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Abstract

Due to run size constraints, near-orthogonal arrays (near-OAs) and supersatu-

rated designs, a special case of near-OA, are considered good alternatives to OAs.

This paper shows (i) a combinatorial relationship between a mixed-level array and a

non-resolvable incomplete block design (IBD) with varying replications (and its dual,

a resolvable IBD with varying block size); (ii) the relationship between the criterion

E(d2) proposed by Lu and Sun (2001) or E(fNOD) proposed by Fang et al. (2003)

used in the (near-) OA construction and the (M,S)-optimality criterion used in the

IBD construction (the tighter bound for E(d2) is accordingly established); (iii) how to

modify the IBD algorithm of Nguyen (1994) to obtain efficient (near-) OA algorithms

and the relationship between these algorithms and the one of Xu (2002). Some new

OAs will be presented and some near-OAs are compared with designs constructed by

other authors. Examples showing the use of the constructed arrays will be given.
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1 Introduction

We will begin by providing two examples to illustrate the use of near-OAs:

Example 1. A wood scientist was asked to develop plywood of certain strength which

was needed for the floor of cargo containers. As the strength could not be determined

from first principles and because test data would be necessary to convince the regulatory

authorities once a product was developed, she had to investigate a number of combinations

of four timber species, four adhesive types, four different initial moisture contents, three

hot press pressures, two cold press times, two levels of filler added to the adhesive resin,

two levels of insecticide added to the adhesive resin and two types of fungicides. An

OA for three 4-level factors, one 3-level factor and four 2-level factors requires a run size

that is divisible by 4×4, 4×3, 4×2, 3×2, and 2×2, so the L48(4
33124) in 48 runs (cf.

http://support.sas.com/techsup/technote/ts723.html) is the smallest possible OA.

However, because of the time and cost constraints, at most half of the number of suggested

runs are allowed. What should be the suitable array for this experiment?

Example 2. Nguyen & Cheng (2005) described a passenger-impact crash test experiment

on a planned new four-wheel-drive range whose objective is to find a subset of 54 safety

features. They proposed a supersaturated design with (n,m)=(27,54) which only used

27 car prototypes. Now assume that the R & D Department wants to incorporate an

additional 3-factor level into this experiment, i.e. car speed and is keen to know how this

can be done.

Before discussing the near-OA solutions to the above problems, we discuss OA. A

strength 2 OA of size n with k sj-level columns (j = 1, . . . , k), denoted by Ln(s1, . . . , sk) is

an n×k matrix in which all possible combinations of levels in any two columns appear the

same number of times (Rao 1947). There is an OA library of over 200 OAs maintained by

Prof. N. J. A. Sloane (http://www.research.att.com/∼njas/oadir/). This library has

been recently updated by Dr. W. F. Kuhfeld of SAS at his OA site (http://support.sas.

com/techsup/technote/ts723.html). This site contains all OAs listed in the Appendix

of Kuhfeld & Tobias (2005) as well as new ones contributed by other authors. A simple

introduction to OA can be found in most textbook on design of experiments (e.g. Chapter
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7 of Wu & Hamada, 2000). More comprehensive references of OA are Hedayat et al. (1999)

and Dey & Mukerjee (1999).

In a near-OA L′n(s1...sk), to reduce the run size, the orthogonality of some pairs of

columns is necessarily sacrificed. The concept of near-OA (Taguchi 1959, Wang & Wu

1992, Nguyen 1996b, Ma et al. 2000, Xu 2002, Lu et al. 2006) provide a genuine answer

to situations when OAs are not available. An array is called a saturated design when
∑

(si − 1) = n − 1 (e.g. a Hadamard matrix) and is called a supersaturated design when
∑

(si − 1) > n − 1. The 2-level supersaturated designs were discussed in Booth & Cox

(1962), Lin (1993), Nguyen (1996a), Tang & Wu (1997), Cheng (1997) and Section 8.6 of

Wu & Hamada (2000). The multi- and mixed-level supersaturated designs were discussed

in Lu et al. (2003), Fang et al. (2002, 2003, 2004) and Liu & Fang (2005).

