Galaxy-II as an Architecture for
Spoken Dialogue Evaluation

Joseph Polifroni and Stephanie Seneff

Spoken Language Systems Group
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 USA

{joe, seneff@Ics.mit.edu

Abstract
The GALAXY -1l architecture, comprised of a centralized hub mediating the interaction among a suite of human language technology
servers, provides both a useful tool for implementing systems and also a streamlined way of configuring the evaluation of these systems.
In this paper, we discuss our ongoing efforts in evaluation of spoken dialogue systems, with particular attention to the way in which the
architecture facilitates the development of a variety of evaluation configurations. We furthermore propose two new metrics for automatic
evaluation of the discourse and dialogue components of a spoken dialogue system, which we call “user frustration” and “information bit
rate.”

1. Introduction Language

Through our experience over the last decade in design- Generation
ing spoken dialogue systems, we have come to realize that Text-to-Speech e
an essential element in being able to rapidly configure new Conversion Manager
systems is to allow as many aspects of the system design as
possible to be specifiable without modifying source code.

To this end, we recently redesigned our core architecture t¢ Audio/Gul

support complex system configurations controlled by arun- Servers

time executable scripting language. Using this new frame-
work, which we call ‘GALAXY-11" (Seneffet al,, 1998),

we have been able to configure multi-modal, multi-domain, Speech Discourse
multi-user, and multilingual systems with much less effort Szl Resolution
than previously. We are discovering that we can now con-

figure systems whose capabilities are well beyond what was Un&,i?g‘;i%?ng
previously considered feasible

As new and increasingly complex spoken dialogue sys-

tems are built, the task of evaluating these systems becom&&ure 1: A typical configuration of a spoken dialogue sys-
both more important and more difficult. In the first place, €M Showing the central hub and the various specialized

component technologies are interdependent. Typically, &¢"VErs-
spoken dialogue system is comprised of multiple modules,

each of which performs its task within an overall frame- components. The focus of the paper will be on the resulting
work, sometimes completely independently but most oftenools we have developed within tieaLAXY -1 architecture
with input from other modules. Secondly, once a mechafor evaluating spoken dialogue systems. These tools consist
nism is in place for running data through an off-line sys-mainly of a suite of hub programs, which allow us to rapidly
tem, a simple reprocessing of data with a new version otonfigure several different combinations of servers for var-
any component can lead to an incoherent interaction, agus evaluation runs, including two specialized servers de-
only one side of a two-sided conversation has changed. Fiigned to augment evaluation capabilities. We will also dis-
nally, there is the question of what to evaluate (e.g., individcyss two new metrics we have devised for the automatic

ual component vs. overall system behavior) and how (errogvaluation of the discourse and dialogue component of our
rates vs. some measure of usability). systems.

This paper describes our efforts to expand the appli-
cability of the GALAXY -1I scripting language, initially de- 2. Galaxy-Il Architecture
veloped to configure dialogue systems that interface with .
users, to also support evaluation runs that assess the perfor- The GALAXY-II (Seneffet al, 1999) architecture con-

mance over time of both entire systems and specific syster?fs'[S ofa central hub that controls the flow of in_formation
among a suite of servers, which may be running on the

'GALAXY -1l has been designated as the initial common ar-Same machin_e oratremote Iocatio_ns. Figure 1_Sh0WS atyp-
chitecture for the multi-site DARPA Communicator project in the ical hub configuration for a generic spoken dialogue sys-
United States. tem. The hub interaction with the servers is controlled via

Database

RULE: ref_tried & :rec_tried & lirec_score --> evaluate_rec_string
LOG_IN: :sro_string :rec_string

IN: (cref_string :sro_string) (:hyp_string :rec_string) \
:eval_mode :sro_status :rec_status
OUT: :rec_score :ref_string :hyp_string

LOG_OUT: :rec_score

Table 1: An example rule in a hub program that invokes the evaluation server opeeatadunaterec string. The rule
provides a reference and hypothesis string as input, and records in a log file the resulting recognition score, as well as the
pair of strings being compared.

