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Abstract
In this paper we discuss data collection and preliminary experi-
ments for a new speaker verification corpus collected on a small
handheld device in multiple environments using multiple micro-
phones. This corpus, which has been made publically available
by MIT, is intended for explorations of the problem of robust
speaker verification on handheld devices in noisy environments
with limited training data. To provide a set of preliminary re-
sults, we examine text-dependent speaker verification under a
variety of cross-conditional environment and microphone train-
ing constraints. Our preliminary results indicate that the pres-
ence of noise in the training data improves the robustness of our
speaker verification models even when tested in mismatched en-
vironments.

1. Introduction
As technological improvements allow for the development of
more powerful and ubiquitous handheld devices, such as PDAs
and handheld computers, there exists a need for greater security
as these devices may contain a myriad of sensitive or personal
information. One potential option is the use of speaker veri-
fication technology using user specified pass-codes for secure
user logins. Speaker verification provides a biometric layer of
security that can enhance the security offered by personal iden-
tification numbers or user selected passwords. The focus of this
work is to investigate issues of robustness for speaker verifica-
tion using handheld devices.

Previous work on security-based speaker verification sys-
tems largely falls within two major domains: vestibule secu-
rity and telephone-based user verification. Vestibule security
focuses on the fast and secure physical access to restricted lo-
cations. Speaker verification allows for contact-less activation
and mitigates the risks of stolen or lost keys, passwords, or key-
cards. Examples include work by Morin and Junqua [1] as well
as Doddington [2]. Furthermore, speaker verification can be
used in conjunction with other modalities (fingerprint, keypad,
and/or face verification) to maximize flexibility, convenience,
and performance [3, 4].

Telephone-based verification systems have a number of ap-
plications, particularly for conducting transactions requiring se-
cure access to financial information (e.g., credit card informa-
tion, bank account balance, etc) or other sensitive customer in-
formation (e.g., healthcare records). Examples include work by
Bimbot et al [5] and Lamel, Barras, and Gauvain [6, 7].

One of the challenges in implementing speaker verification
on handheld devices arises from their greatest attribute: mobil-
ity. Unlike vestibule security systems, handheld devices are of-
ten used in highly variable acoustic environments such as quiet

offices, busy cafeterias, or loud street intersections. In each en-
vironment, variations in the acoustic conditions and background
noises will corrupt the speech signal leading to intra-speaker
variability that can reduce the accuracy of speaker verification
systems. The variability in microphones used with handheld
devices can also have a substantial impact on performance in
speaker verification systems.

Unlike test systems developed for use in feasibility studies,
real world systems are further constrained by usability issues.
One of the foremost concerns is ease of use. It is desirable for
handheld based verification systems to allow for the quick and
easy enrollment of new users, preferable within one short en-
rollment session. However, collecting only limited amounts of
enrollment data can further damage the potential robustness of
the system by limiting both the amount of available training ma-
terial and its variability (both in environment and microphone).

In this paper we describe a pilot study that we conducted in
the area of speaker verification on handheld devices in variable
environments using variable microphones and limited amounts
of enrollment data. In Section 2, we discuss the collection of a
new corpus for studying this problem. We describe our speaker
verification system in Section 3, present experiments and results
in Section 4, and make concluding remarks in Section 5.

2. Data Collection
For our data collection, a prototype handheld device provided
by Intel was used. In order to simulate scenarios encountered
by real-world speech verification systems, the collected speech
data consisted of two unique sets: a set of enrolled users and
a different set of dedicated imposters. For the enrolled user
set, speech data was collected over the course of two different
twenty minute sessions (one for training and one for evaluation)
that occurred on separate days. For the imposter set, users par-
ticipated in a single twenty minute session.

In order to capture the expected variability of environmen-
tal and acoustic conditions inherent with the use of a hand-held
device, both the environment and microphone conditions were
varied during data collection. For each session, data was col-
lected in three different locations (a quiet office, a mildly noisy
lobby, and a busy street intersection) as well as with two differ-
ent microphones (the built-in internal microphone of the hand-
held device and an external earpiece headset) leading to 6 dis-
tinct test conditions. By recording in actual noisy environments
this corpus does contain the Lombard effect (i.e., speakers alter
their style of speech in noisier conditions in an attempt to im-
prove intelligibility). The Lombard effect is missing in corpora
that simply add noise electronically to data collected in quiet
environments.
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Office/Earpiece Lobby/Earpiece Intersection/Earpiece
alex park alex park alex park

rocky road chocolate fudge mint chocolate chip
ken steele ken steele ken steele
rocky road chocolate fudge mint chocolate chip

thomas cronin thomas cronin thomas cronin
rocky road chocolate fudge mint chocolate chip
sai prasad sai prasad sai prasad
rocky road chocolate fudge mint chocolate chip

trenton young trenton young trenton young

Office/Internal Lobby/Internal Intersection/Internal
alex park alex park alex park

peppermint stick pralines and cream chunky monkey
ken steele ken steele ken steele

peppermint stick pralines and cream chunky monkey
thomas cronin thomas cronin thomas cronin

peppermint stick pralines and cream chunky monkey
sai prasad sai prasad sai prasad

peppermint stick pralines and cream chunky monkey
trenton young trenton young trenton young