This paper has four sections. Section 2 shows a combinatorial relationship between a

mixed-level array (OA and near-OA) and an IBD. Section 3 shows the relationship between

the popular criterion E(d2) (or E(fNOD)) used in the construction of the mentioned type of

designs and the (M,S)-optimality criterion used in IBD construction. In this Section, we

will show the derivation of a tighter bound for E(d2). Section 4 describes two new (near-)

OA algorithms which are modifications of the IBD algorithm of Nguyen (1994). Section 5

compares some near-OAs constructed by the new algorithm and by other authors in terms

of the D-efficiency of the designs and other goodness criteria.

2 The relationship between an array and an IBD

There is a relationship between certain combinatorial structures with IBDs. Box & Behnken

(1960) and Nguyen (2005) used regular graph designs (RGDs) to construct 3-level response

surface designs. Nguyen (1996) and Liu & Zhang (2000) used cyclic balanced IBDs to

construct 2-level supersaturated designs. Nguyen & Cheng (2005) used RGDs to con-

struct saturated and supersaturated designs. Lu et al. (2003), Fang et al. (2002, 2003,

2004) and Liu & Fang (2005) used resolvable balanced IBDs and resolvable group divisi-

ble designs to construct multi- and mixed-level supersaturated designs. Additional work
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of Professor Kai-Tai Fang and his coworkers on this area of research can be found at

http://www.math.hkbu.edu.hk/UniformDesign/.

Consider the following mixed-level near-OA L′6(3
123):

Table 1: L′6(3
123)

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

2 0 1 0

2 1 0 1

If we use the dummy coding to code the near-OA in Table 1, we will get the following

X matrix:




1 0 0 1 0 1 0 0 1

1 0 0 0 1 0 1 1 0

0 1 0 1 0 0 1 0 1

0 1 0 0 1 1 0 1 0

0 0 1 1 0 0 1 1 0

0 0 1 0 1 1 0 0 1




(1)

It can be seen that (1) is the N ′ matrix (transpose of the incidence matrix) of the

non-resolvable IBD of with varying replications of size (v, b, k)=(9,6,4) in Table 2:
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Table 2: IBD of size

(v, b, k)=(9, 6, 4)†
0 3 5 8

0 4 6 7

1 3 6 8

1 4 5 7

2 3 6 7

2 4 5 8

†Blocks are rows.

A non-resolvable IBD of size (v, b, k) has v varieties, each replicated ri times (i =

1, . . . , v), set out in b blocks of size k(< v), i.e.
∑

ri = bk. We assume that no variety

occurs more than once in a block. Note that the 1st position of each block of the IBD in

Table 2 has varieties 0-2 which corresponds to the three levels of column 1 of the array

in Table 1. Similarly, the 2nd position of each block of this IBD has varieties 2-3 which

correspond to the two levels of column 2 of this array, etc. Associated with each IBD is

the incidence matrix Nv×b whose (ij)th element equals 1 if variety i occurs in block j and

0 otherwise.

It can be seen that (1) is also the incidence matrix of the resolvable IBD (RIBD) with

varying block sizes of size (v, b, r)=(6,9,4) in Table 3:

Table 3: RIBD of size

(v, b, r)=(6,9,4)†
00 03 05 17

10 23 35 37

21 43 55 47

31 14 16 08

42 34 26 28

52 54 46 58

†Subscripts denote block

number.
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An RIBD of size (v, b, r) has v varieties, each replicated r times, set out in b blocks,

each of size ki (i = 1, . . . , b), i.e.
∑

ki = vr. These blocks can be divided into subsets, each

of which represents a complete replication of the varieties. Each column of the RIBD in

Table 3 represents a replicate. The first replicate, for example, has three blocks (0, 1), (2,

3) and (4, 5). This IBD is, in fact the dual of the primal IBD in Table 2. The dual of an

IBD is a new IBD obtained by swapping the varieties and block symbols in the original

design(cf. p. 39-41 of John & Williams 1995).

As an additional example, the (coincidence) matrix on p. 357 of Xu (2002) which is

associated with the L12(3
124) on the same page is also the concurrence matrix of an RIBD

of size (v, b, r)=(12, 21, 5). The first replicate of this IBD, for example, has three blocks

(0, 1, 2, 3), (4, 5, 6, 7), and (8, 9, 10, 11).

