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ABSTRACT of automatic lexical acquisition. In particular, spokeragx
In this research, an iterative and unsupervised Turb@slyl P!€s from two complementary domains, spelling and pronun-

gorithm is presented and implemented for the task of autciation, are presented to a letter and subword recognizer re
matic lexical acquisition. The algorithm makes use of spoke SPectively. The output of each recognizeris then procesped
examples of both spellings and words and fuses informatioft Pi-directional letter-to-sound (L2S) model and injedtedk
from letter and subword recognizers to boost the overadl lexiNto the other recognizer in the form sdft bias information.
ical learning performance. The algorithm is tested on a-chaSUch @ set-up is denoted Turbo-style learning algorithresin

lenging lexicon of restaurant and street names and evaluatd IS inspired by the principles of Turbo Codes [4]. The term
in terms of spelling accuracy and letter error rate. Abgplut TUrbo Code is in turn a reference to turbo-charged engines
improvements of 7.2% and 3% (15.5% relative improvementy/here part of the output power is fed back to the engine to

are obtained in the spelling accuracy and the letter erter ra/mpProve the performance of the whole system. . .
respectively following only 2 iterations of the algorithm. There has been significant research on automatic lexical
generation [5, 6, 7]. However, the novel contribution okthi

~ Index Terms— Turbo-style, spelling, pronunciation, lex- ork is two-fold: (1) Spoken examples of both the spelling
ical acquisition and the word are used as opposed to the word only, and (2) a
bi-directional L2S model is used to exchange bias inforamati
1. INTRODUCTION between the spelling and pronunciation domain so as to boost
the overall performance of the tandem model. It is worth not-
In speech recognition systems, automatic lexical updakeis ing that the set-up does not consult a lexicon when estimatin
process of introducing new entries into the phonetic dictio the spelling.
nary as well as refining pre-existing ones. Such an update The basic principle of the proposed algorithm is the fusion
process can be triggered by newly acquired information sucbf several sources of information, and it can be generatized
as a spoken example of an unknown word or its spelling. Theifferent set-ups. For example, a recent approach to unsupe
capability of automatically learning a reliable estimafeao vised pattern discovery in speech produces reliable chiste
lexical entry (both spelling and phonetic baseform) of advor similar speech patterns [8]. The generated clusters carobe p
from spoken examples, can prove quite beneficial. For excessed by multiple subword recognizers whose outputs can be
ample, consider spoken dialogue systems, which have begiised to boost the pronunciation recognition performance.
slowly emerging as a natural solution for information retil In the rest of the paper, the Turbo-style algorithm is de-
applications [1]. Such systems often suffer from dialoguescribed in Section 2, and the implementation components in
breakdown at critical points that convey important informa Section 3. The experimental set-up and parameter tuning are
tion such as named entities or geographical locations. Ongepicted in Sections 4 and 5 respectively. Section 6 reports
successful approach proposed for error recovery in di@oguhe results, and Section 7 concludes with a summary.
systems lies in speak-and-spell models, that prompt the use
for the spelling of an unrecognized word [2, 3]. In such cases 2 THE TURBO-STYLE ALGORITHM
both the spoken spelling and word are available. The ques-
tion that this research attempts to answer is: Given both thg, this section, the Turbo-style iterative algorithm isgereted.
spoken spelling and spoken word how well can a valid lexicairhe basic principle behind the proposed algorithm is to have
entry in a dictionary be learnt? two complementary recognizers, spelling and pronundiatio
This research introduces an unsupervised iterative techschange bias information such that the performance of both
nique denotedurbo-style algorithmand applies it to the task - systems is improved. In this particular implementatior, th

