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Abstract

Despite the availability of better performing techniques, most
language models are trained using popular toolkits that do not
support perplexity optimization. In this work, we present an ef-
ficient data structure and optimized algorithms specifically de-
signed for iterative parameter tuning. With the resulting imple-
mentation, we demonstrate the feasibility and effectiveness of
such iterative techniques in language model estimation.
Index Terms: language modeling, smoothing, interpolation

1. Introduction
For domains with limited matched training data, many of the
most effective techniques for n-gram language model (LM) es-
timation, such as modified Kneser-Ney smoothing [1] and gen-
eralized linear interpolation [2], involve iterative parameter tun-
ing to optimize the development set perplexity. However, due
to the lack of support for performing such iterative LM esti-
mation in popular language modeling toolkits, such as the SRI
Language Modeling (SRILM) toolkit [3], most work in the field
opts for simpler techniques with inferior results.

Previous work on data structures for n-gram models has pri-
marily focused on runtime performance and storage compres-
sion [4]. With the availability of the Google Web 1T 5-gram
corpus [5], recent research has examined efficient representa-
tions for building large-scale LMs [6, 7]. However, these ef-
forts only support simple subpar smoothing and interpolation
techniques, few that involve iterative parameter optimization.

In this work, we propose a data structure designed specif-
ically for LM training algorithms with iterative parameter tun-
ing. By taking advantage of the iterative nature of perplexity op-
timization, we present efficient algorithms for modified Kneser-
Ney smoothing, linear interpolation, and perplexity evaluation.
Using the resulting MIT Language Modeling (MITLM) toolkit,
we demonstrate the efficiency of these iterative algorithms.

2. Data Structure
An n-gram LM represents the probability of a word sequence
wN

1 as p(wN
1 ) =

∏N
i=1 p(wi|wi−1

1 ) ≈ ∏N
i=1 p(wi|hi), where

hi = wi−1
i−n+1 represents the history for word wi and n is the

model order. Since many n-grams are not observed in the train-
ing data, we can smooth the maximum likelihood estimate by
distributing probabilities from seen to unseen n-grams and as-
signing probabilities proportional to the lower-order model to
the unseen n-grams. For these cases, p(w|h) = α(h)p(w|h′),
where α(h) is the backoff weight and h′ is the backoff history
obtained by removing the earliest word from h. The resulting
backoff n-gram LM is commonly represented in the ARPA text
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Figure 1: Various n-gram data structures. w: word, p: proba-
bility, α: backoff weight, h: history index, b: backoff index.

file format [8], which stores p(w|h) and α(h) of the observed
n-grams and their histories, as shown in Figure 1a.

2.1. Existing Representations

While the ARPA file format serves as a standard cross-imple-
mentation representation for backoff n-gram language models,
it is inefficient as a runtime data structure. A simple option is to
represent the model as a trie, or prefix tree, where each n-gram
node stores the word index w, conditional probability p(w|h),
and backoff weight α(h) (Figure 1b). To reduce the num-
ber of lookups needed to compute n-gram probabilities involv-
ing backoff, SRILM maintains the n-gram histories backwards
within the trie and stores the conditional probabilities in a dic-
tionary within each n-gram history node (Figure 1c). Although
simple to build incrementally, tries demonstrate poor memory
locality during node traversals. Instead, the CMU-Cambridge
Statistical Language Modeling (CMU SLM) toolkit [9] utilizes
a compact vector encoding of the n-gram trie [4] where pointers
to the child nodes are encoded with array indices (Figure 1d).
The resulting structure not only improves memory locality, but
also reduces the memory footprint.



Operations Examples / Description
+,−,×,÷, ·, log, exp,

∑
x = [1, 2, 3]; y = [4, 5, 6];
x + y ⇒ [5, 7, 9];

∑
(x) ⇒ 6

Indexing x[0, 2] ⇒ [1, 3]; x[x > 2] ⇒ [3]
y = bincount(x) y = binweight(x, 1)
y = binweight(x, w) for i in range(len(x)): y[x[i]] += w[i]
y = binlookup(x, t, d=0) for i in range(len(x)):

y[i] = (0≤x[i]<len(t)) ? t[x[i]] : d
y = binset(x, m) for i in range(len(x)):

if m[i]: y[x[i]] = 1

Figure 2: Common vector operations in LM estimation.

2.2. Ideal Properties

Existing data structures have been primarily designed for effi-
cient n-gram probability evaluations at runtime. However, iter-
ative LM estimation algorithms repeatedly traverse through the
n-grams at each level, using features such as counts to com-
pute intermediate values, conditional probabilities, and back-
off weights. Thus, an ideal data structure for LM estimation
requires simple and fast iterators and allows intermediate val-
ues to be associated with each n-gram. Specifically, given that
many computations involve statistics from the corresponding
history and backoff n-grams, links to these n-grams need to
be precomputed for each n-gram to avoid duplicate lookups.

