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N-body Problem

The Newtonian N-body problem of celestial mechanics concerns the
motion of N point masses governed by a second order differential
equation system.

miq̈i = −
N∑

j=1,j 6=i

mimj

|qi − qj |2
(qi − qj)
|qi − qj |

where qi, i = 1, · · · , N is the position of i-th body with mass mi. |q|
denotes the Euclidean distance.
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What we want to do

The original motivation for our work is practical and
aesthetic: we want to have a concise and effective
method not only to numerically search many
different types of new periodic motions for general
n-body problem but also to theoretically prove the
existence of these solutions.
Two type of problems: (1) Design or recover a
periodic orbit. (2) Explore a new periodic orbit.
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The Variational method

Let L(q, q̇) = K(q̇) + U(q) be the Lagrangian function, where

K =

N∑
i=1

1

2
mi|q̇i|2, U =

∑
1≤i<j≤N

mimj

‖qi − qj‖
. Then Newton’s equations

are Euler-Lagrangian equations of the action functional:

A(q) =

∫ T

0

L(q, q̇)dt.

We are looking for an minimizer of A(q).

A(q0) = min
q∈P
A(q).

Critical points of A in P = H1([0, T ], (Rd)N ) are solutions of the
n-body problem (w/ or w/o collisions).
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A brief History

In the 1740s it was constituted as the search for solutions (or at least
approximate solutions) of a system of ordinary differential equations by
the works of Euler, Clairaut and d’Alembert . Much were developed by
Lagrange, Laplace and their followers, the mathematical theory entered a
new era at the end of the 19th century with the works of Poincare and
others.

Poincare (C. R. Acad. Sci. 1896): Minimize A(q) among planar loops in
a homology class. Collision loops can have finite action.

Gordon (Am. J. Math. 1977): Keplerian orbits with the same masses

and least periods have the same action values.
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A brief History

Chenciner-Venturelli (Cel. Mech. Dyn. Ast. 2000)
Chenciner-Montgomery (Ann. Math. 2000)
K.C. Chen (ARch. Rat. Mech. Ana. 2001,2003, 2006)
Ferrario-Terracini (Invent. Math. 2004)
Venturelli-Terracini (Arch. Rat. Mech. Ana. 2007)
Barutello-Terracini (Nonlinearity 2005)
Ferrario (Arch. Rat. Mech. Ana. 2006, Adv. Math. 2008)
Barutello-Ferrario-Terracini (Arch. Rat. Mech. Ana. 2008)
Deng, Zhang and Zhou (Science in China 2010)
Fusco-Gronchi-Negrini (Invent. Math. 2011)
Chen-Ouyang-Xia (Mathematical Research Letters, 2012)
· · · , · · ·
There are many other references which use variational method to find
new periodic solutions.
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The Method We Used

Variational Method with Structural Prescribed Boundary Conditions
(SPBC): Consider Boundary Value Problem

miq̈i = −
∑

1≤i<j≤N

mimj

|qi − qj |3
(qi − qj) =

∂U

∂qi
,

q(0) = A, q(T ) = B,

where A = (aij) ∈M (n×d), B = (bij) ∈M (n×d), are the matrices of
n× d.
Let P(A,B) be the set in function space of H1([0, T ]→ Rn),

P(A,B) = {q ∈ H1, | q(0) = A; q(T ) = B}.
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Now consider the minimizing problem

A(A,B) = min
q∈P(A,B)

A(q).

By theorems of Marchal and Chenciner, the corresponding minimizer
q0(·,A,B) of above variational problem is a collision free solution in the
interior (0, T ) of the Newton’s equations:

miq̈i = −
∑
j 6=i

mimj

|qi − qj |3
(qi − qj),

with the boundary condition

q(0) = A; q(T ) = B.

A(A,B) is a function of A and B.
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Can the minimizer q0(·,A,B) be extended to a periodic solution of the
N -body problem or to an orbit we want?

