promising alternative to conventional heuristic 
methods. Based on the Darwinian principle of ‘survival of the 
fittest’, GA works with a set of candidate solutions called a 
population and obtains the optimal solution after a series of 
iterative computations.  
 
GA evaluates each individual’s fitness, i.e. quality of the 
solution, through a fitness function. The fitter chromosomes 
have higher probability to be kept in the next generation or be 
selected into the recombination pool using the tournament 
selection methods. If the fittest individual or chromosome in a 
population can not meet the requirement, successive 
populations will be reproduced to provide more alternate 
solutions. The crossover and mutation functions are the main 
operators that randomly transform the chromosomes and finally 
impact their fitness value. The evolution will not stop until 
acceptable results are obtained. Associated with the 
characteristics of exploitation and exploration search, GA can 
deal with large search spaces efficiently, and hence has less 
chance to get local optimal solution than other algorithms.  
 
 

  
 

Figure. 1. Illustration of the crossover and mutation operators 
(Huang & Wang, 2006). 

 
Figure. 1 illustrates the genetic operators of crossover and 
mutation. Crossover, the critical genetic operator that allows 
new solution regions in the search space to be explored, is a 
random mechanism for exchanging genes between two 
chromosomes using the one point crossover, two point 
crossover, or homologue crossover. In mutation the genes may 
occasionally be altered, for example, changing the gene value 
from 0 to 1 or vice versa in a binary code chromosome. 
(Goldberg, 1989; Davis, 1991). 
 
2.3 GA-based feature selection and parameter optimization 

Figure. 2 depicts the system architectures of the proposed GA-
based feature selection and parameters optimization for Support 
Vector Machines. The fundamental steps of the GA-SVM 
model include: ⅰ) designing a chromosome that consists of the 
feature subset and the kernel parameters; ⅱ) designing a proper 
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fitness function that combines the goals of high classification 
accuracy and low computation cost into one.  
 
 

 
 

Figure.2. Flowchart of the GA-SVM wrapper approach 
 

2.3.1 Design of chromosome 
To optimize the kernel parameters and feature subset 
simultaneously, the chromosome was designed to comprise 
three parts, C, , and the features mask. The binary coding 　
system was used to represent the chromosome. Fig. 3 shows the 
design of the binary chromosome.  
 
 

 C γ f 

C1 …Ci… Cnc γ1 …γj… γnγ f1 …fk… fnf 
 

 
Figure.3. Coding of chromosome 

 
In Figure. 3, Ci represents the ith bit’s value of bit string that 
represents parameter C, and nc is the number of bits 
representing parameter C; j represents the jth 　 bit’s value of 
bit string that represents  , and n  is the number of bits 　 　
representing parameter  ; f k represents the mask value of kth 　
feature, and nf is the number of bits representing the selected 
features. nc, n  and nf can be modified according to 　 the 
calculation precision and/or efficiency required.  
 
The bit strings representing the genotype of parameter C and 
should be transformed into phenotype by Eq. (1). Note that the 
precision of representing parameter depends on the length of the 
bit string (nc and n ), and the minimum and maximum value 　
of the parameter is determined by the user. For chromosome 
representing the feature mask, the bit with value ‘1’ represents 
the feature is selected, and ‘0’ indicates feature is not selected.  
 
 

dlR l
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−
−
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Γ(R, l) represents phenotype of the chromosome (or part of it) 
that has l bits, i.e. genes. minR and maxR represents the 
minimum and maximum value of parameter R; d represents the 
decimal value corresponding to the bit string; the number of bits 
representing the parameter l can be modified according to the 
calculation precision required. 
 

Because the number of features of hyperspectral data, i.e., the 
number of bands, is so large, traditional binary coding method 
will produce an enormously large solution space, which makes 
it impossible to find the optimal feature subset. Therefore a 
novel binary coding strategy was adopted, which set the length 
of chromosome different to the number of features. Suppose 
that the length of chromosome for the feature subset is nf, nf 
features were randomly selected from all the feature subset and 
sorted according to their identity number. A nf bits bit string 
was then generated and used as a mask for the selected nf 
features. Thus the number of solutions decreased from 2n to 
2nf×Cnfn. When nf is much less than n, computation efficiency 
will be improved greatly. 
 
2.3.2 Design of fitness function 
A fitness function is needed in the Genetic Algorithm to 
evaluate whether an individual is “fit” to survive. In the GA-
SVM model, we used two criteria, namely classification 
accuracy and the number of selected features, to design the 
fitness function. The principle is that individuals with high 
classification accuracy and small number of features has a high 
fitness value, and thus high probability to be pass its genes to 
the next generation. A single objective fitness function that 
combines the two goals into one was designed to solve the 
multiple criteria problem. The formula is as below.  
 
