
An Efficient Implementation of Phonological Rules
using Finite-State Transducers

I. Lee Hetherington

Spoken Language Systems Group
MIT Laboratory for Computer Science

Cambridge, MA 02139 USA
ilh@sls.lcs.mit.edu

Abstract

Context-dependent phonological rules are used to
model the mapping from phonemes to their varied
phonetic surface realizations. Others, most notably
Kaplan and Kay, have described how to compile gen-
eral context-dependent phonological rewrite rules into
finite-state transducers. Such rules are very power-
ful, but their compilation is complex and can result
in very large nondeterministic automata. In this pa-
per we present a simplified rewrite rule system and
a technique to efficiently compile such a system into
finite-state transducers.

1. Introduction

In our summit speech recognition system, we have
always used phonological rules to model pronuncia-
tion variability [1]. We use such rules to transform
word phonemic baseforms to graphs of alternate pro-
nunciations at the phonetic level. These rules account
for many different phonological phenemona such as
place assimilation, gemination, epenthetic silence in-
sertion, alveolar stop flapping, and schwa deletion.
These rules primarily depend on input-level phonemic
context, but phonetic realizations may also depend on
nearby realizations.

Kaplan and Kay’s classic paper [2] provides a com-
prehensive treatment of phonological rewrite rules of
the form

φ → ψ/λ ρ, (1)

where φ is the target of replacement, ψ the replace-
ment, λ the left context, and ρ the right context,
with all four of these components being regular expres-
sions. There are many variations presented, including
left-to-right and right-to-left directional application,
simultaneous application, optional and obligatory re-
placement, and the simultaneous application of rules

This research was supported by DARPA under Contract
N66001-99-1-8904 monitored through the Naval Command,
Control, and Ocean Surveillance Center.

in batches. Further, they show how various phonolog-
ical rule systems can be mapped to their framework
of regular relations.

Karttunen’s replace operator [3] is equivalent to
(1) and has varieties allowing the λ and ρ contexts to
apply to the input or output level, as well as an op-
erator called directed replacement [4] that maximally
matches potentially overlapping φ instances contained
in the input.

Both Kaplan and Kay and Karttunen provide
mathematical formulations of how such rules can be
implemented as a cascade of finite-state transductions.
However, the compilation of rules to finite-state trans-
ducers using their formulations can be slow and in-
volve large nondeterministic automata.

Mohri and Sproat [5] present an alternative formu-
lation for left-to-right, obligatory rules that is compu-
tationally more efficient. However, each rule is still
compiled into no less than five component transduc-
ers, and the transducers for individual rules are com-
posed together to produce a transducer for a whole
set of rules.

In this paper we present a phonological rule sys-
tem and a technique to compile a set of rules into
one or two finite-state transducers. Our rules repre-
sent a simplification to those of Kaplan and Kay and
yet allow us to express much of the phonological vari-
ability we observe in interactions between real users
and our conversational systems. In fact, many of our
rules are a result of studying misrecognitions within
our jupiter weather information domain [6].

2. Rules

2.1. Rule Specification

Individual rules consist of four components: the target
φ, the replacement ψ, the left context λ, and the right
context ρ, and we write them in the following form:

{λ1, . . . , λm} φ {ρ1, . . . , ρn} ⇒ ψ ;

In contrast to the rules of Kaplan and Kay, in which
all four components are regular expressions, we have

Submitted to EUROSPEECH 2001, September 3–7, 2001, Aalborg, Denmark

made the following simplifications. For input alphabet
Σi, we have φ ∈ Σi, λ ⊆ Σi, and ρ ⊆ Σi, with an
empty context specification λ = ∅ or ρ = ∅ indicating
no contextual dependence.

The contexts λ and ρ are both expressed at the
input level. This is analogous to Kaplan and Kay’s si-
multaneous rules [2] and Karttunen’s upward-oriented
rules [3].

In addition we have added functionality to the re-
placement regular expression ψ ⊂ Σ∗

o, for output al-
phabet Σo, allowing for the expression of local surface-
level constraints. This gives us some capability to re-
fer to context on both the input and surface levels
simultaneously. We will describe this in more detail
in Section 2.3.

2.2. Rule Application

Conceptually, rules are applied at every position of the
input simultaneously. There is no orientation toward
one direction or another. Furthermore, for each input
position, the first rule with matching φ, λ, and ρ ex-
pressions is applied. In our system, we require at least
one rule to match every possible (φ, λ, ρ); this is gener-
ally achieved by specifying a final context-independent
σ ⇒ σ for every input symbol σ ∈ Σi. As formulated,
rule application is deterministic, with exactly one rule
firing for every input in context.

