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ABSTRACT though most speech recognition systems make little or no use
of this syllable layer. There is also the possibility of breaking
This paper desgribe_s two _related systems which provide fra_mﬁ/ords down intomeaningunits (i.e., morphemes), which may
works for encoding linguistic knowledge into formal rules within ¢ necessarily align precisely with syllable units based strictly
the context of a trainable probabilistic model. The first systemy, phonology and sonority. The difficulty of defining exactly
TINA [33], drives top-down from sentence level structure, termiy oy the phonemes of a word might group themselves into natu-

nating in either words or syllables. Its main purpose is to providey| subunits has been a major hurdle to the design of systems that
a meaning representation for the sentence. The other systefgjize this intermediate structure.

ANGIE [36], operates bottom-up from phonetic or orthographic

units, characterizing the substructure of syllables/words. It prd@ver the last decade, members of the Spoken Language Systems
vides a framework for both phonological rule modelling andgroup atthe MIT Laboratory for Computer Science have been in-
letter-to-sound/sound-to-letter transformations. The two systenvolved with building systems that attemptuaderstancconver-
logically converge on the syllable or word layer. We have resational speech within highly restricted domains. These systems
cently been successful in integrating their combined constraititpically interact with a user in order to provide some informa-
into a recognizer search, achieving considerable improvemetien available in local databases or on the Web, such as flight
in understanding accuracy [9, 23]. In this paper, | will look bothschedules [44], weather information [45], or direction-finding
toward the past and the future, identifying and motivating the ddn a city [14]. Throughout this time, | have been intrigued by
cisions that were made in the desigrmafia andANGIE and the  the notion of representing linguistic knowledge in hierarchies,
associated rule formalisms, and contemplating various remaimithin a trainable probabilistic framework. It is my belief that

ing open research issues. such representations may have significant advantages over a flat-
ter structure, in terms of being able to generalize knowledge
1. INTRODUCTION across similar contexts. Above the word level, it seems appro-

o o . priate to intermix syntax and semantics within the rules rather
Speech is first and foremostammunicativeignal. Itis a com-  than to commit to one or the other operating alone, because this
plex encoding of linguistic messages for the purpose of conveys a good way to realize strong semantic constraint in the gram-
ing information among humans who share the code. Speech sgiyr while preserving syntactic structure necessary for a proper
entists have been studying various aspects of the speech codefianing representation. Below the word level, it seems analo-
many decades, and engineers have been involved in designiggysly appropriate to intermix morphology and syllabification,
computer systems that attain a certain degree of competenceyin of which are necessary to achieve adequate letter-to-sound
understanding the code. rules. Within restricted domains this approach has been feasible,

At the core of human communication is the notion of “words” ag:gl)izﬁh it remains unclear whether it will scale to handle all of

the fundamental units. Above the word level, it is apparent th

words group into phrases, and phrases group into higher levghe system that parses words into meaning, catiec [33],

units such as clauses. Linguists have done much to describe Uﬂﬁerates top-down, and produces a meaning representation that
syntactic structure of speech [19], and have attempted to addrgggsed by the backend of all of our systems for database lookup,
the issues of how syntax and semantics might interact [16].  response generation, etc. The system that parses phones into

Studies of the structures of words in multiple languages ha\)gords, callechNGIE [36], operates bottom-up, and functions in

revealed a great deal of substructure [31]. The exact specific%"Elrt to represent phonological effects and Ietter-sqund patterns
tion of that substructure still eludes us, however, particularly fo robabilistically. It also produces a structural analysis, which has

languages such as English with a rich borrowing from other la veen used effectively by a hierarchical duration model to further

guages. We are now reasonably confident that the syllable ggaprove recognition perforr_n_ance [8]. We believecie \.N'” be
ists as an intermediate layer between words and phonemes, 4F€ful @ well for characterizing unseen words or adding new vo-
cabulary items incrementally through generalizations of learned
1This material is based upon work supported by DARPA under contrac?trl'lcu'Ire [23]. The terminal layer in t_he hierarchy can be e."
N66001-96-C-8526, monitored through Naval Command, Control and Ocedifier phones or letters. The phone terminals capture phonological

Surveillance Center, and by the National Science Foundation under Grant Nayles such as palatalization, devoicing, stop-deletion, glottaliza-
IRI-96187321.




tion, and gemination. The letter terminals provide a reversiblalso see the computational appeal of ATN’s from a pragmatic
letter-to-sound/sound-to-letter system [26, 27]. standpoint.

In the remainder of this paper, | will first reflect on the intellec-Two other complicating factors for me were the issues of a train-
tual context that stimulated the initial development of thea  able probabilistic framework demanded of the recognition com-
andANGIE systems. The design of the systems will then be momunity, and the experience from my prior work on auditory mod-
tivated based on a set of both theoretical and pragmatic desigtling that gave me insight into what might be computationally
goals. Following this, significant aspects of first thela and feasible in biological systems. Long before, Fred Jelinek had
then theaNGIE systems will be developed in some detail. Aftertalked to me about his passions for statistical language modelling
a discussion on some system integration issues, some remdih?], and by the mid to late '80s the recognition community was
ing open research questions will be addressed. Since the scamaverging on word and classgrams as the language model of
of this paper is very broad and the space is rather limited, eacioice [3, 29]. The notion of probabilities had not yet crept into
topic will be addressed at a rather superficial level. A more dehe linguistic community, however.