a scripting language. A hub program includes a list of theprograms that control all other system functions. It has also
active servers specifying the host, port, and set of opera-allowed us to augment our suite of evaluation metrics, since
tions each server supports, as well as a set of one or moan evaluation server can take input from any of the other
programs Each program consists of a setrafes where component servers within the system that we wish to eval-
each rule specifies asperation a set ofconditionsunder uate.
which that rule should “fire,” a list ofNPUT andoOuTPUT The interaction among the servers in a spoken dialogue
variablesfor the rule, as well as optionafORERETRIEVE ~ system can be quite complicated. We feel it is very im-
variables into/from the discourse history. When a rule firesportant for off-line runs on training and development data
the input variables are packaged intdokenand sent to to match as closely as possible the on-line system con-
the server that handles the operation. The hub expects thiguration. The transparency that tleaLAxY-11 archi-
server to return a token containing the output variables at gcture provides to the system developer makes it easy to
later time. The variables are all recorded in a hub-internahccomplish this goal. The ability to program the interac-
master token The conditions consist of simple logical tion of servers means that these modules can run as servers
and/or arithmetic tests on the values of the typed variablethe same way in both on-line and off-line (batch) modes.
in the master token. The hub communicates with the variNo explicit code changes or run-time flags are needed for
ous servers via a standardized frame-based protocol. the servers to run in evaluation mode. Furthermore, the
TheGALAXY -11 architecture has proven to be a power- changes necessary to configure a system for a specific type
ful tool for evaluation. It has made possible a wide range obf evaluation are usually localized to a few lines in a top-
system configurations specifically designed for monitorindevel hub program, with the constituent programs being
system performance resulting in a suite of hub programgentical to those of a live system.
concerned with evaluation. In some cases, we are only in- In order to perform these types of evaluation runs, we
terested in evaluating a particular aspect of system perfolhave developed two new servers that play an important
mance, such as recognition or understanding. In other casesle: a “batchmode” server and an “evaluation” server. The
we're interested in assessing the performance of the entigatchmode server stands in place of a user interface; it ex-
system, perhaps comparing a new version with the versiotracts appropriate inputs from a log file and initiates dia-
that existed at the time a log file was first created. At othellogue turns. The evaluation server tabulates performance
times we might be interested in looking at ways of mea-statistics on a wide range of metrics, and writes a final sum-
suring system performance as it relates to user satisfactiomary into the resultant second-generation log file.
along measurable dimensions. We also routinely run large
numbers of queries through a system in a batch mode, t8.1. Batchmode Server

assure syster_n robustness, particularly prior to the release Tpe purpose of the batchmode server is to process user
of a new version. . _ _ queries through the system off-line. It operates from a va-

~ Inthe following section, we will describe how we con- yiety of different inputs, including orthographic transcrip-
figure architectures that utilize these servers for variousions, N-best lists, word graphs, parse frames, waveform
types of evaluation. Section 4 describes previous work ifjles, and even system log files created from previous live
evaluating understanding accuracy and howGheAXY- interactions. A hub program can be configured to produce
Il architecture has enabled us to streamline the procedure?§.|Og file using any of the above inputs, alone or in combi-

Section 5 describes new metrics we have devised 10 aysation. A batchmode run often includes calls to a special
tomatically evaluate overall dialogue performance. Aftergya1uation server. as described below.

summa_rizing other miscellaneous but significant aspects of Every conversation with our live systems is recorded in
evaluation, we conclude with a look towards the future. 5 |ogile, at a level of detail that is controlled by the hub

. . program. The program supports the specification of any in-

3. Programming Evaluation Runs put or output variables to be written to the log, associated

We have been concerned for some time with developwith each rule as it fires. A subsequent evaluation program
ing and maintaining a way of continually evaluating our informs the batchmode server which elements from the log-

systems, both holistically and at the component level. Thdile are of interest in a particular run. For example, in as-
new hub-based architecture has enabled us to streamline teessing run-time performance, the batchmode server must
evaluation process by making it subject to the same hulextract both the selected hypothesis and the transcription of

