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ABSTRACT recent research on replacing the MFCC-based representaiib
the Gaussian posteriorgram representation of the speguhl $4].
Instead of the usual MFCC vector, each frame is represented b
vector whosei*" dimension indicates the posterior probability of
being generated by th&" component of a Gaussian mixture model
(GMM). The GMM itself is created in an unsupervised fashion o
a large corpus of multi-talker data so that it models distidns of
sounds across a variety of talkers. By using a representétiat
better accounts for the acoustic variation from multipl&des, we
show that the unsupervised clustering procedure can wdt&rbia

a multi-talker environment.

The new speech pattern acquisition approach is comprised of
three steps: a Gaussian posteriorgram generation pracechich
learns a GMM in an unsupervised way and labels each speeuk fra
) ) e with a Gaussian posteriorgram representation; a segrmymamic

Index Terms— unsupervised learning, language acquisition  time warping (S-DTW) procedure which finds similar acoustg-

ments based on the distance defined on the Gaussian pagiamar
1. INTRODUCTION and a graph clustering procedure which groups the similanstc
segments and outputs the final discovery results. Whileastetwo
Modern speech recognizers typically undergo a supervisgging  procedures are essentially the same as our previous wotkgXjrst
process with annotated speech data before they can be ddployprocedure differs substantially in how to represent spéeches.
on unseen test data. In our research we are interested ioriexpl In the following sections we first describe the Gaussiangpost
speech processing approaches that can acquire informathoat  riorgram concept, generation procedure, and review thmeetal
the speech signal using unsupervised methods. There arg maDpTW and graph clustering methods. We then report our expegie
reasons why such approaches could prove beneficial for Ispeevith clustering experiments we have performed on the nspiéiaker
processing. Annotation of speech corpora is currently & tiere TIMIT corpus, and provide some analysis of the behavior efdlas-
consuming and expensive endeavor and is a limiting facttioim  tering algorithm. Finally, we discuss the results and saggeme
quickly speech recognizers can be created for new probleasar plans for future work.
and languages. Given the relative ease of creating anchgtlaiige
guantities of audio-visual speech material these daydhodstthat
can process vast quantities of unannotated data to enapleka 2. SPEECH PATTERN DISCOVERY
search [1], audio summarization etc. could be quite useftik.
nally, unsupervised methods might ultimately be effecgepart 2.1, Gaussian Posteriorgram Definition
of a larger speech recognition framework, especially if $hreic-
tures they learn complement existing approaches. For deamp The concept of the Gaussian posteriorgram is similar to tickeliw
our earlier research on unsupervised acoustic clusterasgable to  used posterior feature vectors [5]. Specifically, a Gaugsisterior-
find clusters of re-occurring instances of spoken words Riich  gram is a probability vector representing the posteriobghilities
independently-determined clusters could be useful fosistency  of Gaussian components in a GMM for a speech frame. Formally,
checking of speech recognizer output. if a speech utterancd containsn framesS = (si,s2,--- , Sn),

Although our earlier unsupervised acoustic pattern disgov then the Gaussian posteriorgram for this utterance is defirye
work was effective in finding re-occurring instances of smok GP(S) = (q1,42, - ,qn). The length ofg; is determined by
words, it used Mel-Frequency Cepstral Coefficients (MFGGBghe the number of Gaussian components in the GMM, and eadh
acoustic representation to perform pattern matching. & mat a  calculated by
problem for the task of academic lecture data that we havieed
since the majority of the lecture was recorded from a singfleet. @ = (P(Cisi), P(Calsi), -+ , P(Cim|si)) 1)
However, the natural question to ask was how we could gdreral
this procedure to handle multiple talkers. Although theeesieveral ~ where thej-th dimension iry; represents the posterior probability of
techniques to transform the MFCC representation to a marakep  the speech frame; on thej-th Gaussian component is the total
independent form (e.g., VTL [3]), in this paper, we descrthg  number of Gaussian components.

In this paper, we explore the use of a Gaussian posteriorgesad
representation for unsupervised discovery of speechrpatt€om-
pared with our previous work, the new approach providesifsign
cant improvement towards speaker independence. The frarkew
consists of three main procedures: a Gaussian posteniorgesn-
eration procedure which learns an unsupervised Gaussistni
model and labels each speech frame with a Gaussian pogtarior
representation; a segmental dynamic time warping proeedhich
locates pairs of similar sequences of Gaussian postegiorgectors;
and a graph clustering procedure which groups similar sempse
into clusters. We demonstrate the viability of using thetgosr-
gram approach to handle many talkers by finding clusters oflsvo
in the TIMIT corpus.
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Fig. 1. An illustration of segmental dynamic time warping between

two utterances wittR = 2. The blue and red regions outline possi-
ble DTW warping spaces for two different starting times.