This research was supported by the Industrial Technologe&eh In- !etter rgcognizer first generates Brbest list, Wh!Ch iS_ pro-
stitute (ITRI) in Taiwan. jected into the complementary subword domain using a bi-




directional L2S model. The projectaédtbest list is used to 3. IMPLEMENTATION COMPONENTS
bias the subword LM, by injecting into it the pronunciations -
that best match the estimated spelling. A similar proce@ure 3.1. The Bi-Directional L2S/S2L Model

repeated in the subword domain. The algorithm is IIIUStfatea’he bi-directional L2S model used in this research is baged o

in Figure 1, and the steps for a pair of spoken spelling ang context-free grammar (CFG) designed to encode positional

word are as follows: and phonological constraints in sub-syllabic structurBise
(1) The spoken spelling is presented to the letter recognizeC pr d 9 bword model is d 'by d'in detail in 19 d
and a lettenV, -best list is generated. FG-based subword model is described in detail in [9], an

evaluated successfully on the task of automatic prontunaciat

(2) ;hseuEﬁg:{:&;%iﬁ;ﬁggiﬁ?&by the L2S model, andgeneration in [10]. Briefly, the CFG describes all possible
1~ .

(3) A bias subword language model (LM) is trained with theWays su_b—syllabic structures map 0 subword_units as well as
subwordM;-best list, and interpolated with the base sub-aII possible ways subword units map to spellings. The CFG

. pre-terminals are the subword units, which encode only pro-
:r:c;rﬂebyb?é:sfigxgrvé 'LLhe interpolated LM becomes nunciation information, and the terminals are letter @ust

(4) A subword recognizer is built with the new interpolated\;Vr?éctzriqr}fw(;(ljsea?geél;ggéngzg;giaelsn:2;\)/6; ogpge_-ter(r)rglljr(l:?l(')sf
subword LM, the spoken word is presented to the sub: P y- A DY-P

word recognizer, and a subwold,-best list is generated. the CFG is an automatically derived mapping between sub-

(5) The subword\,-best list is processed by the S2L model words and their spellings, which results in hybrid units; de
and a letterV. ngest list is produced 'noted spellnemés Generating a statistical L2S model is fa-
2" .

(6) A bias letter LM is trained with the letteW,-best list, cilitated by the spelineme units. The L2S modEl.u, is

and the bias letter LM is interpolated with the base Iettermodeled using finite state transducers (FSTs) as follows:

LM by a factorws. The interpolated LM becomes the new
base letter LM.

(7) A letter recognizer is built with the new interpolatettle \hereT},5p andTspo are mappings from letters to spell-

Trov =Trasp © Gsp o Tspoy 1)

ter LM. nemes and from spellnemes to subwords respectively, and
(8) Go back to Step (1). Ggsp is a spellneme trigram. A search throu@h, pro-
Speliing duces anN-best list of pronunciations corresponding to the
START l input spelling. An S2L model is generated similarly.
Letter Letter »l 125 )
Recognizer [ N best list 3.2. The Subword and Letter Recognlzers
* ¢ The subword recognizer is modeled as a weighted FST,
Build Letter Subword
Recognizer M, -best list
y * Rs=C o P o Lg o Gg (2)
L%eser?p{ngas Buld Bias whereC denotes the mapping from context-dependent model
— able variables. labels to context-independent phone lab&lshe phonologi-
f NN MM, o cal rules that map phone labels to phoneme sequehgdhe
. w,andw. , Interpolate . . . . . .
Build Bias (BaseruBias subword lexicon, which is a mapping from phonemic units to
ubwor S . .
subwords obtained from the CFG, at; the subword tri-
? ¢ gram. A search througRs produces arN-best list of pro-
Letter Build Subword nunciations corresponding to the spoken word.
N,-best list Recognizer ! 3 L. 3 .
The letter recognizer is similarly implemented as a weigh-
? ¢ ted FST,Rr. The letter lexiconL, contains 27 entries, the
SoL ]y, Jumord || paubwerd, 26 letters of the alphabet and the apostrophe.

*

word 4. EXPERIMENTAL SET-UP

Fig. 1. lllustration of the unsupervised Turbo-style algorithm

used to refine the estimates of the spelling and the pronuncidn® SUMMIT segment-based speech recognition system is
tion of a new word. used [11] in all the experiments. Context-dependent diphon

acoustic models are used with an MFCC (Mel-Frequency Cep-

Figure 1 shows 7 parameters that need to belégt)/;, stral Coefficient) based feature representation. The dipsio

wr, Na, M2’ wo, andK, the numl?er of ite.ratio_ns perfprmed. 10ther researchers have used the tgraphones for these types of units
The tuning of these parameters is described in Section 5.  (e.g. Bisani and Ney [7]).




are modeled with diagonal Gaussian mixture models with a
maximum of 75 Gaussians per model, and are trained on tele-

phone speech. The spellneme trigrai,» used by the L2S 70
model is built with 55k parsed nouns extracted from the LDC
pronlex dictionary. The letter trigranG, is trained with

300k Google words, and the subword trigra, with the

same set parsed with the L2S model.