Language 4. Automatic Methods for Understanding
Generation Evaluation

Evaluate In (Polifroniet al,, 1998) we proposed an E-form evalu-
ation metric, which compares an E-form obtained by pars-
ing the original orthography against that obtained by pars-
ing the selected recognizer hypothesis. At that time, the
Batchmode evaluation process was fragmented into a number of se-
SNV guential isolated steps. The original recognition outputs
were retreived from a session log file. New recognition
outputs were created through a stand-alone process and
o —— saved out to a file. The interaction between the recogni-
Resolution tion and NL components, currently mediated by the hub,
had to be essentially simulated in a special stand-alone pro-
cess. This process included the natural language library
Language . .
Understanding and performed the parsing and E-form generation steps.
The process of synchronizing with the context information

:) . , i recorded in the original log file and the new recognition
Figure 2: AGALAXY -1l configuration showing the servers outputs was cumbersome and idiosyncratic.

involved in evaluating recognition and understanding per- gince we believe that E-form evaluation is a powerful

formance. metric for monitoring the performance of the recognizer
and the parser, it has served as a good test case for the feasi-
bility of using hub programs to run evaluation procedures.
We found that thesaLAXY -11 architecture provided effec-
Sive tools to streamline and generalize the process.

For assessing overall system understanding, we have

We can also use the batchmode server to reprocesgritten a hub program that first uses the batchmode server
stored waveform files. In this case, the batchmode servag process a logfile utterance-by-utterance, sending both a
behaves like an audio server, invoking the module-tohypothesis and an orthographic transcription to the hub,
module communication protocol to connect to a recognizehyith subsequent routing tINA (Seneff, 1992) andENE-
The recognizer processes the stored waveform file as ¥s(Glasset al, 1994), our natural language understanding
would any other utterance, i.e., producing eithen\aest and generation components, respectively. Once the appro-
hypothesis or aword graph. This representation is sent bagiiate inputs are created, the hub program sends them to the
to the hub where it follows the path determined by a stanwyajuation server, where they are used to assign scores. The

Speech
Recognition

the user’s speech from the logdfile. ThaLAxY-11 archi-
tecture, combined with the hub scripting language, mad
control straightforward for this type of logfile evaluation.

dard hub program for processing. results are returned to the hub program along with all other
relevant data for a particular utterance for logging purposes.
3.2. Evaluation Server The evaluation server also outputs cumulative statistics at

the end of each batch run. An appropriate hub configuration

As mentioned previously, we have developed a separat®r performing this type of evaluation is shown in Figure 2.
evaluation server for performing comparisons and accumunotice that the batchmode server replaces the audio server
lating performance statistics. This server can determing, this figure, and that various other servers concerned with
both word error rateand concept error rate, where the |atterprocessing beyond the NL component are missing.
is based on an E-form repl‘esentation of the understood user The hypothesis can be either the Origina| one produced
query. As will be discussed later in this paper, we have als@t the time the data were collected, or a new one produced
developed two additional metrics that we feel may be usewjith an updated version of the recognizer and/or of the
ful for evaluating the discourse and dialogue componentgarser. Two different configurations can be run in parallel to
as well as the recognizer and understanding componentge|p assess which one is exhibiting a superior performance.
We call these the “user frustration” measure and the “infor'Among the eva'uation experiments we have run are: (1)
mation bit rate.” The tabulations needed to compute thesgygfile recognition/understanding performance at run-time,
measures are maintained in the evaluation server. (2) word graphs compared witN-best lists, and (3) com-

We can easily configure hub programs that run multi-parisons of old and new versions of a grammar. We have
ple versions of the same server, to compare new versioriseen able to use the same hub program for evaluating many
of the recognizer against old ones, for example, or to comdifferent types of input conditions, by simply adjusting a
pare two versions of a particular grammar. Furthermorefew top-level variables.
the rules of a hub program provide a clear tabulation of the . .
parameters being F;_\vagluatec[i). An example of a rule invoking >. Automatic MethOd_S for Dialogue
an evaluation server operation is given in Table 1. Evaluation