tailed treatment can be found in the cited literature. . ) .
TheTINA system [33] was designed and implemented in the late

2. A PERSONAL RETROSPECTIVE '80s. Itis based on the idea of context-free rules plus constraints,
but also includes a trigram probability framework with local tem-
Itis interesting for me to look back on the intellectual setting abora| and spatial dimensions. There is a trace mechanism to han-
MIT during the '80s, an exciting and inspirational context influ-dle movement phenomena, and syntactic and semantic features
encing the design choices of thieNa system, and planting the are passed along for unification from node to node in the parsing
seeds for the latemGIE system. The Chomsky and Halle theory process. The core design remains intact today, although a myr-
of generative phonology had long since been introduced [6], angy little improvements have been introduced through the years,
Dan Kahn had proposed the notions of organizing phonologicahost notably the addition of a robust-parsing capability [34] and
constraints around syllable structure [18]. A team of researchegssomewhat altered probability framework to increase constraint
led by Jon Allen was developing a sophisticated letter-to-soun@s). The notion of relaxing the constraint that the entire sen-
generation system called MITalk, based on a decomposition @nce must be accounted for was inspired by the work of Wayne
words into meaning units called morphs [2]. Mark Randolph, dvard on the Phoenix system [39].
fellow student in the speech group, was parsing words into syl-
lables, with the aim of formally encoding a distinctive-featureBY the early '90s, the Spoken Language Systems Group, headed
formalism [30]. Victor Zue, then a researcher in Ken Stevenddy Victor Zue, had spun off from Ken Stevens’ Speech Group.
Speech Group’ was beginning to Codify his acoustic phonetwe invited Sheri Hunnicutt, a key member of the MITalk team,
knowledge and utilizing it in the development of speech recod0 spend a sabbatical year with us. Together with one of my PhD
nition systems that made use of ordered context-sensitive phorftidents, we worked out a parsing scheme that could do letter-to-
logical rules to expand the lexicon [43]. Ken Church’s doctorafound/sound-to-letter conversion reversibly [26, 27]. The rules
thesis [10] proposed applying conteree ruleg to parse sylla- Were context-free, but the probability framework carried a great
bles, in order to capture phonological effects, arguing that condileal of constraint. TheNGIE system later emerged out of these
tions for phonological phenomena could be encoded effectiveifieas, where phonological rules were modelled in the same way
in category names. as letter-to-sound rules. Since then, | have been supervising sev-
eral other students whose theses have explored different aspects
While these activities were going on around me, | was compf the ANGIE and/orTINA systems [7, 28, 22].
pleting a doctorate on auditory modelling for speech recogni-
tion [32]. After graduation, | joined the Speech Group as a re- 3. DESIGN CONSIDERATIONS
searcher, and, as a member of a team assembled by Victor Zue, . . .
began to become interested in the notion of having the computist d€velopingTiNA, and lateranGIE, a set of design conditions
actually understand the sentences it was recognizing, in order'{{#r€ imposed based on the premise of simultaneously providing
perform some useful function. Due to my prior involvement inconstralnt_for '_[h(_a recognizer and a formal specmcatlon_ of the
the ARPA-SUR program, | had some knowledge of research ag'coded linguistic knowledge. The design was also guided by
tivities in the computational linguistics community, particularly Knowledge of plausible restrictions on the processing capabilities
the work of Bill Woods at BBN on Augmented Transition Net- of biological systems. A formal specification of these conditions

works (ATN's) [42]. is as follows:

Meanwhile, Noam Chomsky had by this time abandoned trans-
formational rules as applied to syntactic parsing, and had moved
on to the notions of government/binding theory and the “move
anything anywhere plus constraint” idea [5]. | paid a lot of at-
tention to Chomsky’s work — it was clear that movement phe-
nomena were of paramount importance to him, and | felt that ¢ The system must be trainable from a set of automatically

the principle-based parsing of government-binding theory was a  parsed data, and should yield a low perplekithen prop-
vast improvement over transformational rules. | could however

e The grammar should be characterized by a set of context
free rules, which would however be decomposed into nodes
in a spatio-temporal field, with communications restricted
to nearest neighbors.

3For an overview of the different approaches to parsing natural language see
2A context free rule is a rule that rewrites a symbol generally into a sequendé, 19].

of zero or more symbols. A contegensitiverule attaches conditions under 4Roughly defined as the geometric mean of the number of choices at each

which the symbol is permitted to be rewritten. terminal advance.




erly trained. word
pre sroot uroot
e The framework should beausal in particular, the search uonset| nuc | onset| nuclax+ | coda | uonset| nuc
should be able to predict the probability of the next event| k! em m! ih+ s sh! en
in time, based on both short term and long term history, but| ¢ olm]| m2 i s [s2]ifo]n
not taking into account any information about the future. com- mis+ sion

e Long distance constraints would be realized via propaga-
tion of features among the nodes. The specification of theddgure 1: ANGIE parse tree for the word “commission,” with
features should be unidimensional letters as the terminals. An aligned sequence of morphs is shown
below the parse treeNote: “I” denotes onset position and “+”

These design goals have been met for bota and ANGIE. marks stress. The second letter in a doubleton is specially tagged

TINA parses top-down, mainly because the movement phenor%njz’ s2).
ena that are prevalent in wh-query domains would be difficult t
implement in a bottom-up context. NGIE operates bottom-up, word

which to me was clearly the right choice due to the desire to shafe pre sroot uroot