Generally, for rules with the same target φ, rules
are ordered from more to less specific λ and ρ contexts.
For example, applying the ordered rules

{a} a {a} ⇒ a1 ;
{} a {a} ⇒ a2 ;
{a} a {} ⇒ a3 ;
{} a {} ⇒ a4 ;

to a·a·a would produce a2·a1·a3.
Our rules are batch rules in that they are all ap-

plied simultaneously across all input positions in one
batch. As such, the φ, λ, and ρ all refer to the in-
put and not the output of previously applied rules;
there are no previously applied rules. If it is desired
to have rules be sequential in the sense that some rules
will operate on the output of previous rules, then the
rules must be divided into separate batches, and these
batches applied sequentially.

Furthermore, our rules are obligatory, meaning
that if a rule matches, ψ will replace φ. It is triv-
ial to make a rule behave as if it were optional by
including φ within ψ. This is trivial because φ ∈ Σi,
a single symbol and not a regular expression.

2.3. Surface-Level Constraints

While λ and ρ express required context at the input
level only, we do have the capability to enforce context
constraints at the surface or output level through the
use of auxiliary symbols contained at the beginning

or ending of the replacement ψ. In fact, there are
two mechanisms available: one referring directly to
adjacent surface symbols and one referring to user-
specified connection symbols. We will demonstrate
both mechanisms with examples.

Consider the following set of interrelated rules:

{} d {y} ⇒ dcl (d | jh) ;
{} t {y} ⇒ tcl (t | ch) ;

{d, t} y {} ⇒ y | <{ch, jh} ;

Together, these rules could model the palatalization of
the stops in “would you” and “hit you” by mapping a
sequence d·y to dcl·jh, as well as the non-palatalized
dcl·d·y. Here, <{ch, jh} denotes an explicit reference
to either ch or jh on the surface to the left.

We can use <{·} and {·}> to specify sets of re-
quired left and right surface-level symbols, respec-
tively. The surface context specification itself is not
part of the final replacement, but as we will see later
is used internally to enforce constraints.

A second mechanism is available for expressing
surface-level constraints that is somewhat more pow-
erful. We can specify a pair of auxiliary symbols that
we can use in the ψ expressions of different rules to
enforce particular connections at the surface level. For
example, consider the following set of rules:

{} s {t} ⇒ s | sr r$;
{s} t {r} ⇒ t | $r t ;

If we have previously specified that r$ is connected
to $r (a retroflex flag of sorts, right- and left-hand
versions, respectively), then together these rules say
that s·t·r can be realized as s·t·r or sr·t·r, where sr
could represent an s in a retroflex environment. This
allows somewhat longer-distance surface constraints.
Here, the input s can “look” beyond the input and
surface t to see the r to the right. However, in practice
we might instead do the following:

{} s {t} ⇒ s | sr {tr}> ;
{s} t {r} ⇒ t | tr ;

to produce s·t·r or sr·tr·r. In this case, because the
surface tr encodes the presence of the r, the rule for s
can refer to it with {·}> notation. Still, we often find
auxiliary connecting symbols useful because they can
be mnemonic and because they can represent whole
sets of surface labels compactly.

3. Compilation to Transducers
We construct the transducer P representing the set of
rules by factoring it into three component transducers:

P = I ◦R ◦ S.
I enforces input contextual constraints, λi and ρi, and
outputs the particular rule i to apply to each input
symbol (see Section 3.1). R performs replacement
φi ⇒ ψi for all i (see Section 3.2). Finally, S enforces
surface contextual constraints (see Section 3.3).

2

3.1. Input-Constrained Rule Selection: I

The role of I is to select, for each input symbol, the
first rule that matches its immediate left and right
context. Constructing a deterministic left-to-right I
would, in general, require I to introduce a one-symbol
delay so that it can observe the right context ρ. How-
ever, if we factor I as I = Ir ◦ Il, we can deterministi-
cally apply Ir right to left and Il left to right, without
introducing any undesirable delay. In this factoriza-
tion, we have Ir map each input symbol σ to the subset
of σ’s rules compatible with the right input context.
Then, we have Il map each such rule subset to the
first rule compatible with the left input context.

We construct the reverse of Ir, rev(Ir), to be ap-
plied right to left, as follows. For input alphabet Σi,
define Σ′

i = Σi ∪ {ε}. For each σ ∈ Σ′
i, create a state

labeled σ and make it final. Make the state labeled
ε the initial state. For each σ1 ∈ Σ′

i, σ2 ∈ Σi, add
a transition from state σ1 to σ2 labeled σ2:r�(σ2, σ1),
where r�(σ2, σ1) denotes an auxiliary label represent-
ing the subset of rules for σ2 consistent with a σ1 to
the right. rev(Ir) is deterministic by construction.