We have found that it is extremely useful to be able to
rerun data through dialogue systems to monitor progress.
2Using the standard National Institute of Standards and TechWWe have thus acquired large corpora of speech data, tran-
nology scoring algorithm as a library for this purpose. scriptions, and dialogue session logs, all of which are used

for confirming that new versions of our systems are healthy Parse - Dialogue
N-bestList —| and —>-| Discourse —> Management

prior to their release. A minimal test is that there are no Select

catastrophic failures (e.g., server crashes). More detailed Received
confirmation of performance can be obtained in some cases

through direct string comparisons of system responses, al _

though care must be taken to ensure repeatability. It is alsc@@ °°”M ebuate
productive to examine the outputs of the batch runs man- \ Intended
ually on an utterance-by-utterance basis, although this is ¥

inefficient. We have therefore been motivated to establishortograpty —>{ Parse |—>{ piscourse |—>{ yanagement

parameters that can capture quantitative performance auto-
matically. In this section, we first discuss some of the issue i
that arose in reprocessing logged data, and then describe t?be?
automatic metrics we devised for dialogue evaluation.

ure 3: A flow graph of the procedure for computing in-
mation bit rate and user frustration.

5.1. Issues in Reprocessing Data
Language
The chief purpose of reprocessing data is to monitor Generation
system performance, in order to verify that a new version
fth tem is functioning well. With real database-que Faluate Dialogue
of the sys is functioning well. With r se-query VP

systems, this becomes problematic because they provide
timely information that is dynamic in nature. For example,
as a flight database changes, queries based on the fligh

Batchmode
available at data collection time can become incoherent server Database
Furthermore, users frequently ask about flights in the ver
near future, which then become past events when the sys-
tem is rerun at a later time. Finally, the outputs of batch Speech Discourse
runs are subject to incoherence due to changes over time in Resolution

the dialogue model, or simply improvements in recognition
and understanding. Unbifr‘sgtl;i%?ng
We have developed various mechanisms for dealing
with these problems. One such problem is the changing
nature of the information we provide to users. Weather in-Figure 4: AGALAXY -1 configuration showing the servers
formation for our Jupiter domain (Zuet al, 2000), though involved in evaluating discourse and dialogue performance
timely, did not pose as much of a problem in this regard Using information bit rate and user frustration measures (see
since we harvest the weather information several times pdext for details).
day, parse it into a meaning representation that the system
backend can understand, and then store a representation of
the data in a relational database. It is not difficult to peri-
odically store a frozen version of the database tables, alon
with ancillary files containing weather information, for fu-
ture processing. We then need only change the pointers to In the flight reservation domain, another serious prob-
files used by the database server when processing data ligm with reruns is that the dates the user specified quickly
batch mode. We also have to inform the Jupiter backend dfecome stale due to elapsed time. One solution we have
what date to consider as “today” so that references to relfound is to artificially offset all date references during the
ative dates in user queries are properly interpreted by thevaluation phase b weeks, whereV is a number guar-
backend. We then expect identical answers for repeatabknteed to place all dates in the future, relative to the repro-
runs, aside from any changes that may have occurred in theessing date. We still may run into other problems due to
system during the intervening development period. seasonal changes in flight availability, and it is unclear how
We were faced with a bigger problem in reprocessingong we can continue to reprocess data in this way given
queries to our Pegasus flight status system and our Methat flight numbers and even airlines change. For example,
cury flight schedule system (Seneff & Polifroni, 2000). in one case the user said, “Book it,” in response to a sin-
To answer these queries, we access information dynamgle flight being proposed, but due to changes in the flight
cally, from content providers who either continually up- schedule, the system proposed three flights in the rerun and
date a locally maintained database or who give us privithe dialogue became incoherent from that point on. How-
leged access to their information. These data are imposver, we have been reasonably successful up to now by sim-
sible to freeze, since they either change on a minute-byply moving the date forward and maintaining the same day
minute basis (i.e., the flight status information) or repre-of the week. In this case, of course, a simple string com-
sent too large and complex a corpus to characterize and apare on the responses will no longer be viable as a means of
cess completely (i.e., flight schedules for hundreds of citiesssuring system stability; instead, system developers must
worldwide). However, these data are extremely timely andexamine the script of the second-generation dialogue to as-
the type and nature of follow-up queries are completely desess the system’s capabilities.

endent on the information that the user heard at the time
f data collection.