Table 1: A sample list of phrases spoken in each session.

Example spectrograms of four different recording condi-
tions are displayed in Figures 3 through 6 at the end of this
paper. In examining the spectrograms one should notice the
obvious low pass filtering characteristic of the ear-piece micro-
phone (Figures 3 and 4) relative to the device’s internal micro-
phone (Figures 5 and 6). Also note the significant background
noise present on the data collected on the noisy street corner
(Figures 4 and 6). The spectrograms also show two intermittent
noise artifacts caused by the device. A high frequency buzzing
tone is evident in Figure 5, and a click sound at the onset of
recording is evident in Figures 5 and 6.

Within each data collection session, the user recited a list of
name and ice cream flavor phrases which were displayed on the
hand-held device. An example phrase list is shown in Table 1.
In total, 12 different list sets were created for enrolled users
while 7 lists were created for imposters. Enrolled users recited
two phrase lists which were almost identical, differing only in
the location of the ice cream flavor phrases on the lists. The first
phrase list was read in the enrolled user’s initial data collection
session, while the second list phrase was used in the subsequent
follow-up session.

One criterion in the design of the data collection was to
allow for a variety of cross-condition experiments across back-
ground environments and microphones. The ice cream flavor
phrases were each read four times within a unique environ-
ment/microphone condition, thus allowing the investigation of
text-dependent verification within various training/testing cross-
condition cases. A second design criterion was the collection of
phonetically rich data which could potentially be used within a
speaker verification background model. The name phrases were
selected to provide phonetic coverage. Each name phrase is read
once in each environment/microphone condition thus allowing
the option to also perform text-dependent speaker verification
using multi-style trained models with these phrases.

In total, each session yielded 54 speech samples per user.
This yielded 5,184 examples from enrolled users (2,592 per ses-
sion) and 2,700 imposter examples from users not in the enroll-
ment set. Within the enrolled set of 48 speakers, 22 were female
while 26 were male. For the imposter set of 40 speakers, 17
were female while 23 were male.

3. Speaker Verification System
3.1. Verification Framework

Speaker verification systems for security purposes typically em-
ploy a text-dependent approach where enrolled users utter either
a specific pass-phrase or a string of prompted digits. Word or
phrase specific hidden Markov models (HMMs) for each en-
rolled user are typically used to perform the verification. In our
experiments we use our own ASR-dependent speaker verifica-
tion approach [8]. In this approach, a speech recognition engine
is used to phonetically time-align an expected pass-phrase utter-
ance. A phone-adaptive scoring mechanism is then employed to
score the phonetic components of the utterance against speaker-
dependent, phone-dependent models created during the enroll-
ment phase. Details of this process can be found in [9]. Ana-
lytically, the speaker score, Y (X, S) for speaker S uttering the
test phrase X can be described as:

Y (X, S) =
1

|X|

�
x∈X

log � λS,φ(x)
p(x|S,φ(x))

p(x|φ(x))

+(1 − λS,φ(x))
p(x|S)

p(x) � (1)

Here, X represents the set of feature vectors {x1, . . . ,xN}, S

is the purported speaker, and φ(x) is the phonetic model label
for feature vector x. The interpolation factor λS,φ(x) controls
the relative weight that the scoring function assigns to phone
dependent and phone independent models for each feature vec-
tor x for speaker S. Note that the speaker specific models are
also normalized with speaker independent background models.
The interpolation weight is determined as follows

λS,φ(x) =
nS,φ(x)

nS,φ(x) + τ
(2)

where nS,φ(x) refers to the number of times the phonetic event
φ(x) was observed in the enrollment data for speaker S, and
τ is an empirically determined tuning parameter that was the
same across all speakers and phones (τ = 5 for our experi-
ments). For scenarios involving limited enrollment data, this
approach allows the system to smooth phone dependent models
that may not be adequately trained with more robustly trained
global Gaussian mixture models (GMMs) [10]. Experiments
in [11] show that global GMMs outperform phone dependent
GMMs in our limited enrollment data experiments, but our phone
adaptive interpolation scheme offers modest improvements over
global GMMs.