Remarks:

1. Associated of each IBD is the concurrence matrix NN ′ whose (ii)th element is ri

and (ij)th element is the number of blocks in which both varieties i and j appear. The

concurrence matrix of the IBD in Table 2 is:




2 0 0 1 1 1 1 1 1

0 2 0 1 1 1 1 1 1

0 0 2 1 1 1 1 1 1

1 1 1 3 0 1 2 1 2

1 1 1 0 3 2 1 2 1

1 1 1 1 2 3 0 1 2

1 1 1 2 1 0 3 2 1

1 1 1 1 2 1 2 3 0

1 1 1 2 1 2 1 0 3




(2)

and the concurrent matrix of the RIBD in Table 3 (or N ′N) is:
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


4 1 2 1 1 2

1 4 1 2 2 1

2 1 4 1 2 1

1 2 1 4 1 2

1 2 2 1 4 1

2 1 1 2 1 4




(3)

2. We have shown that there is a combinational relationship between a mixed-level

array of size n with k sj-level columns (j = 1, . . . , k) and a non-resolvable IBD of size

(v, b, k) = (
∑

sj, n, k) (and its dual, an RIBD of size (v, b, r) = (n,
∑

sj, k)). What this

means is that we can construct this array indirectly by constructing either of the IBD

which involves the minimization of the sum of squares of the elements of either (2) or (3).

This is called the (M, S)-optimality criterion in the IBD literature (cf. p. 34-35 of John &

Williams 1995).

3 Relationship between the criterion E(d2) and the

(M, S)-optimality criterion

Given a near-OA L′n(s1, . . . , sk), following Lu & Sun (2001) and Fang et al. (2003), we

define “a measure of departure from orthogonality” for two columns i and j of this array

as:

d2
ij =

si−1∑

u=0

sj−1∑

w=0

(nij
uw −

n

sisj

)2 (4)

and the global measure of departure from orthogonality of an array is defined as:

E(d2) =
k∑

i=1

k∑

j=i+1

d2
ij/(

k
2). (5)

Here nij
uw is the observed frequencies of rows whose column i takes symbol u and column

j takes symbol w. n/(sisj) is the expected frequency for each level combination. For the
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near-OA in Table 1, readers can verify that d12 = d13 = d14 = 0 and d23 = d24 = d34 = 1.

E(d2) of this array is thus 0.5.

Note that the sum of the elements of NN ′ and N ′N are nk2 and
∑

r2
i respectively which

are constants. As such, the (M,S)-optimality criterion only involves the minimization of

the sum of squares of the elements in either NN ′ or N ′N , i.e. minimizing trace(NN ′)2 or

trace(N ′N)2 (note that trace(NN ′)2= trace(N ′N)2). It can then be shown that:

(k
2)E(d2) =

∑

i

∑

j>i

∑
u

∑
w

(nij
uw)2 − C =

1

2
(trace(NN ′)2 −∑

r2
i )− C (6)

where C =
∑

i

∑
j>i n

2/(sisj), a constant.

(6) establishes the relationship between between E(d2) and the (M, S)-optimality cri-

terion. It is also the generalization of the results of Fang et al. (2003, 2004) which requires

the run size n be divisible by si. We can use this relationship to find a better lower bound

for E(d2).

First, let’s use the primal IBD. NN ′ can be partitioned into (k
2) sub-matrices Λij, (i, j =

1, . . . , k). The sum of the elements in Λij is n, and the sum of squares of the elements in

this matrix is minimal if it equals Sij = l1λ
2 + l2(λ + 1)2 (i.e. each Λij has l1 values λ and

l2 values λ + 1) where λ = [n/(sisj)], l2 = n − λsisj and l1 = sisj − n2. Thus, the first

lower bound for E(d2) is:

Bp = (
∑

i

∑

j<i

Sij − C)/(k
2) (7)

This derivation of Bp is parallel to the one in Ma et al. (2000) and Lu et al. (2006) (see

also p. 81 of John & Williams 1995). Obviously, when the array is an OA, (7) becomes 0.