laU: | I'DLIKE TO FLY FROM SEATTLE TO user frustration parameter, source and destination each took
CHICAGO ON DECEMBER TWENTY SEVENTH one turn, but the date took two.
1b M: | From Seattle to Chicago on December 22nd. In a pilot study, we processed a subset of our data
Can you specify a time or airline preference? through this evaluation configuration. We identified a set
gg k’/l Liﬁ%g;ﬁfm%ii;vgi':gzcsfgfe'\r‘g;th of 17 attributes that could be monitored. Five percent of
:) cag - : the utterances had orthographies that failed to parse. These
Can you specify a time or airline preference? . .
are unevaluable without human reannotation, and are hence
eliminated from the pool in the discussion below, although
Table 2: Example of a short dialogue containing an error irthey clearly are likely to be very problematic. Table 3 sum-
the Mercury flight travel domain. U = User, M = Mercury. marizes the results for information bit rate for the remain-
der of the utterances. The average information bit rate was
BR: |0 |1 (2 |3 | 4] total 1.46 concepts per utterance. A surprisingly large percent-
Nutts: | 41| 90 | 55| 31| 9 | 226 age of the utterances introduce no new concepts. Some, but
not all, of these are similar to the date misrecognition ex-

o) ample given above. Others are cases where the user was
Table 3: Distribution of evaluable user utterances in terms.onfused about the state of the system’s knowledge, and

of number of new attributes introduced with each dialogu€yeciged to simply repeat all the preceding constraints just

turn. [BR = Information Bit Rate. to make sure. Some are also misfirings of the endpoint de-
tector producing content-free utterances such as “okay.” In

5.2. Proposed Evaluation Metrics other cases the user intended an action, but the system’s un-

We have long been interested in seeking automatic evaf€'Standing mechanism was not sophisticated enough (e.g.,

uation metrics that can apply on a per-utterance basis buf Nat's 90od” meaning “book it’). We were encouraged by

evaluate a significant portion of the system beyond the rece percentage of sentences that contained more than one

ognizer. To this end, we recently devised two new eVa|_attribute. We believe that a typical directed dialogue would
uation metrics, which we believe are useful measures foPaVe far fewer utterances with more than one attribute.

assessing the performance of the recognizer, parser, dis-. EXcluding the 5% of utterances whose orthography
course, and dialogue components, collectively. To Comfalled to parse, our system achieved a 1.05% user frustra-

pute the measures, we must reprocess the log file after tHiP" rate. This means that, on average, one out of every 20
orthographic transcription has been provided for the useftlfibutes had to be entered twice.
queries. As illustrated in Figure 3, both the recognizer hy- .
pothesis and the original orthography are run through the 6. Miscellaneous Features
system utterance by utterance, with the discourse and dia- There are a number of aspects of theLAXY -1I archi-
logue states being maintained exclusively by the recognizetecture that enable better troubleshooting capabilities and
branch. For both branches, the E-form that is produced afthe flexibility to configure partial systems to focus on par-
ter the dialogue manager has finished processing the quetigular components. Here we briefly discuss two such ex-
is sent to the evaluation server. This server maintains a ruramples.
ning record of all the attributes that appear in the orthogra- Itturned out to be relatively straightforward to use a hub
phy path, comparing them against their counterparts in therogram to provide spoken feedback to users and develop-
recognizer path. Figure 4 shows a hub configured for thi®rs when a major system error occurs. When a particular
type of evaluation. The only server that is not represented aerver crashes, the resulting disconnect with the hub causes
least functionally in this diagram, as compared with a reguan abort message to be generated. The hub then sends a
lar system configuration, is the speech synthesis server. Theessage to the audio server, to inform it to disconnect the
batchmode server here can provide either a waveform or acall. Rather than abruptly terminating the call, however, the
N-best list for processing by the NLU component. audio server is able to relay to the user a message providing
The two parameters that emerge from comparing thesmformation about which server caused the problem, along
E-forms we refer to as information bit rate (IBR) and userwith an apology (e.g., “I'm sorry. Our content provider is
frustration (UF). IBR measures the average number of neveurrently unavailable. Please call back later.”).
attributes introduced per user query. A subsequent query The flexibility of the GALAXY -1l architecture has also
that reiterates the same attribute is excluded since it doemnabled us to develop hub programs for development runs
not introduce any new information. The UF parameter tab+{o evaluate any aspect of system development. We recently
ulates how many turns it took, on average, for an intendeaheeded to check the output of a synthesizer that was under
attribute to be transmitted successfully to the system. development in our group (Yi & Glass, 1998). By script-
Take, for example, the dialogue in Table 2. A recog-ing the hub session to take typed input and produce and
nition error occurs on the date in turn 1, where the sysspeak a synthesized answer through local audio output, we
tem misrecognizes “december twenty seventh” as “decemwere able to quickly cycle through a set of queries to tar-
ber twenty second.” A subsequent dialogue turn is requiredet the sorts of responses we were interested in checking,
to repair this error. In the scheme outlined above, the firstvithout involving a phone line. We can also use hub scripts
utterance introduces three new concepts (i.e., source, de® bypass the initial stages of the system entirely and run
tination, and date). The second utterance introduces nona,session from reply frames only. These reply frames are
thus contributing a 0 count to the IBR parameter. For thesent to the NL component for generation and then on to the

