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Research Developments and Directions in 
Speech Recognition and Understanding, Part 1

T
o advance research, it is 
important to identify prom-
ising future research direc-
tions, especially those that 
have not been adequately 

pursued or funded in the past. The work-
ing group producing this article was 
charged to elicit from the human lan-
guage technology (HLT) community a 
set of well-considered directions or rich 
areas for future research that could lead 
to major paradigm shifts in the field of 
automatic speech recognition (ASR) and 
understanding. ASR has been an area of 
great interest and activity to the signal 
processing and HLT communities over 
the past several decades. As a first step, 
this group reviewed major developments 
in the field and the circumstances that 
led to their success and then focused on 
areas it deemed especially fertile for 
future research. Part 1 of this article will 
focus on historically significant develop-
ments in the ASR area, including several 
major research efforts that were guided 
by different funding agencies, and sug-
gest general areas in which to focus 
research. Part 2 (to appear in the next 
issue) will explore in more detail several 
new avenues holding promise for sub-
stantial improvements in ASR perfor-
mance. These entail cross-disciplinary 
research and specific approaches to 
address three-to-five-year grand chal-
lenges aimed at stimulating advanced 
research by dealing with realistic tasks of 
broad interest. 

SIGNIFICANT DEVELOPMENTS 
IN SPEECH RECOGNITION 
AND UNDERSTANDING
The period since the mid-1970s has wit-
nessed the multidisciplinary field of ASR 

proceed from its infancy to its coming of 
age and into a quickly growing number 
of practical applications and commercial 
markets. Despite its many achievements, 
however, ASR still remains far from 
being a solved problem. As in the past, 
we expect that further research and 
development will enable us to create 
increasingly powerful systems, deploy-
able on a worldwide basis. 

This section briefly reviews high-
lights of major developments in ASR in 
five areas: infrastructure, knowledge 
representation, models and algorithms, 
search, and metadata. Broader and 
deeper discussions of these areas can 
be found in [12], [16], [19], [23], [24], 
[27], [32], [33], [41], [42], and [47]. 
Readers can also consult the following 
Web sites: the IEEE History Center’s 
Automatic Speech Synthesis and 
Recognition section and the Saras 
Institute’s History of Speech and 
Language Technology Project at http://
www.sarasinstitute.org.

INFRASTRUCTURE
Moore’s Law observes long-term progress 
in computer development and predicts 
doubling the amount of computation 
achievable for a given cost every 12 to 18 
months, as well as a comparably shrink-
ing cost of memory. These developments 
have been instrumental in enabling ASR 
researchers to run increasingly complex 
algorithms in sufficiently short time 
frames (e.g., meaningful experiments that 
can be done in less than a day) to make 
great progress since 1975.

The availability of common speech 
corpora for speech training, develop-
ment, and evaluation has been critical, 
allowing the creation of complex sys-
tems of ever increasing capabilities. 
Speech is a highly variable signal, 

 characterized by many parameters, and 
thus large corpora are critical in model-
ing it well enough for automated sys-
tems to achieve proficiency. Over the 
years, these corpora have been created, 
annotated, and distributed to the world-
wide community by the National 
Institute of Science and Technology 
(NIST), the Linguistic Data Consortium 
(LDC), and other organizations. The 
character of the recorded speech has 
progressed from limited, constrained 
speech materials to huge amounts of 
progressively more realistic, spontane-
ous speech. The development and adop-
tion of rigorous benchmark evaluations 
and standards, nurtured by NIST and 
others, have been critical in developing 
increasingly powerful and capable sys-
tems. Many labs and researchers have 
benefited from the availability of com-
mon research tools such as Carnegie-
Mellon University Language Model (CMU 
LM) toolkit, Hidden Markov Model 
Toolkit (HTK), Sphinx, and Stanford 
Research Institute Language Modeling 
(SRILM). Extensive research support 
combined with workshops, task defini-
tions, and system  evaluations sponsored 
by the  U.S.  Department of Defense 
Advanced Research Projects Agency 
(DARPA) and others have been essential 
to today’s system developments.