Furthermore, an ideal data structure needs to minimize
memory footprint while supporting efficient file serialization
and memory-mapped model loading. To optimize the use of
hardware resources, it should preserve memory locality for
common algorithms, utilize vector instructions, and support
multi-core architectures. Finally, to enable the estimation of
LMs from extremely large corpora, both the data structure
and algorithms have to support parallelization over distributed
memory computer clusters.

2.3. MITLM Vectors

In this work, we present a novel data structure designed specif-
ically for LM estimation procedures with iterative parameter
tuning. Instead of dynamically building a trie in memory like
SRILM, the proposed data structure represents n-grams as a list
of vectors, one for each order. Unlike CMU SLM, each element
of the vector represents a specific n-gram by storing the target
word index and the index of the history n-gram (Figure 1e).
Conceptually, we can view this as a compact vector encoding of
an n-gram trie with reversed pointers such that each node points
to its parent. Unlike standard tries, we can efficiently determine
the n-gram words for any node without costly searches.

With a vector representation, traversing over the n-gram
structure reduces to pointer increments and preserves memory
locality. In addition, data such as count and backoff n-gram in-
dex can be easily associated with each n-gram by storing them
in corresponding elements of separate data vectors. Further-
more, computations like backoff weights that involve statistics
from the history and backoff n-grams can access these values
via simple index lookups without costly searches.

3. Algorithms
Once the data structure has been constructed, most LM esti-
mation algorithms can be decomposed into simple vector op-
erations (Figure 2) on the n-gram counts and history/backoff
indices without referring to the word indices. For algorithms
involving iterative estimation of model parameters, intermedi-

1. c̃ = highestOrder ? c : bincount(b+)

2. n = bincount(c̃); Y =
n[1]

n[1]+2n[2]

for i in (1,2,3): f [i] = i − (i + 1)Y
n[i+1]

n[i]

3. ch = 1/binweight(h, c̃)
4. d = binlookup(c̃, f, f [3])
5. α = bincount(h, d) × ch

6. p = (c̃ − d) × ch[h] + α[h] × p−[b]

Figure 3: Modified Kneser-Ney smoothing. b: backoff indices,
b+: higher order backoff indices, h: history indices, c: n-gram
counts, c̃: modified counts, ch: inverse history counts, n: count
of counts, f : discount factors, d: n-gram discounts, α: backoff
weights, p: probabilities, p−: lower order probabilities.

ate values can often be cached across iterations to reduce com-
putation. As the model parameters are tuned to minimize an
objective function such as the development set perplexity, we
can further improve the performance by masking the operations
to the subset of n-gram values that affect the result during the
iterative optimization. Lastly, in iterative procedures, it may be
worthwhile to first compute sufficient statistics that summarize
the full data to reduce the work involved per iteration. In the
following sections, we will describe example applications of the
above techniques to a few common LM estimation approaches.

3.1. Modified Kneser-Ney Smoothing

Modified Kneser-Ney smoothing [1] is one of the best perform-
ing techniques for n-gram LM estimation. Unlike the original
Kneser-Ney smoothing [10] where a constant is subtracted from
each count, modified Kneser-Ney subtracts a different value de-
pending on the actual count. Specifically, it assigns probability
p(w|h) = c̃(hw)−D(c̃(hw))∑

w c̃(hw)
+ α(h)p(w|h′) , where c̃(hw) is a

modified n-gram count, D(·) is the discount function, and α(h)
is the backoff weight satisfying

∑
w p(w|h) = 1.

As shown in Figure 3, we can compute all probabilities
and backoff weights simultaneously using efficient vector oper-
ations. For example, the Kneser-Ney counts c̃(hw), defined by
the number of unique n-grams with hw as their backoffs, can be
computed using a bincount operation on the higher order back-
off indices b+. Each higher order n-gram contributes a count
of 1 to its backoff n-gram, as desired. With aligned vectors, we
can also compute the backoff probabilities for the current order
by simply indexing the lower order probability vector p− by the
backoff indices b and multiplying it by the backoff weights.

Instead of estimating discount factors f [i] = D(i) from
count statistics, we can also tune them to minimize the devel-
opment set perplexity, which has been observed to improve per-
formance [1]. In each iteration of the parameter optimization,
it is sufficient to repeat steps 4–6, as the inverse history counts
ch(h) = 1∑

w c̃(hw)
are independent of the parameters f . Thus,

by caching ch in the n-gram vector structure, we significantly
reduce the amount of computation within each iteration.