S . +
low-level structure among similar words in a large-vocabulary_YONSet| nuc | onset| nuclax+ | coda| uonset| nuc
: WEI )1 U] e 1 ] 1 ] " k! em m! ih+ s sh! en
recognizer. Thus, for example, “fly,” “flies,” “flight,” “flights, -
and “flying” all share the first three phonemes in a common paf kel | k| ax | mj] -m ih sh -sh | ax | n
com- mis+ sion

tial theory. ANGIE, unlike TINA, does not yet make use of any
feature unification, although | think features marking part-of-

speech and/or stress would be an interesting augmentation. B@ligure 2: ANGIE parse tree for the word “commission,” with
systems can produce a probabilistic score for the next terminphones as the terminals. An aligned sequence of morphs is
advance (phone iANGIE, word in TINA), given the preceding shown below the parse tree.

context, which makes integration with a recognizer relatively

straightforward.

and Mandarin) are completely unambiguous about their sylla-
tbIe boundaries. In fact, | suspect that, if English were not the
"Yominant language for speech recognition research, a syllable-
based approach to speech recognition would have been much
‘]‘ﬁa’ore popular than it currently is.

ANGIE and TINA have been developed mainly in the contex
of limited-domain conversational systems, and the English la
guage has dominated over all other languages. Howeues,
has been successfully used for many other languages incl
ing Japanese (in conjunction with a researcher from NEC [14
French (in conjunction with researchers at LIMSI [4]), Spanish mentioned earlier thatiINA andANGIE converge at the sylla-
[45], Italian [14], Mandarin Chinese [38], and, at Lincoln Labo-ble/word layer. We are exploring both of these layers as a pos-
ratory, Korean [40]. Our exposure to these other languages h&isle convergence point for top-down and bottom-up processing,
given us a wider scope for evaluating the design framework, aknd we have not yet determined which one is more appropriate.
though it has not led to the point where a major design changemay be that languages that support clear syllable boundaries
seemed necessary. TA8GIE system, which parses words into converge at the syllable layer, whereas languages that exhibit
their substructure, is much newer, and has only been appliedwidespread ambisyllabicity converge at the word layer.
recognition in the context of two domainst(s [22, 23] and our

JupITERwWeather domain [9, 15]). 3.1. Hierarchical Probability Models

Perhaps the most difficult aspect of designing rulestion is  jith a hierarchical linguistic framework based on context free
to devise a scheme to simultaneously encode both syntax and gges it is not immediately apparent how to lay down a trainable
mantics, while maintaining a conceptually manageable knowjsrobability model that describes the resulting structures. One
edge space. Furthermore, the desire to realize a low perplexifgeds to choose context conditions that are specific enough to
pﬁen conflicts wi‘_[h the goal of greater coverage. The situatiogg highly constraining, while not so specific that sparse data
is far less complicated below the word level, perhaps becauggoblems become a critical issue. The problem of characterizing
the step of forming words from sequences of phonemes presuiie sybstructure of words seems much more tractable than the
ably occurre_d much earlier in our evolutionary histor;_/ t_han th“broblem of characterizing how words are put together to form
step of forming sentences from words. The most difficult assentences. It has been feasible to define a single fully specified
pect of developing rules to encode syllable structure is the ispatrix for subword structure as shown in thEGIE parse tree

sue of ambisyllabicity [18]. This phenomenon is a widespreag, Figures 1 (letter terminals), and 2 (phone termirfalsJhis
prob_lem for English, since it was derived from a mixture of Ger‘parse tree has four layers below the word representing from top
manic and Ro_mar_1ce languages. The former tend to have closg@pottom morphology, syllable structure, phonemes, and pho-
syllables (ending in one or more consonants) whereas the latigstic realizations/letters as the terminal units. With only a few
tend to have open syllables (ending in a vowel). We have foungternate choices at each layer, it becomes practical to encode the
it feasible to adhere to a short set of guiding principles to desptire column above the left terminal as the bigram context for

cide where to place a syllable boundary, as elucidated more fultye predicted phone/letter on the right. For example, in Figure 2,
in Section 5. Many other languages (such as French, Spanish,

5Specified at the category level rather than the rule level. 6We will revisit these figures in Section 5.



the probability of the terminal [aX]is conditioned on the itali- occurs, it is logical to assume that the others would also be ap-
cized column to the leftProb([ax]|word,pre,uonset,/k!/,[K]). At propriate. The goal is to achieve as low a perplexity as possible,
the present time, columns are built bottom-up based on trigraend to use the classes mainly to overcome sparse data problems.

probabilities conditioned on the child and the immediate left sib- - . .
ling (e.g., Prob(lem/Kk!,[ax]) highlighted in boldface in Figure Classn-grams have difficulty when logical members are multi-

2). The process terminates when the column merges with tj°rd sequences. For example, Boston, San Diego, and Salt Lake
left sibling’s column into the same parent category. City form an obvious class of citpame, but they are written as

one, two, and three words, respectively. A simple solution is
It is far less obvious how to lay out a grammar specifying synto introduce the concept of an “underbar word,” enhancing the
tax and semantics. While it is clear to us that syntax alone igxicon with such superwords.