KNOWLEDGE REPRESENTATION
Major advances in speech signal represen-
tations have included perceptually moti-
vated mel-frequency cepstral coefficients 
(MFCC) [10], [29] and perceptual linear 
prediction (PLP) coefficients [21], as well 
as normalizations via cepstral mean sub-
traction (CMS) [16], [44], relative spectral 
(RASTA) filtering [20], and vocal tract 
length normalization (VTLN) [13]. 
Architecturally, the most important 
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 development has been searchable unified 
graph representations that allow multiple 
sources of knowledge to be incorporated 
into a common probabilistic framework. 
Noncompositional methods include mul-
tiple speech streams, multiple probability 
estimators, multiple recognition systems 
combined at the hypothesis level (e.g., 
Recognition Output Voting Error 
Reduction (ROVER) [15]),  and multipass 
systems with increasing constraints (big-
ram versus four-gram, within word depen-
dencies versus cross-word, and so on). 
More recently, the use of multiple algo-
rithms, applied both in parallel and 
sequentially, has proven fruitful, as have 
feature-based transformations such as 
heteroscedastic linear discriminant analy-
sis (HLDA) [31], feature-space minimum 
phone error (fMPE) [40], and neural 
 net-based features [22].

MODELS AND ALGORITHMS
The most significant paradigm shift for 
speech-recognition progress has been 
the introduction of statistical methods, 
especially stochastic processing with hid-
den Markov models (HMMs) [3], [25] in 
the early 1970s [38]. More than 30 years 
later, this methodology still predomi-
nates. A number of models and algo-
rithms have been efficiently incorporated 
within this framework. The expectation-
maximization (EM) algorithm [11] and 
the forward-backward or Baum-Welch 
algorithm [4] have been the principal 
means by which the HMMs are trained 
from data. Despite their simplicity, 
N-gram language models have proved 
remarkably powerful and resilient. 
Decision trees [8] have been widely used 
to categorize sets of features, such as 
pronunciations from training data. 
Statistical discriminative training tech-
niques are typically based on utilizing 
maximum mutual information (MMI) 
and the minimum-error model parame-
ters. Deterministic approaches include 
corrective training [1] and some neural 
network techniques [5], [35].

Adaptation is vital to accommodating 
a wide range of variable conditions for 
the channel, environment, speaker, 
vocabulary, topic domain, and so on. 
Popular techniques include maximum a 

posteriori probability (MAP) estimation 
[17], [38], [51], maximum likelihood lin-
ear regression (MLLR) [34], and eigen-
voices [30]. Training can take place on 
the basis of small amounts of data from 
new tasks or domains that provide addi-
tional training material, as well as “one-
shot” learning or “unsupervised” training 
at test time.

SEARCH
Key decoding or search strategies, origi-
nally developed in nonspeech applica-
tions, have focused on stack decoding (A* 
search) [26] and Viterbi or N-best search 
[50]. Derived from communications and 
information theory, stack decoding was 
subsequently applied to speech-recogni-
tion systems [25], [37]. Viterbi search, 
broadly applied to search alternative 
hypotheses, derives from dynamic pro-
gramming in the 1950s [6] and was sub-
sequently used in speech applications 
from the 1960s to the 1980s and beyond, 
from Russia and Japan to the United 
States and Europe [3], [7], [9], [36], [45], 
[46], [48], [49].

METADATA
Automatic determination for sentence 
and speaker segmentation as well as 
punctuation has become a key feature in 
some processing systems. Starting in the 
early 1990s, audio indexing and mining 
have enabled high-performance auto-
matic topic detection and tracking, as 
well as applications for language and 
speaker identification [18].

GRAND CHALLENGES: 
MAJOR POTENTIAL 
PROGRAMS OF RESEARCH
Grand challenges are what our group calls  
ambitious but achievable three-to five-
year research program initiatives that will 
significantly advance the state of the art in 
speech recognition and understanding. 
Previous grand challenges sponsored by 
national and international initiatives, 
agencies, and other groups have largely 
been responsible for today’s substantial 
achievements in ASR and its application 
capabilities. Six such potential programs 
are described below. Each proposed pro-
gram has defined, measurable goals and 

comprises a complex of important capa-
bilities that should substantially advance 
the field and enable significant applica-
tions. These are rich task domains that 
could enable progress in several promis-
ing research areas at a variety of levels. As 
noted below, each of these program initia-
tives could also benefit from, or provide 
benefit to, multidisciplinary or cross-area 
research approaches.