Now, let’s use the dual IBD. The sum of the upper diagonal elements of N ′N can be

S = 1
2
(
∑

r2
i − nk). The sum of squares of the elements above the diagonal of N ′N is

minimal if it equals Sd = m1κ
2 +m2(κ+1)2 (i.e. these elements consist of m1 values κ and

m2 values κ+1) where κ = [S/(n
2 )], m2 = S−κ(n

2 ) and m1 = (n
2 )−m2. In this case, the sum

of squares of the elements above the diagonal elements of NN ′ is Sp = 1
2
(2Sd +nk2−∑

r2
i )

where 2Sd +nk2 is the sum of squares of the elements of N ′N (or NN ′) (readers can verify
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that the C, S, Sd and Sp values of the associated with the array in Table are 45, 21, 33

and 48 respectively). Thus the second lower bound for E(d2) is:

Bd = (Sp − C)/(k
2). (8)

The derivation of Bd(E(d2) simplifies and generalizes the one in Fang et al. (2003,

2004), which restricts the run size n be divisible by si. The lower bound for E(d2) is thus:

B = max(Bp, Bd) (9)

Remarks:

1. The J2 of Xu (2002) is the sum of squares of the elements above the diagonal of

the N ′N matrix associated with the array. This J2 reaches Xu’s lower bound for J2 when

J2 = 1
2
(2C − nk2 +

∑
r2
i ). In Xu’s L12(3

124) example, J2=330, C=312, nk2=300 and
∑

r2
i =336. Xu’s lower bound for J2 is useful to check whether the constructed array is

an OA but cannot be used to check whether the constructed array is an E(d2)-optimal

near-OA.

2. Fang et al. (2003) showed that E(d2) = 1
4
E(s2) where E(s2) is a criterion used for

supersaturated designs with factors at two levels ±1.

3. E(d2)’s of the array in Table 1 and several near-OAs in Section 5 reach both lower

bounds in (7) and (8). However, there are situations in which the E(d2) value of a particular

near-OA reaches Bp but not Bd and vice versa. The E(d2) of the two L′18(2
138) in Table

7 of Xu (2002) reaches Bd (=0.5) but not Bp (=0). The E(d2) of the near-OA L′24(3
10) in

Table A7 of Lu et al. (2006) reaches Bp (=2) but not Bd (=0). Similarly, the E(d2) of the

near-OA L′10(5
125) in Table 4 reaches Bp (=0.6666) but not Bd (=0).
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Table 4: L′10(5
125)

0 0 0 0 0 1

0 1 1 1 1 0

1 0 1 0 1 0

1 1 0 1 0 1

2 0 1 1 0 0

2 1 0 0 1 1

3 0 1 1 1 1

3 1 0 0 0 0

4 0 0 1 1 0

4 1 1 0 0 1

4. The E(d2) criterion used in the (near-) OA construction, like the (M,S)-optimality

criterion used in the IBD construction, are approximate criteria in design construction.

Table 3 of Lu (2006) lists six L′(3129). It can be seen that the arrays with the largest value

of D (D-efficiency) in this Table (i.e. the ones reported in Nguyen 1996 and Xu 2002) are

not necessarily the ones with the smallest E(d2).

4 Algorithms for constructing (near-) OAs

We have two algorithms for array construction. The primal algorithm makes use of the

relationship between an array and a non-resolvable IBD. The dual algorithm makes use of

the relationship between an array and an RIBD. Both algorithms use the E(d2) criterion.

This criterion is akin to the (M, S)-optimality criterion which involved the minimization

of the sum of squares of the elements above the diagonal elements of NN ′ (or N ′N).

Before discussing our algorithms, we give details of the update of our objective function

f (= (k
2)E(d2)) and NN ′ matrix that are crucial in speeding up our algorithm.

Let i be a variety in position j of block I and t be a variety in another position of this

block. Let u be a variety in position j of block U and t′ be a variety in another position

of this block. The pairwise swapping of i and u will increase all λtm’s and λt′i’s by 1 and
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decrease all λti’s and λt′m’s by 1. This means f will be increased by an amount:

∆f = 2{∑(λtm − λti + 1) +
∑

(λt′i − λt′m + 1)}. (10)

The steps of the primal algorithm making use of the update formula in (10) are:

1. Construct a starting array L(′)
n (s1, . . . , sk) by allocating sj symbols 0,. . . ,sj − 1 to

column j such that the numbers of each symbol differs by at most 1. Randomize the

positions of each symbol. Convert this array to an IBD of size (v, b, k) = (
∑

sj, n, k).