insufficient for our needs, it has also become evident that a se- .
nother problem encountered by thegram representation is

mantic grammar that is not laid down on a syntactic base quick . .
becomes unwieldy. We believe that explicit representation at words can generally be associated with only one class. The
glish word “to” is thus at issue because as a preposition it

major syntactic constituents, such as subject, predicate, diree?

object, and predicate adjective, is an appropriate strategy fggrms an obvious class with “from” but as the infi_nitive“mark?r
the organization of clauses, with major semantic classes sucl? 90" it would be highly inappropriate to substitute “from.

as “flight event” or “alocation” appearing in the layer just be- A part-of-speech tagger could be used to pre-label all instances

low the syntactic-level node. Prepositional phrases are gené’rf- “to” before verbs in a training corpus as ‘tof”, for ex-

ally grouped into case-frame like units such as “timent” or ample, gllowing the qther usage of “to” to merge with “from.” _
“source.” At any point in a parse tree, it is important to try toSuch “tricks” of creating underbarred superwords and semanti-

group possible alternatives into the highest level unit that mak&&!ly tagged twins are examples of a very rudimentary linguistic

sense in the context. Thus there is a general trend towards m&Rode!-

specific categories near the leaves of the tree. Long distance
constraints such as number agreement are best realized throdgh LINGUISTIC HIERARCHIES ABOVE THE

feature unification. The parse trees that are produced do not lay WORD LEVEL
out in tidy two-dimensional grids, and so it is not as clear how to
organize a probability model around the structure. A TINA grammar can be viewed as a large collection of sub-

In wh-query domains there is a preponderance of sentences wYt\‘r?rldS’ with each sub_world defined by a set of rules_ that share
common left-hand side category. All of the categories appear-

wh-marked constituents that are moved from their underlyinﬁ1 on the riaht-hand side of the rules in a qiven set are treated
position in the clause to the front of the sentence, asiwhat 9 g . . . 9
analogously to words in a traditional bigram language model, but

street> is this bank on<trace-?". A trace mechanism to restore restricted to a subworld associated with the given left-hand side
the moved constituent to its natural position has benefit in the 9

resulting ability to share a much larger portion of the gramma?%tfdgic; ?h D:gét%tﬁcc%gnrgﬁ?onr;atlher:lggﬁlitgg?;bgl'ghzfggisnee:t
rules, the reduced perplexity due to explicit accounting of th €p P

misplaced noun phrase, and a superior semantic representat B%yersed in climbing the parse tree f_rom the terminal Ie_af to the
for translation and/or database access. point where the parse tree merges with the branch leading to the

word’s immediate left sibling. This design yields a causal system

3.2. Current Practices in Language Models for yvith an_easily trainable probability base, as was our goal laid out
Recognition in Section 3.
. " It js informative to understandiNA’s relationship ta:-gram lan-
Most of the work in speech reco_gnltlon to date has been focus%qjage models through a couple of examplesiATcan achieve
on the task of correctly producing the sequence of words thghe same effects achieved by the underbarred words of a class

were spoken. The notion of characterizing any information bes;qam “put without requiring them to be lexicalized. Consider
yond the word sequences is usually not treated as part of the e example consisting of a class “Gaities” containing cities

plicit goal, although some amount of phonological and semantig, c5jitornia. Three of the cities start with the word “San™: San
knowledge is generally viewed as a necessary adjunctto SUCCESS, 5 san Francisco, and San Jose. Assume these three words
Usually, each word is represented in the lexicon as a sequenceghyesented 6%, 11%, and 3% respectively of the total instances
phonemes, and in some systems a phonological rule framewolSIF Cal Cities in the training set. TheniNA’s grammar would
permits the expansion of lexical entries to explicitly account f%xpect the “subworld” CaCities to start with the word “San”
pho_nological effects like flapping or_devoicing [11, 15_, 13, 41]with a 20% probability (6 + 11 + 3). “San” would advance to
Typically the rules are precompiled into the lexicon, yielding any o of three possibilities: “Diego” (30%), “Francisco” (55%),

expanded lexicon of alternate pronunciations. and “Jose” (15%). All of these paths would end (and exit the

For language models above the word level, the usual choice%‘bWQr'd) _with probability 1.0. The net result is probabilisti-
classn-grams, where words are grouped into semantic class€glly identical to what would be produced by a clasgram,

and each instance of a class member is viewed as representiff? these three city names lexicalized via underbars. The anal-
all words in the class [29]. For instance, the month names, JaRdY Preaks down above the preterminal layer, however, since the

uary, February, etc., form a natural class, and every time any ofLCities preterminal would be likely to itself occur in several
different subworlds, and in each subworld it would have a unique

TFollowing established conventions, we denote phonemes with // and phon%ObabiliSti‘? charagt_erization, based on its freque_n‘?y of occur-
with []. rence after its specified subworld-dependent left siblings.




sentence
full _parse
g-subject: Generator do_question Activator
which meal do subject predicate
flight_event vp_serve
aflight serve| meal.object: Absorber
flight flight_.number
what meals does| flight [ nine [ sixty | three | serve <trace>

Figure 4: TINA parse tree for the sentenceWhat meals- does flight nine sixty three servetrace>." The <trace> terminal is
linked to the initial gsubject via an explicit trace mechanism. See text for details.