2.2. Gaussian Posteriorgram Generation

5

Fig. 2. Converting all matched fragment pairs to a graph. Each
numbered node corresponds to a temporal local maximum ga fra
ment similarity in a particular utterance (e.g., 1-5). Eawdiching
fragment is represented by a connection between two nodé in
graph (e.g., 1-4, 2-4, 3-5).

as shown in Figure 1. The red warping regigndenotes the warp-
ing process along with thg axis, while the blue warping regios
denotes the warping process along thexis. To avoid redundant

To generate Gaussian posteriorgrams, a GMM is trained on affomputation and take into account warping paths acrossesegm

speech frames without any transcription, and each framedsakd
by the trained GMM to obtain a raw posterior probability \arct
Then, a discounting-based smoothing method is employeddb e
posterior probability vector to produce a Gaussian pastgram.

tion boundaries, an overlapped sliding window moving stygtis
applied for the start coordinates, shown in the Figure 1.

2.4. Path Refinement

In our work, each speech frame is represented by the first 13

MFCCs. After pre-selecting the number of desired Gaussianm-c
ponents, the K-means algorithm is used to determine aalisit of

By moving the start coordinate along thandj axis, for every pair
of speech utterances, we can obtain a totalgf* | + | =L | warp-

mean vectors. A GMM is then trained on all speech frames. Sincing paths, each of which represents a warping between twsesub

we have observed uneven clustering results caused by therue
of noise and non-speech artifacts, we use a speech/nooksgpetc-
tor to remove all non-speech segments longer than one sgcmmd
to clustering.

guences in each utterance pair. Since our goal is to find sega®f
similarity within the utterance pairs, we look for a fragrheheach
warping path that has a low distortion score [2].

The warping path refinement is done in two steps. In the first

Once a GMM is trained, a raw Gaussian posteriorgram vector i§tep, a lengttL constrained minimum average subsequence finding

calculated by Equation 1. To avoid approximation errorsyaba-

bility floor is set to eliminate dimensions (i.e., set thenzéno) with

very small probability values. Then, a discounting basedathn

ing method is used to move a small portion of the probabiligsm
from non-zero dimensions to zero dimensions. This smogthéips

during the time warping pairwise distance matching.

2.3. Segmental DTW

algorithm [6] is used to extract consecutive warping fragtaevith
low distortion scores. In the second step, the extractephfests are
extended by including neighboring frames below a certatodiion
thresholda. Specifically, we include neighboring frames with dis-
tortion scores withinl 4+ « percent of the average distortion of the
original fragment. The reason is that we found that the p&ttxo
tracted fragments often missed several frames at the onséfiset

of a matching acoustic pattern (i.e., a particular word ordsp[2].

Segmental dynamic time warping (S-DTW) has been succégsful 5 5 Graph Clustering

used in our prior speaker-dependent pattern discovery j2bnd
in our recent unsupervised keyword spotting research [4fterA
generating the Gaussian posteriorgrams for all speechanttes,
S-DTW is performed on every utterance pair to find candidate c
occurring subsequences in the two utterances.

To employ S-DTW, the difference functio® between Gaus-
sian posterior probability vectogs andg is defined asD(p, q) =

After collecting refined warping fragments for every pairspeech
utterances, we can try to cluster similar fragments. Siach evarp-
ing fragment provides an alignment between two segmerdagiof
the two segments is a common speech pattern (i.e., a frégqused
word), it should appear in multiple utterance pair fragrsent

The basic idea is to cast this problem into a graph clustering

—log(p - ¢). The dot product assumes these two probability vecframework, illustrated in Figure 2. Consider one pair oktdahces

tors are drawn from the same underlying probability distiimn.
Given two Gaussian posteriorgrarés?; = (p1,p2, - ,pm) and
GP; = (q1,92, - ,qn), the warping functionu (i, ji) can pro-
duce am x n timing difference matrix, wheré, andj; denote the
k-th coordinate of the warping path.

in which S-DTW determines three matching fragments (ittatsd
in different colors and line styles). Each fragment coroesfs to
two segments in the two speech utterances, one per utter@imoe
in general there could be many matching fragments with wiffe
start and end times covering ever utterance, a simplificasionade