For the purpose of this research, 603 Massachusetts restau-
rant and street names were recorded together with their spo- A
ken spellings. This set is part of a larger data collectidoref ‘ .
described in more detail in [10]. The 603 spelling/word pair - ®
are split into a development (Dev) set of 300 pairs and a Test . 109N,
set of 303. ’
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Fig. 2. The spelling accuracy, in a 20-best spelling list, eval-
5. PARAMETER TUNING uated on the Dev set as a functioné andws.

In this section, the process of setting the parameters of the
algorithm is presented. There are various ways of approach-

ing such a problem, and the choice here is toXgand M, M and w; correspond to the number of top candidate su_b-
separately, while\f; andw, are tuned simultaneously, and word sequences generated by the S2L model and the weight
similarly foyr N, anduw, ' of the subword bias LM respectively. They are tuned simi-

larly to N, andws. For lack of space, we only report that
N; and M3, correspond to the number of top candidate speII-_Mé_IS tseigotltaoo agdjl tg 0.8. Co_mpgred o, thef_(rjeSLiltsb i
ings and pronunciations generated by the letter and subwoFﬁ icate that the subword recognizer IS more confident abou

the bias information obtained from the letter domain thae vi

recognizers respectivelylN; is chosen to achieve an effec- ersa. This is expected since the spelling domain is more con
tive compromise between capturing the correct spelling anfcrsa- “NISIS exp ince petiing ni
gtramed and hence more reliable than the subword one.

weeding out incorrect ones. This is done by presenting th
Dev data to the letter recognizer and monitoring the depth of
the correct spelling in the top 100 candidates. By this pssce K corresponds to the number of iterations of the Turbo-style
N, is empirically set to 20. algorithm. To sef, the algorithm is run on the Dev set until

In a similar procedure on the pronunciation sidé; is little change in performance is observed. The results are re
empirically set to 50. However, it is worth noting that while ported in Table 1 in terms of spelling match rates. The first
reference spellings are available for the letter set-uprefio column is the iteration number, where iteration O refergito t
erences are available for the subword set-up. To avoid bavirinitial results prior to receiving any bias information fnche
to manually transcribe subword baseforms, the L2S model igomplementary domain. The second to fifth columns give the
used to automatically generate them [10]. spelling match rates in the top 1, 10, 20, and 100 spelling can

didates. The results in Table 1 show substantial improvémen

N, and w, denote the number of top candidate spellings proin the spelling match rates following iteration 2. For exaenp
duced by the S2L model and the weight of the letter bias LMhe top 1 spelling accuracy improves by an absolute 5.7%. It
respectively. They are tuned to improve the performance df noted here that the results of thé @eration correspond to
the letter recognizer on the Dev set. Performance is evaduat the spelling recognizer alone without any feedback from the
in terms ofspelling match rate. A match is when the correct pronunciation domain. Based on the observation that no sig-
word occurs in theV;-best list generated by the letter recog-nificantimprovement occurs beyond iteratiorf3js set to 2.
nizer, whereN; = 20. SinceM, = 50, a subword 50-best
listis processed by the S2L, producing a spellivigbest list,

whereN, = 20, 100, 500, 1000, 5000, 10000. For each value [ Tteration #| Top1 | Top 10 | Top 20 | Top 100 |
of N5, a bias LM is trained with the spellinyy,-best list and 0 19.3% | 50.6% | 57.6% | 77.6%
interpolated with a base LM. The interpolation weigh, is 1 24.3% | 53.6% | 62.3% | 78%
varied between 0 and 1 in 0.2 steps. For ea¥h{-) pair, 2 25% | 56.3% | 62.6% | 76.6%

o : : o 3 25% | 56% | 62.6% | 76.6%
a letter recognizer is built and the spelling 20-best ligiea-

erated. Figure 2 reports the performance as a functiovof T5p1e 1. Top 1, 10, 20, and 100 spelling match rates on the
andws, and illustrates that mid-range values of bath and Dev set as a function of iterations.

wo are best. Based on thid), is set to 1000 and, to 0.4.