Construct the NN ′ matrix of this IBD. Deduct each element of the sub-matrix Λij (i, j =

1, . . . , k, j > i) by an amount n/(sisj) and calculate f , the sum of squares of the elements

of these sub-matrices.

2. Repeat searching a pair of varieties i and m in position j (j = 1, . . . , k) in two

difference blocks such that the swap of these two varieties results in the biggest reduction

of f . If the search is successful, update f, NN ′ and the IBD. If f cannot be reduced

further, go to the next position. This process is repeated until f reaches its lower bound

(i.e. (k
2)B or cannot be reduced further.

3. Convert the IBD in step 2 to the array L(′)
n (s1, . . . , sk) and calculate some goodness

statistics for this array such as the D, Vmax = max(Vij), where Vij is the Cramer’s V

coefficient of association between two columns i and j (http://www2.chass.ncsu.edu/

garson/pa765/assocnominal.htm) and the fmax, the frequency of Vij = Vmax.

The basic algorithm (i.e. steps 1-3) is repeated a number of times to avoid the local

optima. Each time is called a try. Among a large number of tries, the best one with respect

to a chosen goodness criterion is selected. Our algorithm uses D in conjunction with Vmax

and f(Vmax as the goodness criterion. f is used instead of D the design is supersaturated.

Remarks:

1. With the dual algorithm, the dual of the IBD used in the primal algorithm and N ′N

will be used instead. Varieties in different blocks of the same replicate will be swapped.

There is a resemblance of this algorithm and the one of Xu (2002) as both work with matrix

N ′N . Both primal and dual algorithms work better than algorithms which maximizes the

D-efficiency such as the Fedorov exchange algorithm (cf. Nguyen &Piepel 2005) in terms
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of speed and the number of pairs of orthogonal columns.

2. New arrays can be constructed by adding new columns to an existing array. The pri-

mal algorithm requires less calculations than the dual one in this type of array construction

as it only works with a sub-matrix of NN ′ which involves new columns.

3. There are situations in which experimenters are interested in arrays with minimal

max(d2) (and the minimum number of dij = max(d2)). This type of array can be indirectly

constructed by the primal algorithm by minimizing max(δij
uw) where δij

uw = |nij
uw−n/(sisj)|

and the frequency of δij
uw = max(δij

uw). The stopping rule for this minimax algorithm is

that each δij
uw < 1.

4. There are also situations in which experimenters consider certain factors (columns)

as more important than the remaining ones. In other words, they prefer the former to be

orthogonal (or close to orthogonal) among themselves and to the latter. Again, this type

of array can be easily obtained via the primal algorithm by defining a second objective

function calculated from elements of a sub-matrix of NN ′ which involves the mentioned

factors.
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Table 5: Comparison of near-OAs in terms of D and Np.

# Array Wang & Wu† Ma et al.† Xu† Nguyen† Vmax‡
1 L′6(3

123) 901 ( 3) 901 ( 3) 901 ( 3) 901 ( 3)§ 333 ( 3)