We construct Il as follows. For each state σ ∈ Σ′
i,

create a state labeled σ and make it final. Make the
state labeled ε the initial state. For each σ1 ∈ Σ′

i,
σ2 ∈ Σi, σ3 ∈ Σ′

i, for each unique subset r�(σ2, σ3)
add a transition from state σ1 to state σ2 labeled
r�(σ2, σ3):r�(σ1, r

�(σ2, σ3)), where r�(σ1, r
�(σ2, σ3))

denotes an auxiliary label representing the first rule
for σ2 in subset r�(σ2, σ3) consistent with a left con-
text of σ1. Il is deterministic by construction.

See Figure 1 for an example set of rules, Figure 2
for the corresponding Ir, and Figure 3 for the corre-
sponding Il. In the figures, an auxiliary label such as
b{2,3} denotes the rule subset constraining the second
and third rules for b, and a label such as b[2] denotes
the second rule for b.

3.2. Replacement: R

Construction of the replacement transducer R is
straightforward because input and surface contex-
tual constraints are handled by the other transducers.
Thus, all R has to do is map each rule label φi to its
replacement ψi. Thus the rule replacement transducer

R = (
⋃

i φi × ψi)
∗ ,

the union of all individual replacements φi × ψi with
closure. We can construct each of these replacements
by concatenating φi ×{ε} = φi: ε with {ε}×ψi, where
{ε}×ψi is the transducer representing ψi on its output
side with ε on its input side.

When compiling regular expressions into replace-
ments ψi, we transform surface constraints as follows:

<{σ1, . . . , σn} → s�
σ1

∪ · · · ∪ s�
σn
,

{σ1, . . . , σn}> → s�
σ1

∪ · · · ∪ s�
σn
,

$α → c�α, and
α$ → c�α,

where s�
σ and s�

σ denote auxiliary symbols representing
a required surface σ to the left and right, respectively,
and c�α and c�α denote auxiliary symbols representing
left and right user-specified connections, respectively.
The constraints on the placement of these auxiliary
symbols will be enforced by S, described below. For
the purposes of construction of R, we can disregard
such constraints. In general, R is not deterministic
because a relation φi × ψi can be one to many.

See Figure 4 for the minimized R corresponding to
the rules in Figure 1. The surface constraint auxiliary
symbols used in the transducer are s�

B2 = B2> and
s�
A2 = <A2.

3.3. Enforcing Surface Constraints: S

The surface constraint transducer S enforces sur-
face constraints and erases any auxiliary symbols in
{s�

σ, s
�
σ, c

�
α, c

�
α} while passing through symbols σ of the

output alphabet Σo.
We can construct transducer S as

S = (S1 ∪ S2 ∪ S3)∗,

where the individual components are

S1 =
⋃

σ(s�
σ: ε)∗ · σ: σ · (s�

σ: ε)∗,
S2 =

⋃
σ1,σ2

σ1:σ1 · (s�
σ2

: ε ∪ s�
σ1

: ε)∗ · σ2:σ2,

S3 =
⋃

α c
�
α: ε · c�α: ε.

The first component, S1, enforces left-only or right-
only surface constraints between consecutive output
symbols. The second component, S2, enforces mixed
left and right surface constraints, e.g., as in the rules

{} a {b} ⇒ a1 | a2 {b2}> ;
{a} b {} ⇒ b1 | <{a2} b2 ;

Finally, the third component, S3, enforces constraints
for the user-specified connection symbols. All three
components enforce surface constraints, erase auxil-
iary symbols, and pass Σ∗

o sequences unchanged. As
constructed, S is non-deterministic, but it can be de-
terminized.

See Figure 5 for the minimized S corresponding to
the rules of Figure 1. Only those s�

σ and s�
σ used in R

are present.

3.4. Applying Rules

We now have all the components to compute the right-
to-left component of the rules Pr = rev(Ir) and the
left-to-right component Pl = Il ◦ R ◦ S. We apply
rules to a given input X as follows:

X ◦ P = rev(rev(X) ◦ Pr) ◦ Pl.

If it is desired to have a single, left-to-right transducer
to implement a set of rules, it can be constructed as
P = Ir ◦ Il ◦R ◦ S. Ir could be left non-deterministic
so as to not introduce a one symbol delay, or it could
be determinized and thus introduce delay.