EVERYDAY AUDIO
This is a term that represents a wide 
range of speech, speaker, channel, and 
environmental conditions that people 
typically encounter and routinely adapt 
to in responding and recognizing speech 
signals. Currently, ASR systems deliver 
significantly degraded performance when 
they encounter audio signals that differ 
from the limited conditions under which 
they were originally developed and 
trained. This is true in many cases even 
if the differences are slight.

This focused research area would 
concentrate on creating and developing 
systems that would be much more 
robust against variability and shifts in 
acoustic environments, reverberation, 
external noise sources, communication 
channels (e.g., far-field microphones, 
cellular phones), speaker characteristics 
(e.g., speaking style, nonnative accents, 
emotional state), and language charac-
teristics (e.g., formal/informal styles, 
dialects, vocabulary, topic domain). New 
techniques and architectures are pro-
posed to enable exploring these critical 
issues in environments as diverse as 
meeting-room presentations and 
unstructured conversations. A primary 
focus would be exploring alternatives for 
automatically adapting to changing con-
ditions in multiple dimensions, even 
simultaneously. The goal is to deliver 
accurate and useful speech transcripts 
automatically under many more envi-
ronments and diverse circumstances 
than is now possible, thereby enabling 
many more applications. This challeng-
ing problem can productively draw on 
expertise and knowledge from related 
disciplines, including natural-language 
processing, information retrieval, and 
cognitive science.
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RAPID PORTABILITY TO 
EMERGING LANGUAGES
Today’s state-of-the-art ASR systems 
deliver top performance by building 
complex acoustic and language models 
using a large collection of domain-
specific speech and text examples. For 
many languages, this set of language 
resources is often not readily avail-
able. The goal of this research pro-
gram is to create  spoken-language 
technologies that are rapidly portable. 
To prepare for rapid development of 
such spoken-language systems, a new 
paradigm is needed to study speech 
and acoustic units that are more lan-
guage-universal than language- specific 
phones. Three specific research issues 
need to be addressed: 1) cross-lan-
guage acoustic modeling of speech 
and acoustic units for a new target 
language, 2) cross-lingual lexical mod-
eling of word pronunciations for new 
language, and 3) cross-lingual lan-
guage modeling. By exploring correla-
t i o n  b e t w e e n  t h e s e  e m e r g i n g 
lan guages and well-studied languages, 
cross-language features, such as lan-
guage clustering and universal acous-
tic modeling, could be  utilized to 
facilitate rapid adaptation of acoustic 
and language models. Bootstrapping 
techniques are also keys to building 
preliminary systems from a small 
amount of labeled utterances first, 
using these systems to label more 
utterance examples in an unsupervised 
manner, incorporating new labeled 
data into the label set, and iterating to 
improve the systems until they reach 
a performance level comparable with 
today’s high-accuracy systems. 

Many of the research results here 
could be extended to designing 
machine translation, natural-language 
processing, and information-retrieval 
systems for emerging languages. To 
anticipate this growing need, some lan-
guage resources and infrastructures 
need to be established to enable rapid 
portability exercises. Research is also 
needed to study the minimum amount 
of  supervised label  information 
required to create a reasonable system 
for bootstrapping purposes.

SELF-ADAPTIVE 
LANGUAGE CAPABILITIES
State-of-the-art systems for speech tran-
scription, speaker verification, and lan-
guage identification are all based on 
statistical models estimated from labeled 
training data, such as transcribed speech, 
and from human-supplied knowledge, 
such as pronunciation dictionaries. Such 
built-in knowledge often becomes obso-
lete fairly quickly after a system is 
deployed in a real-world application, and 
significant and recurring human inter-
vention in the form of retraining is need-
ed to sustain the utility of the system. 
This is in sharp contrast with the speech 
facility in humans, which is constantly 
updated over a lifetime, routinely acquir-
ing new vocabulary items and idiomatic 
expressions, as well as deftly handling 
previously unseen nonnative accents and 
regional dialects of a language. In partic-
ular, humans exhibit a remarkable apti-
tude for learning the sublanguage of a 
new domain or application without 
explicit supervision. 