2 L′10(5
125) 883 (10) 967 (10) 967 (10) 967 (10)§ 200 (10)

3 L′12(4
134) 946 ( 6) 946 ( 6) 946 ( 6) 946 ( 6)§ 250 ( 6)

4 L′12(2
334) 946 ( 6) 946 ( 6) 946 ( 6) 946 ( 6)§ 250 ( 6)

5 L′12(6
125) 911 ( 6) 911 ( 3) 959 ( 4) 959 ( 4) 333 ( 4)

6 L′12(6
126) 909 ( 4) 947 ( 6) 947 ( 6) 333 ( 6)

7 L′12(3
129) 867 ( 9) 905 ( 5) 933 ( 6) 933 ( 8) 333 ( 8)

8 L′12(2
135) 877 (10) 877 (10) 877 (10) 250 (10)

9 L′12(3
227) 899 ( 6) 909 ( 6) 888 ( 8) 333 ( 7)

10 L′12(3
325) 877 ( 6) 877 ( 6) 925 ( 9) 333 ( 6)

11 L′15(5
135) 882 (10) 882 (10) 882 (10) 882 (10)§ 200 (10)

12 L′18(2
138) 967 ( 3) 967 ( 3)§ 289 ( 3)

13 L′18(2
337) 970 ( 3) 970 ( 7) 970 ( 3) 970 ( 3)§ 333 ( 3)

14 L′18(9
128) 985 (28) 985 (28) 985 (28) 985 (28)§ 111 (28)

15 L′20(5
1215) 838 (30) 623 (14) 925 (19) 956 (18) 200 (18)

16 L′24(8
138) 897 (28) 845 (31) 897 (28) 897 (28)§ 125 (28)

17 L′24(3
1221) 853 (21) 953 (14) 968 (23) 968 ( 8) 333 ( 8)

18 L′24(6
1215) 870 (18) 934 (12) 994 ( 1) 994 ( 1) 333 ( 1)

19 L′24(6
1218) 761 (18) 974 ( 6) 974 ( 6) 333 ( 6)

20 L′24(2
1311) 871 (55) 895 (56) 895 (55) 177 (11)

21 L′24(3
147) 594 (21) 858 (21) 874 (21) 236 ( 2)

22 L′36(3
1329) 978 ( 8) 333 ( 8)

23 L′50(5
1125) 994 (10) 200 (10)

24 L′54(3
2523) 990 ( 3)§ 333 ( 3)

†103D (the larger the better) and Np (the smaller the better).

‡103Vmax (the smaller the better) and fmax of Nguyen’s array.

§E(d2)-optimal arrays.
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5 Discussion

Table 5 gives a listing of 24 near-OAs constructed by Wang & Wu (1992), Ma et al. (2000),

Xu (2002) and the author in terms of the D and Np (the number of non-orthogonal pairs).

Our arrays also give details of the Vmax and fmax. Our arrays are restricted to those with

Vmax ≤ 0.333. As a result, two of our arrays are not as good as arrays of other authors

with respect to other measures of goodness. For L′12(3
129) (# 7), both Xu’s array and ours

have D=0.933 (Table 6). The Np of the Xu’s array is 6 and of ours is 8. However, the

Vmax of the former is 0.408 and of the latter is 0.333. For this L′12(3
129), the first 3-level

column of the array of Lu et al (2006) and ours is orthogonal to the remaining columns.

The Np of Lu’s array is 7 and of ours is 8. However, the Vmax of the former is 0.667 and of

the latter is 0.333.

Table 6: Two L′12(3129)’s†
1 2 3 4 5 6 7 8 9 10 6’ 7’ 8’ 9’ 10’

0 0 1 0 1 1 1 0 0 0 0 0 0 1 1

0 1 0 0 1 1 0 0 1 0 0 0 1 0 0

0 0 1 1 0 1 0 1 1 1 1 1 1 0 1

0 1 0 1 0 0 1 1 0 0 1 1 0 1 0

1 0 0 0 0 0 0 0 0 1 0 1 0 0 1

1 1 1 0 0 0 1 0 1 1 0 1 1 1 0

1 0 1 1 1 0 0 1 1 0 1 0 0 0 0

1 1 0 1 1 1 1 1 0 1 1 0 1 1 1

2 0 0 1 0 1 1 0 1 0 0 0 1 1 0

2 1 1 0 0 1 0 1 0 0 1 0 0 0 1

2 0 0 0 1 0 1 1 1 1 1 1 1 1 0

2 1 1 1 1 0 0 0 0 1 0 1 0 0 1

†Columns 1-5 form an L12(3
124). This OA and columns 6-10

form Xu’s array. This OA and columns 6’-10’ form ours.
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Similarly, for L′12(3
227) (# 9), the D and Np of Xu’s array are 0.909 and 6 and of ours

are 0.888 and 8. However, the Vmax of the former is 0.408 and of the latter is 0.333. In

terms of D, we were able to improve three arrays of Xu in Table 5 (i.e. # 10, # 15, and

# 21). In terms of Np, we were able to improve three arrays of Xu in this Table (i.e. #

15, # 17, and # 20). 10 out of 24 arrays in this table are E(d2)-optimal. Arrays in this

Table are of the form L′(sk1
1 sk2

2 ). The first k1 columns of our arrays are always orthogonal

to the remaining k2 columns. It is clear that arrays # 7 and # 9 of Xu do not have this

feature and it is not clear that the other arrays of Xu have this feature.