sentence three serve<trace>?" This works via an implicit partnership
full _parse among three privileged nodes in the parse tree structure, a “gen-
do_question erator” (gqsubject), an “activator” (dajuestion), and an “ab-
do subject predicate sorber” (mealobject), as shown in Figure 4. The activator passes
flight _event vp_serve along to its descendents the generated constituent, and if no ab-
aflight serve | mealobject sorber picks it up the parse is rejected. The language model
flight flight_-number mealtype predicts the trace marker after “serve” with a probability of 1.0
does| flight | nine | sixty | three | serve dinner (having confirmed a semantic match on “food” for the proposed

trace). The two example parse trees in Figures 3 and 4 can share
the majority of their rules, while still disallowing the inappro-
Figure 3: TINA parse tree for the sentence “Does flight ninepriate generalizations “what meals does flight nine sixty three
sixty three serve dinner?” The highlighted categories are inserve dinner?” and “Does flight nine sixty three serve?” Such
volved in a trigram probability discussed in the text. rule sharing is important to reduce computation and to amelio-
rate sparse data problems in training.

In the grammars we have writtemNA’s categories are very e
specific near the leaves of the parse tree, but become increé"ss' Feature Unification

ingly general at higher levels. Near the top the nodes are mostly

syntactic in nature, with category labels such as “subject” andi/NA also has a mechanism to enforce syntactic constraints on
“predicate.” It is important to explicitly encode syntactic as wellfeatures such as number (singular, plural) and verb mode (finite,
as semantic structure, in order to impose additional regularity di9ot, past participle, etc.). For instance, in the parse tree shown
the grammar leading to well formed meaning representation®! Figures 3 and 4, the auxiliary verb “does” sets the mode to
and to help the grammar developer organize a systematic meng “root.” This feature is passed along passively to the main

model of the structure. verb, and enforces the selection of “serve” rather than “serves” or
“serving.” These features not only provide constraint to the rec-
4.1. Example Parse Tree ognizer but can also be essential in some cases to disambiguate

redundant parse solutions, where alternatives with incorrect fea-

An example parse tree fannNA is shown in Figure 3 for the tyre values would lead to erroneous meaning representations.
sentence, “Does flight nine sixty three serve dinnerNAT's bi-

grams within parent classes can also be interpreted as trigraq}ls ;

with both a temporal and a spatial component. Within phrasa 4. Robust Parsing

groups they behave very similarly to a class bigram, but across ) . )

major syntactic boundariesINA can capture the appropriate In conversational speech, people often V|0Ia_te th_e _strlct rule_s of
constraint much more effectively by explicitly representing probSyntax. Furthermore, even for narrow domains, it is essentially
abilities in the higher layers of the parse tree. Thus, in the exanf"P0ssible to write a grammar that fully covers all the ways
ple, even a trigram language model would be ineffective at pré2€0Pl€ can ask questions. In our grammars, we generally in-
dicting the word “serve” based on the two numerals preceding i_glude _mechanlsms to cope W|_th parse failure that involve licens-
TINA’s prediction of “serve” is mostly carried by the prediction "9 Skippable words, and piecing parsed fragments together. The
of the “vp_serve” category just below the predicate layer. Theperplexny_ is generally very hlgh atthe seams between fragments
probability that is measured is the likelihood of a predicate ca@nd/or skipped words, so it is a mechanism to be used conserva-

egory beginning with the semantic class “sprve” conditioned tively, if possible. It is also sometimes difficult to infer how to

on the left-sibling “flightevent.” combine the fragments to form a coherent meaning representa-
tion. We make use of explicit tables of appropriate noun-attribute
4.2. Long Distance Movement relationships to aid in the process of constructing a coherent

frame from fragments. The mechanism is viewed as a sentence-
TINA is able to exploit long-distant constraints through the useternal discourse mechanism, and utilizes procedures that are
of a trace mechanism to explicitly model movement. Consideshared with the normal sentence-to-sentence history mechanism
for example the sentencesxWhat meals- does flight nine sixty [34].



4.5. Portability Issues servations of common words that have the same local phonetic
environment. And words that are completely unknown to the

At this point we have developed grammars that support convefecognizer can be generated with a non-zero probability by fol-

sational systems in several distinct limited domains: a city guidewing the parse tree fragments of words with localized equiva-

for Boston and vicinity [14], a flight travel planning and reserva4ent patterns. For example, “queen” can be decomposed into the
tions system [44], a weather information system [45], a systemnset of “quick” and the rhyme of “seen.”

for accessing classified ads for used cars [25], and a restaurant

guide [37]. These are all clearly very narrow domains, and it i§1 ANGIE, we currently represent our lexicon in two tiers —
possible that the focus on such restricted systems has led us to ¥6rds are entered as sequences of “morftesid morphs are
lutions that would not generalize to all of English. However, forin turn entered as sequences of phonemes. The morphs are es-
the foreseeable future, our group will continue to focus on suckentially syllabic units specially marked for spelling and posi-
narrow domains, so these systems have provided examples of ff@hal constraints. We currently distinguish for English five dif-
degree of complexityINA will be required to handle in domains ferent possible morph positions: prefix, stressed root, unstressed
of interest to us. While | cannot yet visualize the possibility of #00t, “dsuf” and “isuf®. Context-free rules encode positional
fully automatic procedure for acquiring new grammars, nonethé&onstraints for the morph units — for example, unstressed root
less we are genera"y able to reuse |arge portions of prior grarﬁJ.WayS follows Immedlately after stressed root, and isuf’s are al-
mars in new domains, particularly as the conceptual view of th@ays terminal.

rammar structure becomes more stabilized. For example, we . . o .
gram : - P€, W& mentioned previously, it is often not obvious where to place
can insert entire subgrammars to handle time rules, date rule

and number rules. which recur in manv of our domains s?lllable boundaries in English words. There are many cases
’ y ' of ambisyllabicity, where it is not clear whether the intermedi-

ate consonant belongs with the preceding or following syllable.