Two constraints are applied to the S-DTW search. One is the ado find local maxima of matching similarity in each utteranaad

justment window condition that prevents the warping predesm
going too far ahead or behind in eith@P; or G P;. Formally, an in-
tegerR is setto ensurg, —jx| < R. The other constraint is the step
length condition. Itis clear that the adjustment windowdition re-
stricts the shape and the ending coordinates of a warpitg Gaten
different start coordinates, the difference matrix can &irally di-
vided into several continuous diagonal regions with wizifh+ 1,

to use these local maxima as the basis of nodes in the condisigo
graph [2]. As a result, each node in the graph can represenbion
more matching fragments in an utterance. Edges in the gregh t
correspond to fragments occurring between utterance, petits an
associated weight that corresponds to a normalized matcuiore.
After the conversion, a graph clustering algorithm propdsgNew-
man [7] is used to discover groups of nodes (segments) instefm



graph distance. The role of the clustering algorithm is toidke
which edges to group together, and which edges to eliminktes
latter point is especially important since it is possibldéwe partial
overlapping matches ending at the same node that are ediseunti-
related to each other. The clustering output is a list obifigjgroups
of nodes which represent the underlying speech fragments.

3. EVALUATION

To assess the behavior of the posteriorgram representatomulti-
talker environment, we examined its performance on the TIbdir-

Table 1. TIMIT experiment results

Method | # Clusters| Avg. Purity | # Speakers| F/IM
MFCC 11 9.1% 457 0.42
GP 264 79.3% 408 0.43

The result for the path extension threshelds shown in the
sub-figure (c) of Figure 3« is varied from 0.1 to 0.5 while fixing
L = 500 ms andR = 6. Whena > 0.3, the match rate begins to
fall. Therefore, we chose 0.3 as the best setting, whiclcatds a
fragment is extended by including neighboring frames wittad-

pus. While TIMIT has some drawbacks for these purposes, W@Oﬂ scores within 130% of the average distortion of thel‘iTIagt

thought it would be a useful place to start since it has a smuafiber
of utterances from a relatively large number of talkers.

The evaluation consists of two steps. In the first step, wenexa
ined the effects of the different setting of parameterstier$-DTW
search and the path refinement. In the second step, we pedorm
the graph clustering on the extracted S-DTW fragments usiag
best parameter setting obtained in step one. Using ouiitditdd
computing system (200 CPUs), it takes ten minutes to prooess
hour of speech data.

3.1. TIMIT Experiment Setup

3.3. Clustering Results and Analysis

By settingR = 6, L = 500ms, anda. = 0.3, we ran the graph
conversion and clustering on the warping fragments fronpétb re-
finement output for both the original whitened MFCC représgon
and the Gaussian posteriorgram representation. The Ghegstesult
is shown in Table 1. MFCC represents the speaker dependene{r
work in with default settingsR = 5, L = 500ms, « = 0.1) [2].
GP stands for the Gaussian posteriorgram based method ckEgeh
ter is given a purity score which represents the perceneaggat of

The TIMIT experiment was performed on a pool of 580 speakerdhe underlying word label of each node in a cluster with theority

(we combined the standard 462 speaker training set, anctger|
118 speaker test set). We excluded the dialect “sa” uttesasitcice

vote (e.g., a cluster with 2 nodes out of 4 with the same laloeildv
have a purity of 50%). From the table itis clear that the TINHSK is

they were spoken by all speakers, and used the remaining”s “s¥ery difficult for the original MFCC-based method due to thead

and 3 “si” utterances per speaker. A single GMM was creatah fr
all these data using 13 dimensional MFCC feature vectotsibee
computed every 10ms. Based on our recent experiments whéth u

number of utterances spoken by every talker, and the large nu
ber of talkers in the pool. The results did not change siganifily
when the clustering parameters were modified. Both the nuwfbe

GMMs to represent speech [4], we computed 50 Gaussian compg&lusters that were automatically found, and the purity efctusters

nents. Since TIMIT consists of read speech in quiet enviemtn
the non-speech removal process was not applied.

3.2. Parameter Tuning

increased substantially with the posteriorgram-basexksemtation.
Within each cluster, on average nearly 80% of the nodes agjthe
the majority word identity of the cluster.

Since one of the properties we wished to explore was speaker
variation, we also calculated the number of speakers cdugrehe

Three main parameters in the S-DTW search and the path refinglusters. The clusters determined using the Gaussianrgogtam
ment were investigated. They were the adjustment windovdicon representation covered over 70% of the 580 speakers. Ajththe
tion R, the length constraink, and the path extension thresheid ~ clusters obtained by the MFCC representation incorporatece
The evaluation metric we used was the match rate of the path répeakers, the corresponding low purity score indicateicthigecius-

finement output. After the path fragment refinement stagist af
warping fragments is obtained. Each fragment correspomdmt
alignment between two subsequences of frames in a pair &f utt
ances. Based on the underlying orthographic transcripti@encan
represent each fragment by the closest matching underyorg

ters were fairly random. The gender ratio (Female/Malehefdn-
tire corpus is 174/406=0.43, so it appeared that there wabvious
gender bias for the Gaussian posteriorgram method.