3

4. SUMMIT’s Rules
Within our summit speech recognition system, we
currently use 230 phonological rules for English, 34
of the trivial form σ ⇒ σ, to map from baseform pro-
nunciations to a variety of allowable phonetic realiza-
tions. We have 63 “phonemic” input symbols, with
variations including deletable stop releases, flappable
stops, and silence. The rules output 71 “phonetic”
output symbols. Compiling these rules takes 2.0s on
an 866MHz Pentium III and produces a minimized Pr

with 20 states and 1,218 transitions and a Pl with 134
states and 13,642 transitions. Minimized P has 294
states and 21,009 transitions.

5. Conclusion and Future Work
We have presented a system for expressing phonolog-
ical rules and a formulation for converting a batch of
such rules to one or two finite-state transducers. Such
rules allow for both input-level and surface-level con-
straints. The simplified form of φ, λ, and ρ allow for
particularly efficient rule compilation involving signif-
icantly fewer intermediate transducers compared to
[2, 3, 5]. Altogether, we find rule compilation and ap-
plication is more than 100 times faster than the non-
transducer-based technique we previously used.

It is very straightforward to add weights to the
rules to produce weighted finite-state transducers. We
plan to do this as well as automatically train such
weights from a large corpus of paired phonetic and
orthographic forced recognition paths. We also plan
to address the issue of dynamically adding words to
the system vocabulary while respecting the inter-word
context dependency of the phonological rules.

6. Acknowledgements
Thanks to T. J. Hazen, who composed most of the
phonological rules currently used within our systems
and to Victor Zue, Jim Glass, and Stephanie Seneff
for providing valuable feedback on this paper.

7. References
[1] V. Zue, J. Glass, D. Goodine, M. Phillips, and S. Seneff,

“The summit speech recognition system: Phonological mod-
elling and lexical access,” in Proc. Intl. Conf. on Acoustics,
Speech, and Signal Processing, Albuquerque, Apr. 1990, pp.
49–52.

[2] R. M. Kaplan and M. Kay, “Regular models of phonological
rule systems,” Computational Linguistics, vol. 20, no. 3, pp.
331–378, Sept. 1994.

[3] L. Karttunen, “The replace operator,” in Finite-State Lan-
guage Processing, E. Roche and Y. Schabes, Eds., pp. 117–
147. MIT Press, Cambridge, Mass., 1997.

[4] L. Karttunen, “Directed replacement,” in Proc. 34th Mtg.
of the Assoc. for Computational Linguistics, Santa Cruz,
June 1996, pp. 108–115.

[5] M. Mohri and R. Sproat, “An efficient compiler for weighted
rewrite rules,” in Proc. 34th Mtg. of the Assoc. for Compu-
tational Linguistics, Santa Cruz, June 1996, pp. 231–238.

[6] V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao, T. J.
Hazen, and L. Hetherington, “Jupiter: A telephone-based
conversational interface for weather information,” IEEE
Transactions on Speech and Audio Processing, vol. 8, no. 1,
pp. 85–96, Jan. 2000.

{b} a {} ⇒ A | A2 {B2}> ;
{} a {} ⇒ A ;
{} b {a} ⇒ B ;
{a} b {} ⇒ B | <{A2} B2 ;
{} b {} ⇒ B ;

Figure 1: Example rules for demonstrating the con-
struction of rev(Ir) of Figure 2, Il of Figure 3, R of
Figure 4, and S of Figure 5.

ε

aa:a{1,2}
b

b:b{2,3}

a:a{1,2}
b:b{1,2,3}

a:a{1,2}

b:b{2,3}

Figure 2: Example rev(Ir), mapping from input sym-
bols to rule subsets compatible with right context, ap-
plied right-to-left.

ε

a
a{1,2}:a[2]

b
b{1,2,3}:b[1]

b{2,3}:b[3]

a{1,2}:a[2]
b{2,3}:b[2]

b{1,2,3}:b[1]

a{1,2}:a[1]

 b{1,2,3}:b[1]
 b{2,3}:b[3]

Figure 3: Example Il, mapping from rule subsets to
the first rule compatible with left context.

0

a[1]:A
a[2]:A
b[1]:B
b[2]:B
b[3]:B 1

a[1]:A2

2

b[2]:<A2

ε:B2>

ε:B2

Figure 4: Example R performing rule replacement.

0

A:A
B:B

B2:B2

1
B2>:ε

2

A2:A2

B2:B2

B2>:ε

A:A
B:B

B2:B2

 A2:A2
 <A2:ε

3

B2>:ε

B2:B2

<A2:ε
B2>:ε

Figure 5: Example S enforcing all surface constraints.

4

