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ABSTRACT

In our recent work on concatenative speech synthesis, we have
devised an efficient, graph-based search to perform unit selection
given symbolic information. By encapsulating concatenation and
substitution costs defined at the class level, the graph expands only
linearly with respect to corpus size. To date, these costs were man-
ually tuned over pre-specified classes, which was a knowledge-
intensive engineering process. In this research paper, we turn to
information-theoretic metrics for automatically learning the costs
from data. These costs can be analyzed in a minimum description
length (MDL) framework. The performance of these automatically
determined weights is compared against that of manually tuned
weights in a perceptual evaluation.

1. INTRODUCTION

The recent surge in popularity of concatenative methods [2, 5, 6,
10] for TTS can be attributed to many factors including more stor-
age, faster computation, and, perhaps most importantly, increased
naturalness. We believe that, in the context of spoken dialogue sys-
tems, the speech synthesizer should place as little listening burden
on the user as possible. As conversational systems deployed over
the telephone are displayless by nature, it is especially important to
have natural and intelligible speech generation to reduce the user’s
cognitive load. In previous work, we have demonstrated that this
is an achievable task in limited domains using word and sub-word
units [17, 18].

Because synthesis researchers believe that signal processing
should be minimized to maintain quality [5], success in the earlier
stage of unit selection, where speech segments are selected from a
database according to an input specification, becomes vitally cru-
cial. We have taken the optimization formulation that decouples
concatenation and substitution costs (which describe where and
what to join) and cast it into a finite-state transducer (FST) frame-
work [13]. By only describing costs at the class level (not at the
instance level), we obtain transducers whose topology scales lin-
early with respect to corpus size. In application domains where
the vocabulary and grammar is known ahead of time, a synthesis
corpus can be designed around the requirements of the task. What
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remains to be addressed is the formulation of the synthesis costs
and classes.

The approach we take in this work is to assume that the mem-
bers of a defined contextual equivalence class are deemed to have
similar acoustic effects. Furthermore, certain equivalence classes
should be more similar than others to allow for relaxation of con-
straints, or backoff. If all alternatives should be equally poor, then
the classes are not defined sufficiently distinct. What we have de-
scribed here is the familiar notion of the substitution cost. When
enough data is observed for each class, we can build statistical
models that summarize the nature of each class. These models
can be compared with models of other classes to determine the
substitution costs. Next, we treat the notion of the concatenation
cost. What is desired is a metric that will describe how easily
two speech segments can be joined without significant perceptual
distortion. Observations can be collected around concatenation
boundaries and joint statistics summarizing behavior around those
boundaries can be calculated. We shall see later how information-
theoretic measures can be used to define suitable substitution and
concatenation costs.

Much of the earlier work in the literature has concentrated on
instance-level costs that directly compare speech segments, or in-
stantiations of the speech units. Numerical metrics such as Eu-
clidean, Kullback-Leibler, and Mahalanobis distances calculated
over spectral features have been considered [3, 4, 10–12, 16]. Be-
cause we define costs at the class level for scalability, we apply the
metrics not to pairs of individual examples but to pairs of distribu-
tions of multiple examples.

2. REVIEW OF UNIT SELECTION

Unit selection involves finding an appropriate sequence of units,
û, from a speech corpus given an input specification,u. Because
the process can be formulated as a search, what is appropriate is
determined by minimizing a pre-determined search metric:

û = argmin
û

J(u, û)

While the units and specification can encompass information from
many linguistic levels, in the rest of this paper we shall primarily
focus on phone-sized units. The sequence of units that has minimal
cost is used in a subsequent process of waveform generation.

Hunt and Black [10] cast the problem of unit selection as a
constrained optimization problem with two types of costs: a con-
catenation cost which describes the quality of the join between two
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units, and a substitution cost which describes degradation in using
a unit from a context different from the specification. When two
segments are contiguous in the speech database, their concatena-
tion cost is defined to be zero. When contexts match exactly, the
substitution cost is also zero. This permits the greedy selection
of variable-length units or non-uniform units [14]. In a later sec-
tion we shall propose a method for automatically determining the
numerical value of the costs from data.