>. LINGUISTIC HIERARCHIES BELOW Placement of the boundary can also be influenced by the underly-
THE WORD LEVEL ing morphology —when there is a clear inflectional ending we do
not attempt to shift the terminal consonant of the root into onset

The purpose for building hierarchical structure below the wor osition, even though this would be in accord with a maximal-

levelis _multifold. One main goal is to develop a_Ianguage _m_od_ nset rule. Hence “dancing” becomes “danc ing” rather than
to predlc_t phone sequences of the language \.N'thom explicit tleaan cing”. Often we introduce a double consonant as a means
to a particular vocabulary. A bottom-up parsing procedure ha& implementing explicit ambisyllabicity, which reduces via a
_the important property that_lt su_pports significant structure shar- mination rule to a single phonetic realization. Hence, “con-
ing among words that begin with the same phone sequence. ct” becomes “con- nect” with two /n/ phonemes at the phone-

words are furthe_r_decor_nposed into syllable_s, V.VhiCh then fo.”ﬂﬂc layer reducing to one at the phonetic layer. This makes
the basic recognition gnlt, even greater_ sharing is possible, SINfife boundary between the word-internal syllables behave anal-
words such as “retention” and “contention” can share every'[hlnggously to boundaries between word sequences like “on next”

except their prefix in common syllable nodes. or “seven nine.” Such lexicalized geminations are nearly always

Another important goal is to model phonological rules in a train2ssociated with a spelling that includes a doubleton letter “nn.”
able probabilistic framework. The phonological phenomena arg 1
captured through simple contefkee rules, but the probability -+
model allows the system to learn the appropriate context condk
tions for the rules automatically from aligned corpora.

Example Parse Tree

NGIE's framework supports two sets of terminals with shared
parse trees above the terminal layer. The preterminal layer con-

ANGIE'S language model, while restricted to phone-to-phoné2ins the phonemic sequence exactly matched to the entries in
transitions, is very powerful, and captures generic linguistiéhe two-tiered lexicon. The terminals are either the letters of the

knowledge of English while a partial word is under construction$Pelling of the word or the phones of the particular spoken real-

We have determined empirically that, within tagis domain, ization. Thus letter-to-sound and phonological rules are licensed
ANGIE is able to achieve a significantly lower perplexity on un-on the preterminal-to-terminal mappings. The upper layers cap-
seen data than a phone trigram similarly trained [21]. Once e syllabification, morphology, and stress.

word is completed, higher level language models can be incoE

ted I llable/word dfull i “xample parse trees &kNGIE for the word “commission” were
porated as well (€.g., syllable/worggrams and full parse trees). given in Figure 1 (letter terminals) and 2 (phone terminals). The

The substructure that is capturedAnGIE's grammar rules in-  Word decomposes into a prefix (com-) a stressed root (mis+) and

cludes morphology, stress, syllable structure, and phonologic@h uUnstressed root (sion). Phonemically, there are both a final

effects. AsinTINA, probabilities are trained automatically from /m/ for the prefix and an onset /m!/ for the root. These geminate

a parsed corpus. However, in the caseanBIE, the training i the phonetic realization into a single [m]. ([-m] is a code for

data are a little more difficult to obtain, since it is not nearly deleted in the context of preceding [m]"). Similarly, the “mis+

as straightforward to provide a phonetic transcription as it is t§nit ends phonemically with an /s/. The /s/ is palatalized to a [sh]

provide an orthography. We have used the approach of seeding— S o

on phonetic transcriptions provided by automatic alignment of 8This follows roughly the definition given in [2], p. 24, which is a representa-
L . . tion of morphological units such as prefix and root that is also tied to the word’s

training data using ousUMMIT speech recognizer [12, 15]. spelling.

- .. .. 9“dsuf” roughly corresponds to “derivational suffix,” and “isuf” to “inflec-

The shared pro_ba}blllty model is important for generall_zmg Ph€gonal suffix,” but we are willing to violate strict conventions for pragmatic rea-

nomena over similar contexts. Rare words can benefit from obkens.




Word Lexicon sentence

commission com- mis+ sion word

mister mis+ ter sroot uroot sroot2

mansion man+ sion nuclax+ | coda| uonset| nuc| onset | Inuc+ | Icoda
ih+ n tt | r | ow d! uw+ s

Morph Lexicon ih n [-n] x| -x[del[d]| uw s

com- kl em in+ tro duce+

man+ m! ae+n

mis+ m! ih+s

sion sh! en Figure 6: ANGIE parse tree for the word “introduce,” showing

ter tler phonological rules expressed in preterminal-to-terminal map-

pings. The morph sequence is shown below the terminal phones.