The goal of this research program is 
to create self-adaptive (or self-learning) 
speech technology. There is a need for 
learning at all levels of speech and lan-
guage processing to cope with changing 
environments, nonspeech sounds, speak-
ers, pronunciations, dialects, accents, 
words, meanings, and topics, to name but 
a few sources of variation over the life-
time of a deployed system. Like its human 
counterpart, the system would engage in 
automatic pattern discovery, active learn-
ing, and adaptation. Research in this area 
must address both the learning of new 
models and the integration of such mod-
els into preexisting knowledge sources. 
Thus, an important aspect of learning is 
being able to discern when something 
has been learned and how to apply the 
result. Learning from multiple concur-
rent modalities, e.g., new text and video, 
may also be necessary. For instance, an 
ASR system may encounter a new proper 
noun in its input speech and may need to 
examine contemporaneous text with 
matching context to determine the spell-
ing of the name. Exploitation of unla-
beled or partially labeled data would be 
necessary for such learning. 

A motivation for investing in such 
research is the growing activity in the 
allied field of machine learning. Success 
in this endeavor would extend the life-
time of deployed systems and directly 
advance our ability to develop speech 
systems in new languages and domains 
without the onerous demands of labeled 
speech, essentially by creating systems 
that automatically learn and improve 
over time. This research would benefit 
from cross-fertilization with the fields of 
natural-language processing, informa-
tion retrieval, and cognitive science.

DETECTION OF RARE, KEY EVENTS
Current ASR systems have difficulty in 
handling unexpected—and thus often 
the most information-rich—lexical 
items. This is especially problematic in 
speech that contains interjections or 
foreign or out-of-vocabulary words and 
in languages for which there is relative-
ly little data with which to build the sys-
tem’s vocabulary and pronunciation 
lexicon. A common outcome in this sit-
uation is that high-value terms are 
overconfidently misrecognized as some 
other common and similar-sounding 
word. Yet such spoken events are cru-
cial to tasks such as spoken term detec-
tion and information extraction from 
speech. Their accurate registration is 
therefore of vital importance. 

The goal of this program is to create 
systems that reliably detect when they do 
not know a valid word. A clue to the 
occurrence of such error events is the 
mismatch between an analysis of a purely 
sensory signal unencumbered by prior 
knowledge, such as unconstrained phone 
recognition, and a word- or phrase-level 
hypothesis based on higher-level knowl-
edge, often encoded in a language model. 
A key component of this research would 
therefore be the development of novel 
confidence measures and accurate mod-
els of uncertainty based on the discrep-
ancy between sensory evidence and a 
priori beliefs. A natural sequel to detec-
tion of such events would be to tran-
scribe them phonetically when the 
system is confident that its word hypoth-
esis is unreliable and to devise error- 
correction schemes.
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One immediate application that such 
detection would enable is subword (e.g., 
phonetic) indexing and search of speech 
regions where the system suspects the 
presence of errors. Phonetic transcrip-
tion of the error-prone regions would 
also enable the development of the next 
generation of self-learning speech sys-
tems: the system may then be able to 
examine new texts to determine the 
identity of the unknown word. This 
research has natural synergy with natu-
ral-language processing and informa-
tion-retrieval research.

COGNITION-DERIVED SPEECH 
AND LANGUAGE SYSTEMS
A key human cognitive characteristic is 
the ability to learn and adapt to new pat-
terns and stimuli. The focus of this proj-
ect would be to understand and emulate 
relevant human capabilities and to incor-
porate these strategies into automatic 
speech systems. Since it is not possible to 
predict and collect separate data for any 
and all types of speech, topic domains, 
and so on, it is important to enable auto-
matic systems to learn and generalize 
even from single instances (episodic 
learning) or limited samples of data, so 
that new or changed signals (e.g., accent-
ed speech, noise adaptation) could be 
correctly understood. It has been well 
demonstrated that adaptation in auto-
matic speech systems is very beneficial. 