2.1. MDL FORMULATION

Now we consider a communication-theoretic formulation of the
unit selection process in which the unit selector is a black box re-
ceiving an input specification and transmitting the best match and
associated waveform segments. This black box can be thought of
as a noisy transmission channel, because the output may not pre-
cisely match the input. Corruption of the message is quantified by
description lengths which describe the penalty in approximating
the input with the output. When a message is transmitted through
the unit selector without degradation, then it must be that the de-
sired units are entirely contiguous within the speech database.

In Figure 1, the input specification,u, passes through unit se-
lection and exits aŝu. For the purpose of this discussion, we ig-
nore the associated waveform segment descriptors on the output
side and do not display the side information provided by the syn-
thesis costs and corpus. The input and output are streams of in-
terleaved unit and transition symbols. The unit symbols may con-
tain contextual (e.g., triphoneβ(α : γ) denotesβ in the context
of α andγ) information as well. Transition symbols are pseudo-
units that have no acoustic realization but serve as place-holders
between units. Transition symbols are marked differently whether
they bridge two contiguous units (α|β) or not (α#β). Naturally,
all transition symbols on the input side are marked as contiguous
(α|β) because that is the ideal case.

Unit Selectionu û

β(α : γ) β|γ γ(β : δ) β(α : φ) β#γ γ(ψ : δ)

Fig. 1. Communication-theoretic formulation of unit selection.

In unit selection, the process of determining the best match
is managed by a set of substitution (S) and concatenation costs
(C). We use the two costs to quantify the degradation in unit and
transition symbols, respectively. To handle the pathological cases
described above,S is zero when the input and output symbols are
identical andC is zero when a contiguous transition symbol ap-
pears unchanged at the output side. For the remaining cases, in
the next section we turn to costs automatically determined from
data. For now, turning back to Figure 1, we see that the total cost,
J(u, û), for the example inputs and outputs is:

J(u, û) = Sβ(α:γ)→β(α:φ) + Cβ#γ + Sγ(β:δ)→γ(ψ:δ)

Since we are minimizing a sum of description lengths, we refer to
this setup as a minimum description length (MDL) formulation. To
combat quadratic growth in parameters, an independence assump-
tion is made and substitution costs for triphones are decoupled into
left-sided and right-sided components. That is, whenβ(α̂ : γ̂) is
used in place ofβ(α : γ), the total substitution cost is:

Sβ(α:γ)→β(α̂:γ̂) = Sl[α]β→[α̂]β + Srβ[γ]→β[γ̂]

3. ACOUSTIC MODELLING

In this section we describe a framework for modelling acoustical
observations within and across units. Although we base our mod-
elling on the acoustic front-end of the SUMMIT speech recog-
nizer [8], these ideas should generalize to any model when consis-
tently applied. One distinguishing aspect of the currently proposed
method is that the observation space is the same for models within
and across units. This permits a more direct comparison of con-
catenation and substitution costs.

As depicted in Figure 2, measurements,x, are made at bound-
aries betweenα andβ, which may be speech units, or, more gen-
erally, classes of speech units. The notation,α[β], refers to a unit,
α, with β on its right side. Similarly, the notation,[α]β, refers
to a unit,β, with α on its left side. As in the SUMMIT system,
we form the observation vector from a telescoping average of mel-
frequency cepstral coefficients on either side of the boundary [7].

α β

xα[β] x[α]β

Fig. 2. Graphical representation of boundary measurements.

As we will see in the next section, we collect second-order
statistics (i.e., mean and covariance) on measurements observed
across boundaries. Note that with the above definitions, joint statis-
tics (xα|β) can be collected in one pass and split into prospective
and retrospective statistics. The mean vector is halved and the up-
per left and lower right blocks of the covariance matrix are pared
off. The prospective observation space (xα[β]) will be used to de-
fine the right-sided substitution costs and the retrospective obser-
vation space (x[α]β) will be used to define the left-sided costs.

4. INFORMATION-THEORETIC DISTANCE METRICS

In creating an automatic procedure for determining synthesis costs,
we have used the Kullback-Leibler (KL) divergence measure as
our main workhorse. Although KL distance,D(p || q), has many
interpretations in different contexts, the underlying theme is that it
represents the asymmetric cost of approximatingp with q.

Because Kullback-Leibler distance captures the notion of asym-
metric substitution and provides an associated cost, we use it for
defining substitution costs. As we shall see, the KL distance be-
tween contexts which have similar acoustical effects will be low.
Note that the right-sided substitution cost looks forward in time
and that the left-sided substitution cost looks backward in time.