synthesizer for speaking. We are able to check hundreds &ue, V., S. Seneff, J. Glass, J. Polifroni, C. Pao, T.J. Hazen,
different responses in one session in this way. We are using and L. Hetherington, 2000. UPITER: A Telephone-
this facility, for example, to test the pronunciation and lin- Based Conversational Interface for Weather Informa-
guistic well-formedness of responses in the Jupiter weather tion,” IEEE Trans. on Speech and Audio Proces85—
domain produced in Spanish. 96.

7. Summary and Future Work

We have found that theALAXY -11 architecture has pro-
vided a unified mechanism for performing the many differ-
ent types of evaluation required for monitoring and under-
standing the performance of a complex system. We plan
to extend our use of theaLAXY -1 architecture in several
ways. One is in monitoring the performance of on-line sys-
tems. A hub program could, for example, notice that a ses-
sion is particularly problematic (e.g., by noticing a large
number of help or error response messages) and send mail
to system developers with a pointer to the logged record of
the session. Furthermore, the hub maintains a record of the
state of each particular server within a given configuration.
Though we have developed a “keep-alive” mechanism for
insuring that all servers come back to life after crashes, it is
useful to know when these crashes occur and what state the
system was in at the time. The hub, with its knowledge of
each particular server, could send mail to system develop-
ers in cases of server crashes, as well. One final way we are
looking into adding to our evaluation suite is in the multi-
lingual versions of our various systems. Because the hub is
able to mediate a seamless switch among all the languages
under development, we feel it will be useful in comparing
and evaluating the performance of each.

8. Acknowledgements

This research was supported by DARPA under contract
N66001-99-1-8904, monitored through Naval Command,
Control, and Ocean Surveillance Center.

9. References

Glass, J., J. Polifroni, and S. Seneff, 1994. “Multilingual
Language Generation across Multiple Domairabc.
ICSLP, '94 983-986.

Polifroni, J., S. Seneff, J. Glass, and T.J. Hazen, 1998.
"Evaluation Methodology for a Telephone-based Con-
versational System/Proc. LREC 98 43-50.

Seneff, S., 1992. TINA: a Natural Language System for
Spoken Language Applications,Computational Lin-
guistics 18:61—-68.

Seneff, S., E. Hurley, R. Lau, C. Pao, P. Schmid, and V.
Zue, 1998. “@GLAXY -11: A Reference Architecture for
Conversational System DevelopmerRfoc. ICSLP '98
931-934.

Seneff, S., R. Lau, and J. Polifroni, 1999. "Organization,
Communication, and Control in th@aLAXY -11 Conver-
sational System,Proc. Eurospeech '991271-1274.

Seneff, S., and J. Polifroni, 2000. “Dialogue Manage-
ment in the Mercury Flight Reservation SysterRfoc.
ANLP-NAACL2000 Workshop Workshop on Conversa-
tional Systemdo appear.

Yi, J.R.W.,, and J. Glass, 1998. “Natural-sounding Speech
Synthesis Using Variable-length UnitsProc. ICSLP
'98, 1167-1170.