3.2. Acoustic Features

Because our experiments utilize the segment-based SUMMIT

speech recognition system [12], we have used segment-based
acoustic feature vectors for speaker verification as well. We
have experimented with segment models using feature vectors
comprised of Mel-frequency scale cepstral coefficient (MFCC)
averages within fixed regions of hypothesized segments, with
landmark models using features comprised of MFCC averages
over regions surrounding hypothesized phonetic landmarks, and
also with standard frame based models. In preliminary experi-
ments in [11], a system based on a roughly equal weighting of
segment and landmark models performed best, though further
study of potential features to use in our framework would be
worthwhile. In the experiments in this paper, our phone depen-
dent approach uses context independent segment models and di-
phone landmark models derived from averages of 24-dimension
MFCC frames.
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4. Experimental Results
4.1. Evaluation Scenario

In our experiments, our system assumes that the user is speak-
ing the enrollment pass-phrase of the purported user. Thus,
the recognizer does not verify that the correct pass-phrase is
spoken, but instead simply time-aligns the speech against the
expected pass-phrase. We evaluate under the condition where
the dedicated imposters speak the pass-phrases of the purported
users they are attempting to impersonate. This yields a veri-
fication test for the scenario where both the user’s device and
pass-phrase have been stolen. In [11], it is shown that consider-
ably better verification performance is achieved under the con-
dition that an imposter does not know the user’s pass-phrase and
instead utters a random phrase that contains different phonetic
content than the actual pass-phrase.

4.2. Preliminary Mismatched Condition Experiments

Our preliminary experiments with our new corpus explored the
effects of mismatched training and testing conditions on system
performance. In particular, we examined the impact of envi-
ronment and microphone variability inherent with handheld de-
vices. Figure 1 provides a preliminary glimpse of the impact
of environment and microphone mismatches. For these exper-
iments, users enrolled by repeating a single ice cream phrase
four times in a particular environment/microphone condition.
During testing, both enrolled users and dedicated imposters re-
peated the same ice cream flavor phrase. As can be seen, system
performance varies widely as the environment or microphone is
changed between the training and testing phase. While the fully
matched trial (trained and tested in the office with an earpiece
headset) produced an equal error rate (EER) of 9.4%, mov-
ing to a matched microphone/mismatched environment (trained
in a lobby with the earpiece microphone but tested at a street
intersection with an earpiece microphone) resulted in a rela-
tive degradation in EER of over 300% (EER of 29.2%). The
mismatched microphone condition (trained in a lobby with an
earpiece microphone and tested in a lobby with the device’s
internal microphones) also yielded a severe, though relatively
smaller, degradation.

4.3. Cross-Environment Experiments

In order to examine the effects of environment variation inde-
pendent of microphone variation we conducted a second set of
experiments in which users were enrolled using five different
name phrases spoken two times each (once with both the ear-
piece and internal microphones) during the initial enrollment
phase.1 The system was evaluated by testing the environment-
specific models against test data collected in each of the three
environments. In all tests, the phrases used in the enrollment
session were identical to the phrases in the testing session. This
task is fundamentally harder in comparison to the tests shown
in Figure 1 as each name phrase is spoken only once for a given
microphone/environment condition rather than 4 times. This is
reflected in the higher EER of 13.75% obtained when training
and testing in the office environment, as opposed to the EER of

1Variable names, rather than fi xed ice cream flavor phrases, were
used because each name phrase appeared in all of the six conditions
while ice cream flavors each appeared in only one condition for a given
phrase list. This limited the number of matched/mismatched environ-
ment and microphone tests that could be achieved with ice cream flavor
phrases.
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Figure 1: Detection-error tradeoff curves of preliminary cross-
conditional tests.

Testing Training Location
Location Office Lobby Intersection
Office 13.75% 13.33% 18.33%
Lobby 14.58% 14.79% 15.62%
Intersection 28.33% 30.00% 12.71%

Table 2: EERs of cross-conditional environment tests with mod-
els trained and tested in each of the three different environ-
ments.

9.38% experienced when we trained and tested solely on a sin-
gle ice cream phrase uttered in the office/earpiece microphone
condition. The results from these tests are compiled in Table 2.
Full ROC curves for these experiments can be found in [11].