An additional impetus for looking 
now at how the brain processes speech 
and language is provided by the dramatic 
improvements made over the last several 
years in the field of brain and cognitive 
science, especially with regard to the 
cortical imaging of speech and language 
processing. It is now possible to follow 
instantaneously the different paths and 
courses of cortical excitation as a func-
tion of differing speech and language 
stimuli. A major goal here is to under-
stand how significant cortical informa-
tion processing capabilities beyond signal 
processing are achieved and to leverage 
that knowledge in our automated speech 
and language systems. The ramifications 
of such an understanding could be very 
far-reaching. This research area would 
draw on the related disciplines of brain 

and cognitive science, natural-language 
processing, and information retrieval.

SPOKEN-LANGUAGE 
COMPREHENSION (MIMICKING 
AVERAGE LANGUAGE SKILLS AT A 
FIRST-TO-THIRD-GRADE LEVEL)
Today’s state-of-the-art systems are 
designed to transcribe spoken utter-
ances. To achieve a broad level of 
speech- understanding capabilities, it is 
essential that the speech research com-
munity explore building language-
comprehension systems that could be 
improved by the gradual accumulation 
of knowledge and language skills. An 
interesting approach would be to com-
pare an ASR system with the speech 
performance of children less than ten 
years of age in listening-comprehen-
sion skill. Just like a child learning a 
new subject, a system could be exposed 
to a wide range of study materials in a 
learning phase. In a testing stage, the 
system and the children would be given 
written questions first to get some idea 
what kind of information to look for in 
the test passages. Com prehension tests 
could be in oral and written forms. 

The goal of this research program is 
to help develop technologies that enable 
language comprehension. It is clear 
such evaluations would emphasize the 
accurate detection of information-bear-
ing elements in speech rather than 
basic word error rate. Natural-language 
understanding of some limited domain 
knowledge would be needed. Four key 
research topics need to be explored: 1) 
partial understanding of spoken and 
written materials, with a focused atten-
tion on information-bearing compo-
nents; 2) sentence segmentation and 
name entry extraction from given test 
passages; 3) information retrieval from 
the knowledge sources acquired in the 
learning phase; and 4) representation 
and database organization of knowledge 
sources. Collaboration between speech 
and language processing communities 
is a key element to the potential success 
of such a program. The outcomes of 
this research could provide a paradigm 
shift for building domain-specific 
 language understanding systems and 

significantly affect the education and 
learning communities.

IMPROVING INFRASTRUCTURE 
FOR FUTURE ASR RESEARCH

CREATION OF HIGH-QUALITY 
ANNOTATED CORPORA
The single simplest, best way for current 
state-of-the-art recognition systems to 
improve performance on a given task is 
to increase the amount of task-relevant 
training data from which its models are 
constructed. System capabilities have 
progressed directly along with the 
amount of speech corpora available to 
capture the tremendous variability 
inherent in speech. Despite all the 
speech databases that have been exploit-
ed so far, system performance consis-
tently improves when more relevant data 
are available. This situation clearly indi-
cates that more data are needed to cap-
ture crucial information in the speech 
signal. This is especially important in 
increasing the facility with which we can 
learn, understand, and subsequently 
automatically recognize a wide variety of 
languages. This capability will be a criti-
cal component in improving perfor-
mance not only for transcription within 
any given language but also for spoken-
language machine translation, cross-lan-
guage information retrieval, and so on. 