3.2. Linear Interpolation

Linear interpolation [11] is the most popular algorithm for
merging multiple n-gram LMs. To create a static backoff n-
gram LM from component LMs, SRILM interpolates the com-
ponent probabilities for the union of observed n-grams, using
backoff probabilities if necessary, and computes the backoff
weights to normalize the model. Figure 4 contains an efficient
vector implementation of the linear interpolation algorithm.



1. for i in [1, 2]: pi, αi = loadlm(lmi, model)
2. for i in [1, 2]: z = (pi == 0); pi[z] = αi[h[z]]× p−i [b[z]]
3. p = p1 × w1 + p2 × w2

4. α = (1 − binweight(h, p))/(1 − binweight(h, p−[b]))

Figure 4: Linear interpolation. LMs are loaded into a common
n-gram structure such they share common history and backoff
indices, h and b. pi, p

−
i , αi: probabilities, lower order proba-

bilities, and backoff weights of ith LM; w1, w2: interpolation
weights; p, α: interpolated probabilities and backoff weights.

1. cp, cα, N, Noov = loadevalcorpus(corpus, lm)
2. p, α = estimatelm(lm, params)
3. perplexity = exp[− 1

N
(cp · log p + cα · log α)]

Figure 5: Perplexity evaluation. Sufficient statistics cp and cα

are computed as the contribution each LM probability and back-
off weight makes towards the corpus perplexity. N and Noov

are the total counts of in-vocabulary and out-of-vocabulary
words in the corpus, respectively.

The interpolation weights are typically chosen to minimize
the development set perplexity using an iterative algorithm,
such as Expectation-Maximization (EM) [12] or numerical op-
timization techniques [13]. Since computing the development
set perplexity typically only involves a small subset of n-gram
probabilities and backoff weights, we can pre-compute Boolean
masks mp and mα to represent this subset. Because the back-
off weight computation (step 4) involves other n-gram prob-
abilities, we need to extend the probability mask to these n-
grams. Specifically, computing binweight(h, p) with mask mα

requires the probabilities of n-grams whose histories are in mα.
Thus, we need to extend the mask via mh = binlookup(h, mα),
mp|=mh. Likewise, to compute binweight(h, p−[b]), we shall
extend the mask of the lower order probability vector using
mp− |= binset(b, mh). Using these masks, we can now sub-
stantially reduce the computation per iteration in steps 3 and 4
by limiting it to only the masked n-grams. Similar techniques
can be applied to smoothing and other algorithms.

3.3. Perplexity Evaluation

The perplexity of a LM evaluated on a corpus wN
1 is defined

as perplexity = exp[− 1
N

log
∏N

i=1 p(wi|hi)]. Given that not
all n-grams in the corpus may be observed in the LM, we may
need to rely on backoff probabilities to compute p(wi|hi).

Finding an n-gram from word indices is a costly procedure.
Instead of performing this lookup in every iteration of perplex-
ity optimization, we can pre-compute sufficient statistics that
describe the evaluation corpus, as they remain constant across
iterations. Specifically, since the corpus probability can be de-
composed into the product of observed p(w|h)’s and α(h)’s,
we can represent the corpus compactly using the count each
appears in the product, or cp(w|h) and cα(h). Thus, after updat-
ing the LM probabilities and backoff weights in each iteration,
we can evaluate the LM perplexity efficiently using vector dot
products, as shown in step 3 of Figure 5. The counts can also
serve as the n-gram masks for efficient LM estimation.

4. Implementation
Using the data structure and algorithms described in the pre-
vious sections, we have implemented the MITLM toolkit, sup-
porting various iterative LM estimation algorithms, including

Dataset Words 1-grams 2-grams 3-grams
BNDev 3,573,908 56,156 778,556 1,973,886
BNTest 13,931,084 110,079 2,028,988 6,158,630
BNTrain 131,668,976 355,995 9,153,440 37,884,316
NYT96 156,879,556 319,279 10,939,278 38,566,120

Table 1: Summary of evaluation datasets.

modified Kneser-Ney smoothing [1], linear interpolation [11],
count merging [14], and generalized linear interpolation [2].
Model parameters are tuned to minimize development set per-
plexity using numerical optimization techniques such as Pow-
ell’s method [13] and L-BFGS-B [15].

For efficiency, core data structures and vector operations are
implemented in C++. For ease of development and experimen-
tation, high level algorithms are written in Python with NumPy
and SciPy packages.1 As vector operations often generate in-
termediate values, we expanded these operations in C to reduce
the memory requirement and improve performance. The current
implementation does not yet support parallelism.

5. Experiments
To demonstrate the capabilities of the MITLM toolkit, we
will evaluate the runtime performance of select LM smoothing
and interpolation experiments on the broadcast news domain.
Specifically, the target corpus consists of the Broadcast News
corpus [16] from 1996, where we designated the first month
as the development set (BNDev) and used the remaining five
months as the test set (BNTest). For training data, we use the
Broadcast News data from 1992 to 1995 (BNTrain), along with
the New York Times articles [17] from 1996 (NYT96). Table 1
summarizes all the evaluation data.