Srα[β]→α[γ] ≡ D (p(x | α[β]) || p(x | α[γ]))

Sl[β]α→[γ]α ≡ D (p(x | [β]α) || p(x | [γ]α))

Another information-theoretic measure closely related to KL
distance is mutual information which measures statistical indepen-
dence between two random variables. It can be defined as the
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KL distance between a joint distribution and the product of its
marginal distributions. Another definition relates mutual infor-
mation to the difference between the unconditional and the con-
ditional entropies. If the mutual information is low across a con-
catenation boundary, the conditional entropy is high and little in-
formation is communicated across the boundary. An information
impasse makes for a good concatenation point.

Cα#β ≡ I (p(x | α[β]) ; p(x | [α]β))

For multivariate Gaussian random variables, expressions in
terms of nats (natural bits orln 2 bits) for entropy, mutual infor-
mation, and Kullback-Leibler distance are:

I(P ; Q) = 1
2 ln

� |Σpp| |Σqq |
|Σ|

�
, Σ =

�
Σpp Σpq
Σqp Σqq

�

D(P || Q) = 1
2

�
(µQ − µP )TΣ−1

Q (µQ − µP ) +
tr(ΣPΣ−1

Q − I) − ln |ΣPΣ−1
Q |�

We model the observations with Gaussian distributions be-
cause closed-form expressions exist for their entropies. Although
others have used numerical integration or empirical estimates [15],
Gaussian distributions are simple to estimate with only first- and
second-order statistics needed. Furthermore, the distribution for a
class of units can be formed by combining statistics of individual
units in a bottom-up fashion. Finally, when the observation space
for substitution and concatenation costs is the same, the distribu-
tions can be more directly compared. As a result, the entropies and,
thus, the synthesis costs are of the same scale. However, it is still
permissible to use a weighting factor to trade off between substi-
tutions and concatenations. This weight will mostly likely depend
on listener preference. Since the synthesis costs are based on non-
negative quantities, the ramification for applicability to Viterbi and
A∗ search algorithms is that using Viterbi partial path costs for
upper-bound estimates in a subsequentA∗-based,N -best extrac-
tion step is admissible.

Because the information-theoretic criteria introduced here are
generic, the effectiveness of the synthesis costs will mostly depend
on the design of the observation space and subsequent density es-
timation. As in most speech recognition work, we have assumed
normality or Gaussianity for simplicity. Although recognition and
synthesis are inverse problems with many commonalities, the best
performance in each problem may not necessarily be achieved by
the same type of features. The current observation vector looks the
same amount ahead and backward in time. On one hand it might
be conceptually attractive to design heterogenous features [9]. For
example, the time windows could adapt to the phonetic context,
or they might be biased towards the future for modelling speech
sounds in languages that have more anticipatory rather than carry-
over co-articulation. On the other hand, there would be the issue of
normalizing or balancing the costs as the observation spaces would
now be different. We note that the concatenation cost defined here
may bear similarity to splicing cost as defined in other work [4].

5. ANALYSIS

We are currently using this information-theoretic framework to
automatically determine synthesis costs from the very synthesis
corpus used in unit selection. As the synthesis costs are speaker-
dependent, this represents a matched condition. The current syn-
thesis corpus consists of around 100 minutes of in-house record-
ings of typical system responses in weather information, flight sta-
tus, and air travel domains.

In the left part of Figure 3 we see a bubble plot of concate-
nation costs where the rows and columns represent the context to
the left and the right of the concatenation boundary, respectively.
The contexts are vowels, semivowels, nasals, and obstruents. For
the purpose of visualization, we use the radius of a circle (not the
area) to depict the magnitude of a cost. In the past we have hy-
pothesized that places of source changes are more appropriate for
concatenations. Indeed we see that concatenations between vowels
and semivowels, for example, where the source does not change,
are most costly. Semivowel-nasal and vowel-vowel concatenations
are the next most costly. Fricative-vowel, nasal-stop, and fricative-
semivowel boundaries are the least costly concatenations.