Table 2 shows the top 5 clusters ranked by increasing average
distortion score. The transcription column representshe iden-

sequence. A match rate between a set of fragments can thext-be ctity of the cluster. These top 5 clusters all have a purityrsaf

culated. Note that in this experiment, we were interestdihiing
speech patterns representing words or phrases. Therdfenmatch
rate was only calculated on fragments longer than 100 ms.

We first examined the effect of using different S-DTW adjust-

100% and they are all from different speakers. Note thatesine
ranked the clusters by distortion, the cluster sizes ardl,sean
though we observed that several clusters had the same yinderl
word identity. Since the goal of this work was to demonsttiast the

ment window sizes?, shown in the sub-figure (a) of Figure 3. We Gaussian posteriorgram representation can solve the-spstiker
fixed the length constrainL 500 ms and the path extension case which our earlier work cannot handle, we leave the iwggro
thresholdx = 0.3. The results showed that a small S-DTW window ment of the clustering algorithm as future work. Anotheemasting
size could overly restrict the warping path between two G@ms point is that the top 5 clusters are identical for differeatgme-
posteriorgrams, while a big window size could relax therfetson ter settings, which indicates that the phrases/words ih ehsster
too much and cause many problematic alignments. We founicitha are acoustically similar using the Gaussian posteriorgepresen-
window size equal to 6 (i.e., 60ms) was the best choice, wivizh  tation. Since each “sx” sentence in TIMIT was said by sevikets,
also the result we obtained in [4]. we believe this contributed to the multi-word clusters thate ob-

In sub-figure (b) of Figure 3, the length constraibt,in the path  served, although the “si” data made up approximately 40%hef t
refinement was changed from 400 ms to 600 ms while fixtng 6 cluster data, which is the same proportion that it had in trexadl
anda = 0.3. The choice ofL = 500 ms appeared to be optimal. corpus.



. . _0.86 i 1
g g g
g 2 Zos8s
24 24 [h4
é é 0.84 § 0.84
0.83 0.83
. - 0.82 - - - 0.82 - - -
3 4 5 6 7 8 400 450 500 550 600 0.1 0.2 0.3 0.4 0.5
S-DTW Window Size Length Constraint Alpha
€Y (b) (©
Fig. 3. Fragment match rate for different parameter settingsh®iS-DTW and path refinement.
Table 2. Top 5 clusters = Cost Matrix
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3.4. Confusion Matrix Comparison 2 [
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To better understand why using the Gaussian posteriorges/n r - 40
resentation reduces the speaker variation issue, we atdduthe g 60
alignment cost matrices of two speech segments of the ward “o E 80

ganizations”, produced by a male and a female talker, réispbc
using the S-DTW search, illustrated in Figure 4. The top asttbim
sub-figures correspond to the cost matrix generated by MREIC a
the Gaussian posteriorgram representation, respectividhg cost
values were normalized into a grey scale for the purposesief t
figure. The lighter the pixel is, the more similar the cor@sting
two frames are. The red line in each sub-figure correspontiseto
is best-scoring alignment path. From the figures, it appteatson
the MFCC-based representation, the cost values aroundathmEng
path show no strong difference from the values away from tugw
ing path, especially at the end of the warping path. Howewethe
Gaussian posteriorgram representation, there is a betli@edtion
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Fig. 4. Cost matrix comparison for a male and female speech frag-
ment.

plore the use of this framework on different languages. Te,dae
have performed some preliminary experiments on the OGlimult
language dataset with encouraging results.
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warping path. This observation suggests that the Gause&eanor-
gram representation is better modeling phonetic simiéariacross
talkers, and is thus better able to make distinctions batywbenes.

4. CONCLUSION AND FUTURE WORK

In this paper, we applied a Gaussian posteriorgram basedagp
to automatic acoustic pattern discovery in speech dataefitie ac-
quisition process is completely unsupervised, and doesleénd

on speakers or languages. Compared with our previous wrk [2[4]

the most important difference is that the Gaussian postgams
are used to represent speech frames. The segmental dynamic t
warping is then applied to speech frames represented bysaus
posteriorgrams. By converting the warping results to alyraglus-
tering algorithm is used to discover acoustic pattern ehsst On
the TIMIT dataset, we successfully demonstrated the vtgtaf our
framework in a multi-talker environment.

For future work, we plan to explore these clustering resoits
larger multi-speaker corpora. We also plan to more thorlyugk-

ments on this work.
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