 

 
∑
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i
i
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a
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1                         (2) 
 
 
Where wa 为 represents the weight value for classification 
accuracy, wf for the number of features; fi is the mask value of 
the ith feature, ‘1’ represents that feature i is selected; ‘0’ 
represents that feature i is not selected; wa can be adjusted to 
100% if accuracy is the most important. Generally, wa can be 
set from 75 to 100% according to user’s requirements. In our 
study, we set wa to 80% and wf to 20%. It can be inferred that 
high fitness value is determined by high classification and small 
feature number. 
 
2.3.3 Basic Steps of the GA-SVM method 
The basic steps of the GA-SVM method are as below: 
1) Create a initial population of certain size, i.e. a group 
individuals with different chromosomes. Each individual’s 
chromosome consists of three parts, namely parameter C, 
parameter  and band subset of the hyperspectral data. The 　
chromosomes of the initial population were randomly created. 
The size of the initial population should be determined properly 
by user to include as many possible solutions as possible. 
2) Calculate the fitness value of each individual in the initial 
population using Eq. (2) and rank them according to their 
fitness. To calculate the fitness value of an individual, or a 
chromosome, the genotypes are firstly converted to phenotypes, 
i.e. converting the binary codes to the parameter C and , and 　
the identities of the selected features; These values, together 
with the training sets of the hyperspectral image, are then used 
as input to the SVM classifier to perform classification; After 
that, the classification accuracy is evaluated based on the 
testing sets; finally, fitness value of the individual is calculated 
using Eq. (2) based on the classification accuracy and number 
of selected features. 

399



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 2008 

3) Select a certain number of individuals with high fitness value 
as “elitism” of the population and retain them in the next 
generation. It is in this way that the individuals with high fitness 
value are retained in the population and the principle of 
“survival of the fittest” of the Genetic Algorithm is conveyed. 
4) Check whether the termination conditions are satisfied. If so, 
the evolution stops and the optimal result represented by the 
best individual is returned. Otherwise, the evolution continues 
and the next generation is produced. The termination conditions 
can be either a predefined fitness threshold or number of 
generation evolved. 
5) If the population continue to evolve, the next generation are 
produced following procedure below. First, a certain number of 
individuals are selected randomly to compete the mating right. 
Two individuals of the highest fitness values are selected as a 
pair of parents. Crossover is operated on their chromosomes to 
produce two children individuals. Location of the crossover 
point on the chromosomes is also randomly determined; Second, 
a floating-point number in the range of 0.0 to 1.0 is generated 
randomly. If it is less than the predefined mutation possibility, 
mutation is operated for the two children individuals; Repeat 
the two steps before to produce all the children individuals 
(except the “elitism” individuals ) in the new generation.  
6) Repeat operations from step 2) to step 4). 
 
2.3.4 Realization of the GA-SVM 
The GA-SVM method was realized in the ENVI/IDL language. 
IDL (Interactive Data Language) is an array-oriented, 
interpreted, structured programming language that provides 
powerful data analysis and visualization capabilities. ENVI 
(Environment for Visualizing Images) is a software for the 
visualization, analysis, and presentation of all types of digital 
imagery. It is written in IDL, so most of its functionalities are 
provided to users in the form of functions that can be easily 
called in programming.  
 
In our research, we realized functionalities like opening and 
closing of the hyperspectral images, extraction data in the 
training ROI (Regions of Interest) and testing ROI, performing 
classification using the SVM, as well as evaluation of 
classification accuracy all through calling existing function 
provided by ENVI. The Genetic Algorithm was realized using 
the Object-Oriented programming technique of IDL. Two 
object classes, i.e. population and chromosome, were created 
with their properties defined respectively. Methods were then 
defined for these two object classes, respectively. Methods for 
the population class include population initialization, 
tournament selection, chromosome crossover and mutation etc. 
Methods for the chromosome class include coding and decoding 
of the chromosomes, setting and getting of chromosome 
properties etc. Finally, the GA-SVM method was programmed 
according to the steps described in section 2.3.3. 
 

 
3. EXPERIMENTS  

3.1 Data Sets 

The hyperspectral data used in this study is a cloudless 
Hyperion image taken on Dec. 18, 2005. The image centers at 
113 º 20′ 48″E, 23 º 5′ 36″N and covers part of the 
Guangzhou city, China.  
 