Several interesting observations can be made from these re-
sults. In general, one would expect that the speaker verifica-
tion system would have the lowest equal error rates in situa-
tions where the system is trained and tested in the same envi-
ronmental conditions. However, when the speaker verification
system was trained in the lobby environment, the system per-
formed better when tested in the office environment (13.33%)
than it did in the lobby environment (14.79%). When trained
in the intersection environment, the speaker verification sys-
tem proved most robust to variations in environment with a
maximum cross-environment degradation of 5.65% (as com-
pared cross-environment degradations of 14.58% and 16.67%
for models trained in the office and lobby environments). Fur-
thermore, despite the noisy conditions of the street intersection
location, the train-intersection / test-intersection trial produced
the lowest overall EER of 12.71%. Overall, it appears that
the performance degradation experienced when moving from
a “noisy” training environment to a “quiet” testing environment
was not as severe as that of the reverse situation.

4.4. Cross-Microphone Experiments

Along with varied environments, speaker verification systems
for mobile devices may be subject to variable microphone con-
ditions (because interchangeable plug-in microphones are avail-
able for these devices). In order to understand the effect of mi-

2006 IEEE Odyssey – The Speaker and Language Recognition Workshop 3
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Testing Training Microphone
Microphone Earpiece Internal
Earpiece 11.11% 18.19%
Internal 22.36% 10.97%

Table 3: EERs of cross-conditional microphone tests with mod-
els trained and tested with each of the two microphones.
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Figure 2: Detection-error tradeoff curves of multistyle trained
models tested in three different locations.

crophone variability on speaker verification performance, we
conducted experiments in which the system was trained from
data collected with either the internal microphone or the ear-
piece microphone. Users enrolled by uttering five different name
phrases three times each (once in each of the environment con-
ditions) during the initial enrollment session. Subsequently, the
trained system was then tested on data collected from the two
different microphones.

Table 3 presents the results of the cross-microphone trials.
From these results, it is observed that using different micro-
phones during training and testing can also have a huge impact
on system performance. In both cases, if the system was trained
and tested using the same microphone, the EER was approx-
imately 11%. However, in the two cross-condition cases, we
see absolute performance degradations of over 7% and 11%. It
should be noted that the earpiece microphone used in our ex-
periments does suppress the high-frequency range where the
speech signal-to-noise ratio is typically lower, while the internal
microphone is a far-field microphone that typically yields lower
signal-to-noise ratios especially in the high-frequency range. It
is thus interesting to note that, similar to our cross-environment
experiments, training with the noisier internal microphone data
proved more robust in the cross-microphone tests than training
with the earpiece microphone data.

4.5. Multistyle Training

Although more tedious for users, multistyle training (i.e. requir-
ing a user to provide enrollment utterances in a variety of envi-
ronments using a variety of microphones) can greatly improve
robustness by creating diffuse models which cover a range of
conditions. For our multistyle training experiments, the en-

rolled user recorded a single name phrase in each of the 6 test-
ing conditions, essentially sampling all possible environment
and microphone conditions. These models were then tested
within each of the particular microphone or environment con-
ditions. The results are shown in Figure 2. The multistyle
models are far more resilient against performance degradations
caused by changing environments than the models trained in
single conditions (as evidenced by the obviously superior EERs
of the multi-style models in Figure 2 compared with the cross-
condition cases in Figure 1 and Table 2).

5. Conclusion
In this paper we have presented a new corpus developed for
research aimed at the problem of robust speaker verification us-
ing mobile handheld devices with limited enrollment data. The
corpus was collected in multiple noisy environments using dif-
ferent microphones. We have publically released this corpus for
non-commercial research. It is available via download from our
web site (http://groups.csail.mit.edu/sls/mdsvc).

In this paper, we have also presented preliminary experi-
ments using the newly collected corpus. These experiments
have shown that data collected in noisier environments tend
to generate models that are more robust to mismatched envi-
ronment conditions than data collected in quieter environments.
Based on this observation we have begun studying methods for
synthesizing multi-condition data from clean data and applying
the parallel union model (an efficient missing feature method)
to speaker models derived from the synthesized multi-condition
data. This approach is known as universal compensation [13].
Experiments using this approach on our new mobile device cor-
pus can be found in [14] and [15].
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Figure 3: Spectrogram of sample phrase recorded in a quiet office with an earpiece microphone.

Figure 4: Spectrogram of sample phrase recorded at a noisy street corner with an earpiece microphone.

Figure 5: Spectrogram of sample phrase recorded in a quiet office with the handheld device’s internal microphone.

Figure 6: Spectrogram of sample phrase recorded at a noisy street corner with the handheld device’s internal microphone.

6 2006 IEEE Odyssey – The Speaker and Language Recognition Workshop