6. PRELIMINARY RESULTS AND DISCUSSION [ Word | lteration 0 | lteration 2
botoloph -ao+ tf -ow+ |+ -aof b -owt -axl -aolf
The parameters are adjusted based on the Dev set as describedd4ans “eyn vz kw -aan +2
. . L . | olivio I+ -ey+ df -iy+ -ow+ -ax| -ly+ v+ -iy+ -ow+
in Sec.t|0|_’1.5, aqd prehmmarylresults are gbtalned on the TeS—oodmans T —ahn m+ -aen s+ Jhng W Uhd M+ -aen ¥s
set. Significantimprovementis observed in the spellingcimat [churrascaria| jn+ -ehs t-ehr -ly+ -ax+| ch+ -aoer+ -axs k -ehr -iy+ -ax4

rates in Table 2. For example, the top 1 spelling accuracy im-

proves by an absolute 7.2% following 2 iterations. The tette Table 3. Sample pronunciations (in subword units) at itera-
error rate is also found to decrease from 19.3% in iteration ¢ons 0 and 2.

to 16.3% in iteration 2 (15.5% relative improvement).

. . . [ Word | lteration O | lteration 2 |

The glgorlthm also.substantlally improvesthe a!m0§t-corr memenamy| menenanys| memenamys
ect spelling rate. In this case, almost-correct spellinghisn tartufo cruso cartufo
the edit distance between the top 1 spelling and the correct terranova trialve trianove
one is no more than 1 letter. The almost-correct rate inesas helmand | heelmand | helmand
from 43.2% at iteration 0 to 52.8% at iteration 2. This sug- scutra setra scutra

gests that a spelling correction has a better chance of §indin

the reference word in a lexicon retrieved, say from the Web.
No accuracy results are reported in the pronunciation do-

main due to the lack of a reference. However, Table 3 illus- Within the same Turbo framework, it remains important

trates dramatic qualitative improvement in the pronummiat to investigate (1) different schemes for parameter tun(@p,
of sample words from iteration O to iteration 2. other methods for exchanging bias information between dif-

ferent domains, as well as (3) extensions of this algorithm t
more general set-ups. The algorithm is also expected to be

Table 4. Sample spellings at iterations 0 and 2.

[ lteration #| Top1 [ Top 10 | Top 20 | Top 100 |

0 20.5% | 54.1% | 66.3% | 77.2% incorporated into a spoken dialogue system for autométical
2 27.7% | 59.1% | 66.9% | 79.2%
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Similarly, Table 4 illustrates sample words and the corre-
sponding spelling improvement from iteration O to iteratio
2. As shown in Table 4, the bias information obtained from
the pronunciation domain could drive the spelling recogniz
to a local optimum which does not match the reference, for[s]
e.g. tartufo, and vice versa. In fact, this phenomenon could
explain why very little to no improvement is observed on the
Dev set following iteration 3.

Hence, the optimality of the proposed scheme remains to
be examined. For example, instead of keeping the parameters;
N1, My, No,wo, My, andw; static, it might be more advan-
tageous to adaptively update them to reflect the confidence i)
the bias information.

[2]

(4]

(7]
7. SUMMARY

In this research, an iterative and unsupervised Turb@styl  [8]
gorithm has been introduced and implemented for automatic
lexical learning. A spoken example of a word and its spelling
are presented to a subword and letter recognizer, which-recu
sively exchange bias information through a bi-directidrz$
model. As a proof of concept, preliminary experiments wergiq)
performed using 603 pairs of spoken spellings and words, and
results on the 303-pair Test set showed significant absolute
improvements of 7.2% and 3% in the spelling accuracy anét!l
LER with only 2 iterations of the algorithm.