Figure 5: Selected entries from a word and morph lexicon for

sentenc sentenc
ANGIE. word n— t! word
sroot T uroot
at the phonetic level, with the onset /sh!/ of the “sion” marked as coda -n uonset
deleted. Figure 5 illustrates how sharing of subword units can be n t
achieved, using the examples “mis+" and “sion.” nj—n Nl =

5.2. Lexicon Creation Figure 7: Schematic of probability model iRNGIE, and its ac-

ANGIE relies heavily on the availability of a specifically pre- cou_nting of the context conditions for t-deletion in words such
pared two-tiered lexicon, in which words are represented ifiS introduce.

terms of their underlying morphs. We have already obtained,

through careful hand-editing, a seed lexicon of some 10'0%)1&& 1t!/ can be realized as “[-n]",

. meaning “/t/ in onset position
words, derived from the common words of the Brown corpuaE

an be deleted after [n].” The probability model captures the im-
ortant context conditions — falling stress and following schwa.
The deletion of the /ow/ is predicated on the realization of the
Preceding Irl as a retroflexed schwa ([rx]).

[20] augmented with words from some of our conversation
domains such asTis andJuPITER We are in the process of
converting all the words of Pronlékinto ANGIE’s lexical for-
mat [28]. We are utilizing a semi-automatic process which firs
parses the letters of each word into a set of hypothesized phorégure 7 illustrates the context conditions that are learned, with
mic alternatives, and then parses the phonetic units as providestjard to this t-deletion rule. The column above the [n] encodes
by Pronlex into phonemes, constrained by the choices producedda position in a stressed syllable. It predicts a deletion after [n]
by the letter-parsing step. with no awareness of which phoneme actually follows. The tri-
gram column-building step decides which phoneme was deleted.
Sther possibilities would be /t/, /d/, /d!/, and /n/. The training

generic morph-based recognizer fo_r general IIEngllsh. A Phongscedure would collapse together the /t/ deletion here with other
logical model would need to be trained on a large corpus sucly i, environments, such as “integrate,” “cantaloupe,” “enter-

as Wall Street Journal. There would still be some possibility,;. » «ganta Clause” “hunter” and “pantyhose.” The column
of unseen morphs in new material, but these would likely b%\bove the [-n] would learn through training that it is rarely fol-

covered generatively by th(_e r_ule base. We also believe the Ie_)ﬂ}wed by anything other than [ax], [rx], and [ix]. The system
con would be usef_ul for training a_Iett_er-to-s_o_und s_ystem. plt'i/vould thus learn from examples that the right context must be a
mately, we would like to augment it with additional information schwa, but it could be front, back or retroflexed. This “fact’ was

such as part-of-speech,_ gnd perhaps add feature prOpagatior?\B‘?informed by any rule, but rather discovered from observation
ANGIE's framework to utilize such features. Of course the autog training data

matic procedures are not error-free, so extensive hand correction
is required to perfect the lexicon. This work is ongoing. 5.4. Duration Modelling

We hope to use the resulting morph lexicon as a basis for

” o

5.3. Phonological Rule Expression ANGIE’s parse trees can provide access to intermediate struc-
, . . . _tures within words, which can be useful for characterizing
ANG'.ES ability to encode and generalize phc_)nologlcal rules i rosodic information. Thus far we have only attempted to char-
best illustrated through an example. Consider the parse tr terize prosody througtiming measures. However, we have

Shﬁ{YV” n Flgur“e 6 for the woro_l “introduce” pronounced Cafua”%und that significant improvements in both phonetic recogni-
as “innerduce.” The two special phones [-n] and [-rx] are “dele:.

- . tion and word spotting can be gained through the use of relative
tion” phones, meaning that they occupy no temporal space ar&%

X X Ly ration models relating parents to children at all layers of an
havg no acoustic m0(_jel. The deletion category is tied to the PrNGIE parse tree [7, 8]. The approach is to normalize the du-
ceding phone’s identity. The grammar developer would Speclf}'ation of each constituent in the parse tree with respect to its

10A pronunciation lexicon for the words in the Comlex lexicon, produced ancParthUlarCh”dren and then to measure the portion it occupies

distributed by the Proteus Project at New York University, under the auspices & ItS parent's tOtal_duration- The procedure _prOPagates to the
the Linguistic Data Consortium (see http://www.ldc.upenn.edu). top of the tree to yield a word-by-word speaking rate parameter,




which can then be folded back into the phonemic layer to tightenizers, with the final decision mediated by an informed top-level
the distributions on absolute phoneme duration. This too leadlection algorithm, that should take into account dialogue con-
to improved overall recognition. We believe that this direction otext.

research has many as yet unexplored branches, both in terms of _ ) ) o
incorporating hierarchies above the word level and in incorporat/é have thus far trainedNGIE's phonological modelling in

ing other prosodic measures such as fundamental frequency &y o domains: Ais andJUPITER As we acquire a broader
energy. Now that we have a framework that includes ot base of telephone quality speech from users of our evolving con-

andANGIE parse trees in an integrated environment, we shoul¢ersational systems, we could trainGIE's phonological mod-

be able to begin to explore this rich research area. els on material covering all of the domains combined. This
would permit us to develop a core syllable/morph-based recog-
6. UNIEYING THE HIERARCHIES nizer that would hopefully produce a high quality phone lattice,

which could then be processed efficiently in a second stage by

It is at the present time not obvious to me what is the “optinultiple domain-specific systems, each integrating witta's

mum” design of a recognition system that supports integratioffainéd grammar as well and specializing in one of many appli-
of linguistic hierarchies into the recognizer search. There afédtion domains. We think such a system would allow a user to
a number of issues involved, which mostly break down int¢Xplore several topics of interest in a single phone call. Thus
the question of prioritizing the various constraint applicatiorflomain-dependencies would be introduced within a computa-
steps. For example, we have determined empirically that hiefionally tractable second stage of processing, yielding a more
archical duration modelling is far more effective when app"e(jlexmle recognition capability than exists in our current systems.