Yes! How to find such boundary condition (A,B)?
The method to find such boundary condition is to do a second
minimizing process under appropriate SPBC G(A,B) = 0:

min
{G(A,B)=0}

A(A,B) = min
{G(A,B)=0}

min
q∈P(A,B)

A(q)

The conditions G(A,B) = 0, represent the geometric and topological
structure of the preassigned orbits of the N-body problems. Intuitively,
the second order nonlinear ODE system has unique solution for the initial
value problem, i.e. the initial position and initial velocity contains all of
the information for its future motion. Now we replace them with special
boundary value with G(A,B) = 0.
Find the right condition G(A,B) = 0 for our preassigned orbit will be
very important.
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Periodic Solutions

A simple choreographic solution (for short, choreographic solution) is a

periodic solution that all bodies chase one another along a single closed

orbit.

If the orbit of a periodic solution consists of two closed curves,

then it is called a double-choreographic solution. If the orbit of a

periodic solution consists of different closed curves, each of which is the

trajectory of exact one body, it is called non-choreographic solution.

Many relative equilibria give rise to simple choreographic solutions and

they are called trivial choreographic solutions (circular motions).
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Main Theorem (Ouyang and Xie)

Assumptions or settings: We assume m1 = m3 and m2 = m4 and let
µ = m2

m1
. Let Γ = R6 and the rotation matrix

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

SPBC: Given ~a = (a1, a2, · · · , a6) ∈ Γ, two fixed configurations are

defined by Qstart =


0 −a3

−a1 a2

0 −m2a2−m4a2+m1a3
m3

a1 a2

R(θ), and

Qend =


a4 a5

0 −a6

−a4 a5

0 −m1a5−m3a5+m2a6
m4

 . So the configuration of the

bodies changes from an isosceles triangle with one on the axis of
symmetry to another isosceles triangle for some positive ~a.

T. Ouyang, Z. Xie Periodic Solutions to the Planar Four-body Problem



Introduction
A variational method with SPBC

Many stable choreographic solutions of Planar 4-body problem

Main Theorem
Outline of the Proof
Numerical simulations of some interesting orbits

Main Theorem (Ouyang and Xie)(Continued)

Approach: Two step minimizing process:
Step 1: For a given ~a = (a1, a2, · · · , a6) ∈ Γ = R6. Then the set S(~a)
of minimizers is defined by

S(~a) = {q(t) = (q1, q2, q3, q4)(t) ∈ C2((0, T ), (R2)4)
∣∣ q(0) = A, q(T ) = B,

q(t) is a minimizer of the action functional A over P(A,B)}.

Step 2: Then the real value function Ã(~a) : Γ→ R is well defined by

Ã(~a) =

∫ T

0

1

2

n∑
i=1

mi‖q̇i(t,~a)‖2 + U(q(t,~a))dt.

Let ~a0 = (a10, a20, · · · , a60) ∈ Γ be a minimizer of Ã(~a) over the space
Γ and the corresponding path q∗(t) = q∗(t,~a0) ∈ S(~a0), i.e.

Ã(~a0) = min
~a∈Γ
Ã(~a) = min

~a∈Γ

{
inf

q(t)∈P(Qstart,Qend)
A(q(t))

}
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Main Theorem (Ouyang and Xie)(Continued)

Results: For any given (θ, µ) ∈ Ω and θ 6= π, there exists a minimizer
~a ∈ Γ of Ã over the space Γ, such that, the corresponding minimizing
path q∗(t) on [0, T ] connecting q(0) and q(T ) can be extended to a
non-homographic solution q(t; θ, µ) (for short q(t)) of the Newton’s
equation by the extension formula. Each curve qi(t), t ∈ [4kT, (4k + 4)T ]
is called a side of the orbit since the orbit of the solution is assembled out
the sides qi(t), t ∈ [0, 4T ] by rotation only. The non-homographic
solution q(t; θ, µ) can be classified as follows.
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Theorem (Classification)

The non-circular solution q(t; θ, µ) can be classified based on the rotation
angle θ and mass ratio µ as follows.
(1) [Quasi-Periodic Solutions] q(t; θ, µ) is a quasi-periodic solution if θ
is not commensurable with π. (θ, µ) = (1.1π, 2)
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Theorem (Classification)

(2) [Periodic Solutions] q(t; θ, µ)is a periodic solution if θ = P
Qπ, where

the positive integers P and Q are relatively prime.