V

V

S

S

N

N

R

R

F

F

F
L

FL

S
L

SL

F
D

FD

S
D

SD

F
P

FP

S
V

SV

Fig. 3. Left: Bubble plot of concatenation costs matrix. Rows and
columns correspond to context (vowel, semivowel, nasal, stop re-
lease, fricative) on the left and right sides of phonetic boundaries.
Right: Bubble plot of substitution costs matrix for phonetic con-
text to the right of vowels. Rows and columns correspond to true
and approximating contexts (fricatives and stops in labial, dental,
palatal, and velar places of articulation).

To understand substitution costs, we turn to the right part of
Figure 3 which displays the right-sided costs for vowels in terms
of varying contexts: fricatives and stops in labial, dental, palatal
(more precisely, fricatives and affricates), and velar places of ar-
ticulation. Because the lips are responsive articulators, transitions
leading into labial stops are very spectrally distinctive and this is
reflected in the large substitution costs seen in the second row.
Large costs also appear for interchanging palatal and labial places.
Finally, it is undesirable to substitute a velar stop with a labial stop.

Because the dynamic range of the concatenation costs does not
appear to be high, it is possible that the concatenation classes are
overly broad. In contrast, the classes in the example substitution
cost matrix are low in size with only two or four members each.
We have chosen to keep the classes that were manually designed
in earlier work to better isolate experimental conditions. Although
not reported here in depth, we are currently investigating the use of
automatic decision trees for clustering concatenation and substitu-
tion contexts. For example, phone-specific classes for substitution
costs are derived by successively splitting left and right contexts
independently for all phones using phonological questions.

6. RESULTS

In the 2001 DARPA Communicator Evaluation, naive users were
recruited from across the country and asked to call a flight travel
system deployed by one of eight different participating sites. Ap-
proximately 20 subjects called each system four times each, and
another 15-16 subjects called each system eight or more times.
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After each call, users were asked to fill out a Likert scale ques-
tionnaire in which they were asked to rate, among other things,
the degree to which they agreed with the statement, “I found the
system easy to understand in this conversation.” Each of the eight
participating sites used some form of concatenative synthesis in
their deployed systems. Among the eight, the MIT system, which
used theENVOICE synthesizer, was ranked the highest (4.07/5) in
user agreement with that statement. Although this particular con-
figuration concatenated words and phrases and used unit selection
search more sparingly, it nonetheless provides a reference point for
naturalness for the baseline system used in these experiments.

In order to evaluate the information-theoretic measures, we
have conducted a small-scale listening evaluation on a test set of
twenty-two utterances in an air travel domain. Using a leave-one-
out approach, we re-synthesize an utterance from the remainder
of the corpus using oracle phonological information. Concate-
nation boundaries are smoothed with windowed overlap-and-add
processing. The shift corresponding to maximum correlation be-
tween abutting short-time spectral frames is used to appropriately
offset the windows at the concatenation boundary. Since window
shifts at boundaries introduce variable timing of the window cen-
ters, normalization is required to preserve energy relations.

In comparing synthesizers using manually tuned and automat-
ically derived synthesis costs, we asked eleven subjects to per-
form A/B comparisons on an utterance-by-utterance basis. While
only five out of eleven subjects found the second system preferable
overall, pooling votes on individual utterances showed that utter-
ances produced by the second system were found to be preferable
55% of the time, or roughly half the time. A 50% preference level
suggests that subjects are indifferent and that one system is indis-
tinguishable from the other. Since the baseline system is consid-
ered quite natural, we view this as a positive result as it reduces the
amount of manual heuristics necessary to tune a synthesizer.

In the three utterances where the second system received one
vote or less, spurious pitch and irregular durations were detracting
factors. On the other end of the spectrum, three utterances received
nine votes or more. Using automatically learned costs reduces the
concatenation rate (i.e., number of concatenations per second of
synthesized speech) from 2.09 to 1.77, a 15.3% relative reduction.

7. CONCLUSIONS & FUTURE WORK

In this paper, we have introduced a data-driven formulation based
on information-theoretic measures for automatically determining
the concatenation and substitution costs used in unit selection meth-
ods. Preliminary listening tests show that this automatic approach
gives a favorable result while significantly reducing synthesizer
development time. We are currently automating the design of
equivalence classes in ongoing work. Future work includes evalu-
ating these synthesis equivalence classes, developing an intonation
model, and exploring hierarchical extensions to unit selection.
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