late rather than early, presumably because itmakesassumpti(ghsch domain-dependent recognizer would have domain-

about word structure that are utilized in its scoring process. LirEpeciaIized versions of BINA grammar, along with a generic
ngti.C processing above the word level is computationa_llly EXANGIE grammar that has however been trained on a domain-
PEnsive, and_ therefore should pr_ob_ably be delayed_untn IOW‘:cfependent corpus. The probabilities on higher level nodes in the
level constraints have alrgady_ e!lmlnated large portions O_f the A grammar could be adapted to reflect dialogue context— for
search space. ThEN_G_'E linguistic model COU'O_' quite eas!ly example enhancing the probabilities on a “price” category when
be converted into a finite state network, especially if restricteq system asks for a price range. Furthermore, botiTithe

to gyllables or _m_orphs as the highest Iev_el recognition units. And theaANGIE grammars could be adjusted to account for ma-
b_e_lleve a promising choice as a first step is to train up the probgs g being presented to the user. When the system displays a
bility space OfANGIE from a Ia_rge corpus OT aligned af?‘?‘ parsedl-st of restaurants it could add them to battnAa’s andANGIE’S
_phonet_lc data, anc_i precompile the resulting probability mod_ ocabularies, while at the same time adjusting upwards the prob-
into a right-branching network of phone sequences representingyjiies associated with restauramme. A very preliminary

all syllables/morphs of the domain/language. Subword ”ngu'séxploration into some of these ideas is discussed in [23].
tic probabilities would be associated with each branch. This net-

work could be incorporated into a recognizer to produce a syll&ralse starts and unknown words are very challenging aspects of
ble lattice, supported by a syllabtegram (or perhaps a morph spontaneous speech recognition in limited domains. False starts
n-gram) as further linguistic constraint. are fortunately usually prosodically marked; the search space

. . , Pecomes explosive if they are permitted to occur anywhere.
A promising approach we are exploring currently is to use a syl \ 4,5 models would support an abort part way through word
lable recognizer to produce a shéftbest list and then use this

. . i X substructure, given a prosodically signalled break, and it is con-
_N-be_st list as a strong filter on a phonetic lattice [9]. The resultzoy apie tharina's grammar could be used effectively to restrict
ing highly pruned lattice can then be process'ed through a S?Coﬁ'ﬂ{e possibilities after a false start to be a restart of all partial the-
stage search whereNGIE and TINA are both included in their ories currently under construction.

entirety, with words as the point of conjunction between bottom-
up (ANGIE) and top-downTINA) processing. Hierarchical dura- The ANGIE system, due to its generative model, permits the
tion modelling and any more refined prosodic modelling that weovel construction of syllables and syllable sequences unknown
hope to develop for future systems could also be applied at this its explicit lexicon. Therefore, theoretically, there is no prob-
stage. We believe this approach is feasible in a real-time systetem with proposing an unknown word bottom-up, although its
which is a necessary constraint for the conversational systerpsobability would likely be low. TNA can easily support un-

we are developing. known words in proper noun classes, and it is conceivable that
the sentential context would even in some cases lead to the cor-
7. FUTURE CHALLENGES rect class selection. The system, having identified the class,

could then query the user for more information — “I'm unaware
Through the development of our conversational systems we hagethis restaurant; could you spell it for me?” TARGIE System
become increasingly aware of the need to design recognizers thguld then combine the spoken letter sequence and the phonetic
support multiple domains and flexible vocabulary within eaclsequence obtained from the original utterance into a set of plau-
domain. They should also be able to deal with unknown wordsible spellings that could be matched against restaurant names
and false starts that involve partially uttered words. We woulgh available databases. We have not yet attempted to implement
like to design the recognizer such that there is a core engine thiese ideas, but much of the infrastructure is currently in place
produces a manageable-sized high quality phonetic lattice indgy make it possible to explore them.
pendent of the domain and/or vocabulary. This phonetic lattice
Cou|d then be processed by a Suite Of domain_dependent recé\éany researchers believe |t Should be pOSSib|e f0r a SyStem to



acquire a formal grammar automatically from a large set of ext0. K. W. ChurchPhrase-Structure Parsing: A Method for Tak-
ample sentences. | have little hope that this is possible in the nearing Advantage of Allophonic Constraint8h.D. Thesis, De-
future, particularly when there are many ways in which an inap- partment of Electrical Engineering and Computer Science,
propriate bracketing can yield a pathological meaning represen- MIT, Cambridge, MA, 1983.

tation. However, | do believe it would be feasible to propagate .

lexical semantic classes (as in George Miller's WordNet [24]}1- M- H. CohenpPhonological Structures for Speech Recog-
up into a syntactic tree, in order to produce a semantic grammar nition, Ph.D. Dissertation, U. of California, Berkeley, CA.,
semi-automatically, and this could be a powerful technique for 1989.

expedit_ing the process of constructing rich grammars for morgy 3 Gjass, J. Chang, M. McCandless, “A probabilistic frame-
unrestricted domains. work for feature-based speech recognitid®rdc. ICSLP '96
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