The Hyperion system on board the EO-1 platform provides a 
high resolution hyperspectral imager capable of resolving 220 
spectral bands (from 0.4 to 2.5 µm) with a 30-meter resolution. 
The instrument can image a 7.5 km by 100 km land area per 
image, and provide detailed spectral mapping across all 220 
channels with high radiometric accuracy. The Hyperion images 
has wide ranging applications in mining, geology, forestry, 
agriculture, and environmental management. Detailed 
classification of land assets through the Hyperion will enable 
more accurate remote mineral exploration, better predictions of 
crop yield and assessments, and better containment mapping. 
In this study, we selected part of a Hyperion image that covers 
the Haizhu district of Guangzhou city to test the GA-SVM 
method. Atmospheric correction and geometric correction of 
the image were first performed in order to eliminate 
atmospheric effects and compare to the ground truth data.  
 
3.2 Feature selection for the Hyperion image using the GA-
SVM method 

The steps of feature selection for the Hyperion image using the 
GA-SVM method include: 
1) Create the training sets and testing sets needed by the GA-
SVM method using the ENVI software. Land uses of the study 
area were categorized into six classes, namely built-up area, 
water body, grassland, forest and unused land. Training sets and 
testing sets were created for each land use class.   
2) Set parameters of the GA-SVM method. These parameters 
include: range of kernel parameter C and , bit lengths for the 　
three chromosome parts, initial population size, population size 
of each generation, elitism size, number of generation to evolve, 
tournament size, crossover rate and mutation rate. These 
parameters were set as follow: min_C = 90.0 ， max_C 
=.110.0 ， min_γ = 0.9/bit_length ， max_γ = 0.25 ，

initPopulationSize = 100 ， populationSize = 50 ，

numGenerations = 40，offspringPerGen = 46，tournamentSize 
= 6，crossOverRate = 0.98，elitism = 4，mutationRate = 0.02. 
3) Run the GA-SVM model with the inputs of Hyperion image, 
training sets and testing sets. 
 
 

 c 　γ Selected Bands ( with their central  
wavelength, unit: mm) 

Classification 
Accuracy 

Kappa 
Coefficient 

No Feature Selection 100.000 0.000 All 196 bands 88.81% 0.8619 

Feature Selection 
using the GA-SVM 

Method 
95.0297 0.2021 

4(457.34)，12(538.74)，25(671.02)，
33(752.43)，61(1033.50)，67(1094.09)，

75(1174.77)，88(1305.96)，106(1487.53)，
109(1517.83)，117(1598.51)，127(1699.40)，

132(1749.79) 

92.51% 0.9261 

Table 1. Performance of the GA-SVM Feature Selection  
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Figure 4. the input image and classification result of the GA-SVM

3.3 Results 

Outputs of the GA-SVM model include optimized kernel 
parameters and feature subset, classification result, evaluation 
of the classification accuracy, as shown in Table 1. The 
classification result is shown in Figure 4. The evolution of 
fitness value with number of generation is shown in Figure 5. 
It can be seen in Table 1 that the number of features, i.e. bands, 
selected for the use of classification was only 13, much smaller 
than the total number of bands (198). Classification accuracy 
was 92.51% when using the optimized kernel parameters and 
feature subset, comparing to 88.81% when no feature selection 
was performed. The optimized values of the two SVM kernel 
parameters were 95.0297 and 0.2021, respectively, different 
from the default values of 100 and 0.005 in ENVI, which again 
proved the necessity of optimizing the kernel parameters. 
 
As can be seen in Fig. 5, the fitness value increases with 
number of generation. There are sharp increase at the 3rd and 
30th generation, although the fitness value may remain 
unchanged during several generations. The acceptable fitness 
level was reached at the 30th generation.  
 
Although the maximum number of generation evolved was only 
40 in our study due to limited computer memory. The GA-SVM 
method has proved to be able to return acceptable result under 
the limited memory resource. It may be a safe assumption that 
provided with larger computer memory, better results may be 
gained. 
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Figure 5. Change of fitness with population evolvement

 

 
 

4. CONCLUSION AND DISCUSSION 

In this paper we proposed a GA based wrapper feature selection 
method GA-SVM for hyperspectral data. The Genetic 
Algorithm was used to optimize the kernel parameters and 
feature subsets simultaneously. Realized using the ENVI/IDL 
programming language, the GA-SVM method was tested using 
the HYPERION hyperspectral image. 
 
The results showed that the GA-SVM method could 
significantly reduce the computation cost while improving the 
classification accuracy. The number of bands used for 
classification was reduced from 198 to 13, while the 
classification accuracy increased from 88.81% to 92.51%. The 
optimized values of the two SVM kernel parameters were 
95.0297 and 0.2021, respectively, which were different from 
the default values as used in the ENVI software.  
 
In conclusion, the proposed wrapper feature selection method 
GA-SVM can optimize feature subsets and SVM kernel 
parameters at the same time, therefore can be applied in feature 
selection of the hyper spectral data.  
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