When Q is even, the periodic solution q(t; θ, µ) is a
non-choreographic solution. Each closed curve has Q

2 sides. The
minimum period is T = 2QT . (θ, µ) = (13π

12 , 0.8)
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Theorem (Classification) Continued

When Q is odd, there are four cases.
Case 1: If µ 6= 1, the periodic solution q(t; θ, µ) is a
double-choreographic solution. Each closed curve has Q sides. The
minimum period is T = 4QT . Body q1 chases body q3 on a closed
curve and body q2 chases body q4 on another closed curve.
q1(t+ 2QT ) = q3(t) and q3(t+ 2QT ) = q1(t). q4(t+ 2QT ) = q2(t)
and q2(t+ 2QT ) = q4(t). (θ, µ) = (6π

7 , 0.8)

T. Ouyang, Z. Xie Periodic Solutions to the Planar Four-body Problem
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Theorem (Classification) Continued

case 2: If µ = 1 and P is odd , the periodic solution q(t; θ, µ) is a
double-choreographic solution with minimum period T = 4QT . Body q1

chases body q3 on a closed curve and body q2 chases body q4 on another
closed curve.(θ, µ) = ( 7π

9 , 1)
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Theorem (Classification) Continued

Case 3: If µ = 1, P is even and the initial configuration q(0) is
geometrically same to the ending configuration q(T ) then the periodic
solution q(t; θ, 1) is a choreographic solution. The closed curve has Q
sides. The minimum period is T = 4QT .(θ, µ) = ( 4π

5 , 1), ( 6π
7 , 1)
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Theorem (Classification) Continued

Case 4: If µ = 1, P is even and the initial configuration q(0) is not
geometrically same to the ending configuration q(T ), i.e.
(a10, a20, a30) 6= (a40, a50, a60), then the periodic solution is a double
choreographic solution. Each closed curve has Q sides. The minimum
period is T = 4QT . Body q1 chases body q3 on a closed curve and body
q2 chases body q4 on another closed curve. q1(t+ 2QT ) = q3(t) and
q3(t+ 2QT ) = q1(t). q4(t+ 2QT ) = q2(t) and q2(t+ 2QT ) = q4(t).
(θ, µ) = (4π

5 , 1)
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Theorem (Linear Stability)

If θ = 2P−1
2P π and µ = 0.5, 1, 1.5, the non-choreographic solutions q(t)

are linearly stable for P = 3, 4, 5, · · · , 15. If θ = 2P
2P+1 and µ = 0.5, 1.5,

the double choreographic solutions q(t) are linearly stable for
P = 2, 3, · · · , 15. If θ = 2P−1

2P+1 and µ = 1, the double choreographic
solutions q(t) are linearly stable for P = 4, 5, 6, · · · , 15.

Remark: A periodic solution of the planar n-body problem has eight
trivial characteristic multipliers of +1. The solution is spectrally stable if
the remaining multipliers lie on the unit circle and linearly stable if, in
addition, the monodromy matrix restricted to the reduced space is
diagonalizable.

Most important to astronomy are stable periodic solutions which means

that there is some chance that such periodic solutions might actually be

seen in some stellar system.
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Conjecture (Linear Stability)

For every (θ, µ) ∈ Ω in the main theorem, if θ is
commeasurable with π, there is a linear stable
periodic solution. A minimizer who has smaller
action is more likely stable

Proof??? Need to develop some new methods such
as index theory...
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Outline of the Proof

The proof of the theorem consists of several lemmas.

Lemma 1 (Existence)

For θ ∈ (0, 2π)\{π2 , π,
3π
2 }, Ã(~a)→ +∞ if |~a| → +∞. There exists a

minimizer ~a0 = (a10, a20, · · · , a60) ∈ Γ of Ã(~a) over the space Γ and the
corresponding path q∗(t) = q∗(t,~a0) ∈ S(~a0).

Lemma 2 (Noncollision)

For θ ∈ (0, 2π)\{π2 , π,
3π
2 }, let ~a0 be a minimizer of Ã(~a) over the space

Γ and the corresponding path q∗(t) ∈ S(~a0). Then q∗ satisfying SPBC is
a classical collision-free solution of Newton’s equation in the whole
interval [0, T ].