5.1. LM Smoothing

In [1], Chen and Goodman conclusively showed that modified
Kneser-Ney smoothing achieves better performance with tuned
discount parameters, especially in the presence of mismatch be-
tween the training and test data. However, perhaps because
popular language modeling toolkits, such as SRILM, do not di-
rectly support parameter tuning, most subsequent publications
using this smoothing algorithm estimated the discount parame-
ters from count statistics instead.

Using a 2.66 GHz CPU, estimating a trigram LM using
modified Kneser-Ney smoothing with fixed parameters on the
BNTrain corpus takes about 4.6 minutes using SRILM, with a
final memory usage of 3.2 GB. With MITLM, the performance
improves considerably to 3.0 minutes and 1.9 GB. Excluding
time spent in file I/O, the difference is even more dramatic with
SRILM and MITLM spending 122 and 3.8 seconds, respec-
tively. By using a vector representation with precomputed back-
off indices, MITLM improves the efficiency of LM smoothing
by more than an order of magnitude.

Instead of using fixed values, we can also tune the 9 mod-
ified Kneser-Ney discount parameters to minimize the devel-
opment set perplexity using Powell’s method. For this dataset,
applying masking to compute only those n-grams needed for
perplexity evaluation reduces the vector computation by up to a
factor of 26x, enabling the 240 iterations of the parameter op-
timization process to complete in only 3.1 minutes and 2.2 GB
of memory.

1http://www.scipy.org/



Technique Time (min) Memory (GB) Perplexity
LI 8.3 5.4 125.8
CM 9.8 7.2 125.5
GLI(log(c + 1)) 16.8 7.4 124.7

Table 2: Training time, memory usage, and test set perplexity
for various interpolation techniques on BNTrain and NYT96.

With its mostly sequential memory accesses, MITLM also
improves memory locality over SRILM. For example, although
both toolkits significantly exceed the available 8GB of memory
when estimating a trigram model on the full 1.1 billion words
of New York Times articles from 1994 to 2004 [17], MITLM
manages to finish in 30 minutes, whereas SRILM took over 24
hours due to disk thrashing. By designing the data structure for
iterative paramater optimization, we can significantly improve
the runtime performance and enable previously impractical pa-
rameter tuning algorithms.

5.2. LM Interpolation

SRILM supports building a static backoff LM from the linear in-
terpolation (LI) of component LMs. It also provides a separate
script for tuning the interpolation weights to minimize the de-
velopment set perplexity using Expectation-Maximization. Us-
ing SRILM, we were able to tune and interpolate BNTrain and
NYT96 into a single LM in 19.5 minutes and 3.6 GB via 18 it-
erations of the EM algorithm. By integrating the tuning process
into the estimation procedure, MITLM interpolates the same
LMs via 10 iterations of L-BFGS-B in 8.3 minutes and 5.4 GB,
spending only 1.8 minutes on parameter optimization. Since
SRILM optimizes the parameters for dynamic interpolation, it
uses less memory than MITLM, but generally yields suboptimal
results for static interpolation.

Extending beyond the capabilities of current publicly avail-
able language modeling toolkits, Table 2 lists the performance
and computation times of various LM interpolation techniques.
By adjusting the interpolation weight as a function of features
derived from the n-gram history, count merging (CM) [14] and
generalized linear interpolation (GLI) [2] improve the test set
performance with only a moderate increase in computational
resources. In fact, both interpolation techniques using MITLM
complete in less time than linear interpolation using SRILM.

6. Conclusion & Future Work
By designing the data structure and algorithms for iterative LM
estimation, we have implemented an efficient language mod-
eling toolkit that supports parameter optimization for modi-
fied Kneser-Ney smoothing and various LM interpolation tech-
niques. Compared with the popular SRILM toolkit, the result-
ing MITLM toolkit improves the running time of the modified
Kneser-Ney algorithm by over 30x and reduces the memory us-
age by 40%. Furthermore, it enables the efficient optimization
of parameters for advanced interpolation techniques, instead of
relying on empirical trial and error approaches [14, 18].

For future work, we plan to explore additional iterative LM
estimation techniques and conduct more detailed perplexity and
recognition evaluations. We would also like to further opti-
mize the memory usage and parallelize the implementation of
MITLM to support large-scale LM estimation.

With the simple vector representation of n-grams, we in-
vite researchers to implement future language modeling tech-
niques using MITLM. We hope that with the public release of

this toolkit, future research will also consider more effective
language model estimation techniques that are previously im-
practical.

Availability The latest version of MITLM and accompa-
nying documentation are available as open source software at
http://www.sls.csail.mit.edu/mitlm/.
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