If we want our systems to be more 
powerful and to understand the nature of 
speech itself, we must collect and label 
more of it. Well-labeled speech corpora 
have been the cornerstone on which 
today’s systems have been developed and 
evolved. The availability of common 
speech corpora has been and continues 
to be the sine qua non for rigorous com-
parative system evaluations and competi-
tive analyses conducted by the U.S. NIST 
and others. Labeling for most speech 
databases is typically at the word level. 
However, some annotation at a finer level 
(e.g., syllables, phones, features, and so 
on) is important to understand and inter-
pret speech successfully. Indeed, the sin-
gle most popular speech database 
available from the Linguistic Data 
Consortium (LDC) is TIMIT, a very com-
pact acoustic-phonetic database created by 
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MIT and Texas Instruments, where the 
speech is associated with a subword (pho-
netic)  transcription. Over the years, many 
sig  nificant speech corpora, such as Call 
Home, Switchboard, Wall Street Journal, 
and, more recently, Buckeye, have been 
made widely available with varying degrees 
and types of annotation. These corpora 
and others have fundamentally driven 
much of our current understanding and 
growing capabilities in speech recogni-
tion, transcription, topic spotting and 
tracking, and so on. There is a serious 
need today to understand the basic ele-
ments of speech with much larger repre-
sentative sets of speech corpora, both in 
English and other languages. 

In order to explore important phe-
nomena “above the word level,” databas-
es need to be labeled to indicate aspects 
of emotion, dialog acts, and semantics 
(e.g., Framenet [14] and Propbank [28]). 
Human speech understanding is predi-
cated on these factors. For systems to be 
able to recognize these important char-
acteristics, there must be suitably 
labeled speech data with which to train 
them. It is also likely that some new 
research may be required to explore and 
determine consistent conventions and 
practices for labeling itself and for 
future development and evaluation 
methodologies to accommodate at least 
minor differences in labeling techniques 
and practices. We must design ASR sys-
tems that are tolerant of labeling errors.

NOVEL HIGH-VOLUME 
DATA SOURCES
Thanks in large part to the Internet, 
there are now large quantities of every-
day speech that are readily accessible, 
reflecting a variety of materials and 
environments only recently available. 
Some of it is of quite variable and often 
poor quality, such as user-posted mate-
rial from YouTube. Better-quality audio 
materials are reflected in the diverse 
oral histories recorded by organizations 
such as StoryCorps (available at www. 
storycorps.net). University course lec-
tures, seminars, and similar material 
make up another rich source, one that 
is being placed online in a steady 
stream. These materials all reflect a less 

formal, more spontaneous, and natural 
form of speech than present-day systems 
have typically been developed to recog-
nize. “Weak” transcripts (such as closed-
captioning and subtitles) are available 
for some of these audio materials. The 
benefit of working with materials such 
as this is that systems will become more 
capable as a consequence—an impor-
tant development in increasing robust-
ness and expanding the range of 
materials that can be accurately tran-
scribed under a wide range of condi-
tions. Much of what is learned here is 
also likely to be of benefit in transcrib-
ing casual everyday speech in languages 
other than English.

TOOLS FOR COLLECTING 
AND PROCESSING LARGE 
QUANTITIES OF SPEECH DATA
Over the years, the availability of both 
open-source (e.g., Carnegie Mellon 
University’s CMU Sphinx) and commer-
cial speech tools (e.g., Entropic Systems 
and Cambridge University’s HTK) has 
been very effective in quickly bringing 
good-quality speech processing capabili-
ties to many labs and researchers. New 
Web-based tools could be made available 
to collect, annotate, and then process 
substantial quantities of speech very cost-
effectively in many languages. Mustering 
the assistance of interested individuals on 
the World Wide Web (in the manner of 
open-source software and Wikipedia) 
could generate substantial quantities of 
language resources very efficiently and at 
little cost. This could be especially valu-
able in creating significant new capabili-
ties for resource-impoverished languages.

New initiatives, though seriously 
underfunded at present, include digital 
library technology aiming to scan huge 
amounts of text (e.g., the Million Book 
Project [44]) and the creation of large-
scale speech corpora (e.g., the Million 
Hour Speech Corpus [2]) aiming to col-
lect many hours of speech in many 
world languages. If successful, these 
projects will significantly advance the 
state of the art in the automation of 
world language speech understanding 
and proficiency. They will also provide 
rich resources for strong research into 

the fundamental nature of speech and 
language itself.
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