We have two solutions for array L′24(6
1215) (# 18). The 2nd solution obtained by the

minimax criterion has D= 0.988 instead of 0.994 and Np=8 instead of 1 (Table 7). However,

its Vmax is 0.167 instead of 0.333. To many experimenters, this solution is a preferred one

despite its low D.
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Table 7: Two L′24(6
1215)’s†

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16’

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0

0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0

0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1

1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0

1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1

2 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0

2 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0

2 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1

2 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1

3 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0

3 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1

3 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1

3 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0

4 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1

4 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0

4 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0

4 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1

5 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1

5 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0

5 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0

5 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1

†Columns 1-15 form an L24(6
1214). This OA and column 16 form

the 1st near-OA. This OA and column 16’ form the 2nd near-OA.
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The solution for Example 1 is the following E(d2)-optimal L′24(4
33124) (Table 8). It has

D=0.978 and Vmax=0.193 with fmax=3. The last five columns of this array form an OA

and the first three columns of this array are orthogonal to the remaining columns.

Table 8: L′24(4
33124)

0 0 0 1 1 0 0 0

0 0 1 0 0 0 1 0

0 1 3 2 0 0 1 1

0 2 0 0 1 1 1 1

0 2 2 2 1 1 0 0

0 3 1 1 0 1 0 1

1 0 1 2 1 0 0 1

1 0 3 0 0 1 1 0

1 1 2 0 1 0 0 0

1 1 3 1 1 1 0 1

1 2 0 2 0 0 1 1

1 3 2 1 0 1 1 0

2 0 2 2 0 1 0 1

2 1 0 0 0 1 0 0

2 1 2 1 0 0 1 1

2 2 1 1 1 0 1 0

2 3 3 0 1 0 0 1

2 3 3 2 1 1 1 0

3 0 0 1 1 1 1 1

3 1 1 2 1 1 1 0

3 2 1 0 0 1 0 1

3 2 3 1 0 0 0 0

3 3 0 2 0 0 0 0

3 3 2 0 1 0 1 1
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The solution for Example 2 is an E(d2)-optimal L′27(3
1254) with Vmax=0.421 and fmax=3.

All near-OAs in Table 5 and the solutions for the two examples can be found at http:

//designcomputing.net/gendex/noa.

The work of Lu et al. (2006) becomes relevant in light of this research. Table 1 of Lu

provides details of 13 near-OAs consisting of 2- and 3-level factors. Out of these 13 arrays,

we were able to improve the D’s of nine of them. These arrays are # 1, # 2, # 3, # 4, #

5 , # 8, # 10, # 11, and # 13 in this table. The D’s of Lu et al. (2006) for these arrays

are 0.905, 0.948, 0.962, 0.881, 0.833, 0.837, 0.772 and 0.854 compared with 0.933, 0.954,

0.909, 0.888, 0.950, 0.877, 0.861, 0.967 and 0.909 for the algorithm in Section 4. There is

evidence that this Table was made with insufficient tries (e.g. their algorithm stops as soon

as E(d2) is reached). Despite this, we were not able to obtain the E(d2)-optimal L′21(3
10)

reported in this Table after a very large number of tries. Basically, this suggests that no

algorithm is good for all situations.

As mentioned, one of the main features of our algorithm is its ability to add additional

columns to existing arrays. Several new OAs and near-OAs can be constructed this way.

Our new L36(2
133261), L60(2

1561101), L84(2
1461141) and L100(10424) are listed at http:

//support.sas.com/techsup/technote/ts723.html. The L100(10424), for example, was

constructed by adding four additional columns to the well known L100(104). Our new

E(d2)-optimal L′84(2
86114132) and L′100(1042432) and other smaller near-OAs are listed at

http://designcomputing.net/gendex/noa/.

Both algorithms reported in Section 4 are very fast. For small arrays such as the

L′12(3
325), the primal algorithm takes less than four seconds on our Pentium 1.83GHz

laptop to obtain 1,000 tries. Out of these 1,000 tries, 143 have D=0.925. For larger arrays

such as the L′24(6
146), this algorithm takes 210 seconds on this laptop to obtain 10,000

tries. Out of these 10,000 tries, 32 are E(d2)-optimal and only two out of these 32 tries

have D=0.928. These algorithms are implemented in two Java programs. Please contact

the author regarding their availability.
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