T. Ouyang, Z. Xie Periodic Solutions to the Planar Four-body Problem
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For θ ∈ (0, 2π)\{π2 , π,
3π
2 }, Ã(~a)→ +∞ if |~a| → +∞. There exists a

minimizer ~a0 = (a10, a20, · · · , a60) ∈ Γ of Ã(~a) over the space Γ and the
corresponding path q∗(t) = q∗(t,~a0) ∈ S(~a0).

Lemma 2 (Noncollision)

For θ ∈ (0, 2π)\{π2 , π,
3π
2 }, let ~a0 be a minimizer of Ã(~a) over the space

Γ and the corresponding path q∗(t) ∈ S(~a0). Then q∗ satisfying SPBC is
a classical collision-free solution of Newton’s equation in the whole
interval [0, T ].
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Lemma 3 (Extension)

For any minimizer ~a ∈ Γ of Ã over the space Γ, the corresponding
minimizing path q∗(t) on [0, T ] connecting q(0) and q(T ) can be
extended to a classical solution q(t) = (q1(t), q2(t), q3(t), q4(t)) of the

Newton’s equation by the reflection B =

(
−1 0
0 1

)
, the permutation

σ and the rotation R(θ) as follows: q(t) = q∗(t) on [0, T ],

q(t) = (q∗3(2T − t), q∗2(2T − t), q∗1(2T − t), q∗4(2T − t))B on (T, 2T ],

and

q(t) = σk(q(t− 2kT ))R(−2kθ) for t ∈ (2kT, (2k + 2)T ] and k ∈ Z+,

where σ = [3, 4, 1, 2] is a permutation such that
σ(q(t− 2T )) = (q3(t− 2T ), q4(t− 2T ), q1(t− 2T ), q2(t− 2T )).
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Lemma 3 (Extension) Proof 1:

Because q∗(t) is a classic solution of Newton’s equation on [0, T ], it is
easy to check that q(t) is a classical solution in each interval
((n− 1)T, nT ) for any given positive integer n. To prove q(t) is a
classical solution for all real t, we need to prove that q(t) is connected
very well at t = nT for any integer n, i.e.
limt→(nT )− q(t) = limt→(nT )+ q(t) and
limt→(nT )− q̇(t) = limt→(nT )+ q̇(t).
By the structure of the extension equation, we only need prove it for
n = 1 and n = 2.
By the SPBC, q(t) fits well at the end point. As for velocity, it is
equivalent to, at t = T

q̇11(T ) = q̇31(T ), q̇12(T ) = −q̇32(T ), q̇22(T ) = q̇42(T ) = 0,

and at t = 2T ,

q̇1(0) = (q̇11(0),−q̇12(0))R(2θ), q̇2(0) = (q̇41(0),−q̇42(0))R(2θ),
q̇3(0) = (q̇31(0),−q̇32(0))R(2θ), q̇4(0) = (q̇21(0),−q̇22(0))R(2θ).
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Lemma 3 (Extension) Proof 2:

Consider an admissible variation ξ ∈ P(A,B) with ξ(0) ∈ A and
ξ(T ) ∈ B, then the first variation δξA(q) is computed as:

δξA(q) = lim
δ→0

A(q + δξ)−A(q)

δ

=

4∑
i=1

mi < q̇i, ξi >|t=Tt=0 +

∫ T

0

< −miq̈i +
∂

∂qi
(U(q(t))), ξi > dt.

Because the first variation δξA(q) is zero for any ξ, and q satisfies
Newton’s equation, we have

δξA(q) =

4∑
i=1

(mi < q̇i(T ), ξi(T ) >)−
4∑
i=1

(mi < q̇i(0), ξi(0) >) = 0.
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Lemma 3 (Extension) Proof 3:

By choosing appropriate admissible variation ξ ∈ P(A,B), we are able to
prove the extension q(t) connects very well at t = nT . More details...
(see our paper).
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Some interesting orbits are discovered by the Variational Method with
SPBC. Simulations by giving initial positions and velocities.
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If you are interested in the simulations or you would
like to run simulations for your own initial data, you
can visit my homepage at
http://sest.vsu.edu/∼zxie/.
Another online simulation on our paper is at
http://www.princeton.edu/∼rvdb/WebGL/OuyangXie.html by
Professor Robert Vanderbei at Princeton University.
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Thank you very much for your attention!
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