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1. Introduction

A λs × c array D(λs, c; s) with entries from a Galois field of order s, GF (s), is a difference

scheme (difference matrix) if for all i and j with 1 ≤ i ≤ c, 1 ≤ j ≤ c, i 6= j, the vector difference

between the ith and jth column contains every elements of GF (s) λ times. Difference matrix was

first defined by Bose and Bush (1952), and it is a simple but powerful tool for the construction

of orthogonal arrays of strength 2 (Hedayat et al. 1999). Mixed difference matrices have also

been used for construction of orthogonal arrays (see Wang, 1996, Wang and Wu 1991, Wu et

al. 1992, Pang et al. 2004a, Seun and Kuhfeld, 2005, etc). Normal mixed difference matrices

have also been introduced and used for construction of mixed-level orthogonal arrays by Pang

et al. (2004b). However, it has not received much attention to construct mixed difference

matrices, especially normal mixed difference matrix. By exploring the relationship between
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difference matrices and orthogonal decomposition of projection matrices, this paper presents a

general method for constructing smaller normal mixed difference matrices. Moreover, given a

normal mixed difference matrix of order r + 1 and a difference matrix of order r, this paper

also presents a general method for constructing lager normal mixed difference matrix of order

r(r +1). Furthermore, if the difference matrix of order r does not exist but an orthogonal array

of runs r2 exists, we can also construct a lager normal mixed difference matrix from the normal

mixed difference matrix of order r + 1 and the orthogonal array of runs r2. As applications of

these methods, some normal mixed difference matrices are constructed. Some symbols can be

referenced to those by Zhang et al. (2001).

2. Basic concepts and main theorems

The following definitions, notations and results are needed in the sequel.

Definition 1. Let Lq = Lq(s1 · · · sm) = (C1, . . . , Cm) be an orthogonal array where Cl is a

vector with entries from an additive group Gl of order sl for any l (l = 1, . . . , m). The array Lq

is said to be normal if the set G = {A1, . . . , Aq : Ai is the i-th row of Lq} constitutes an additive

subgroup of order q, where G ⊂ G1 × · · · ×Gm := {(x1, . . . , xm);xl ∈ Gl, l = 1, 2, . . . , m, } with

the usual addition, i.e., for any x, y ∈ G, x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym), we have

x + y = (x1 + y1, x2 + y2, . . . , xm + ym).

Proposition 1 There is a map φ(Ai) = i− 1 which is a group isomorphism between G and

G0 = {0, 1, . . . , q − 1}. And the map

φt(i− 1) = ait (1)

is a group homomorphism from G0 = {0, 1, . . . , q − 1} to Gt for t = 1, 2, . . . , m.

Definition 2. Suppose that the array Lq is a normal orthogonal array, and that the maps

φ1, . . . , φm are defined in (1). Let D0 = D(n, k0; q) be a difference matrix based on G0, and let

Dl be a difference matrix based on Gl, l = 1, 2, . . . , m. If the matrices

[φ1(D0), D1], [φ2(D0), D2], . . . , [φm(D0), Dm]

are difference matrices based on G1, G2, . . . , Gm, respectively, then the matrix

[D0, D1, D2, . . . , Dm]

is called a normal mixed difference matrix.

Definitions 1 and 2 can be found in Pang et al (2004b).
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Lemma 1. Suppose that D(λp,m; p) is a λp×m matrix with entries from a Galois field of

order p, GF (p), and that γ is a column of orthogonal array Ln(ps). If D(λp,m1; p) ⊕ γ is also

an orthogonal array, then D(λp,m; p) is a difference matrix.

Proof. We suppose without lose of generality that α = (a1, . . . , aλp)T and β = (b1, . . . , bλp)T

are any two columns in D(λp,m; p), and that b1 − a1 = x1, b2 − a2 = x2, . . . , bλp − aλp = xλp,

and that γ = (c1, c2, . . . , cn)T is a column in the array Ln(ps). Then we have

α⊕ γ = (a1 + c1, . . . , a1 + cn, a2 + c1, . . . , a2 + cn, . . . , aλp + c1, . . . , aλp + cn)T ,

β⊕γ = (a1+c1+x1, . . . , a1+cn+x1, a2+c1+x2, . . . , a2+cn+x2, . . . , aλp+c1, . . . , aλp+cn+xλp)T .

Since γ is a column of orthogonal array Ln(ps), c1, c2, . . . , cn contain every element of GF (p)

n/p times. So ai +c1, ai +c2, . . . , ai +cn also contain all elements of GF (p), each of which occurs

n/p times. Therefore, by some permutations,

(ai + c1, ai + c1 + xi), (ai + c2, ai + c2 + xi), . . . , (ai + cn, ai + cn + xi)

can be written as

(0, xi), . . . , (0, xi)︸ ︷︷ ︸
n/p

, (1, 1 + xi), . . . , (1, 1 + xi)︸ ︷︷ ︸
n/p

, · · · , (p− 1, p− 1 + xi), . . . , (p− 1, p− 1 + xi)︸ ︷︷ ︸
n/p

,

where xi ∈ {x1, . . . , xλp}.
We consider these pairs just like (0, xi), . . . , (0, xi)︸ ︷︷ ︸

n/p

in two columns α ⊕ γ and β ⊕ γ. Since

these two columns are orthogonal, each element of GF (p) occurs in {x1, . . . , xλp} with the same

frequency. Therefore, D(λp,m; p) is a difference matrix. This completes the proof.

Lemma 2. If D(m,m; p) is a difference matrix, then both (p)⊕D(m,m; p) and D(m,m; p)⊕
(p) are OAs, and their matrix images satisfy m((p)⊕D(m,m; p)) ≤ τp⊗Im and m(D(m,m; p)⊕
(p)) ≤ Im ⊗ τp, respectively.

Proof. From Wang and Wu (1991), L = [1p ⊗ (m), (p) ⊕ D(m,m; p)] is an OA. From

Zhang et al. (2001), we have m(L) ≤ τmp and m(L) = Pp ⊗ τm + m((p) ⊕D(m,m; p)). Since

τmp = Pp⊗ τm + τp⊗ Im, it follows that m((p)⊕D(m,m; p)) ≤ τp⊗ Im. Similarly, we can prove

the remaining part.

Now we state the following theorem.

Theorem 1. Suppose that Lp(s1 · · · sn) = (c1, . . . , cn) is a normal orthogonal array, and

that L = [D(m, k; p)⊕ (p), D(m, k1; s1)⊕ c1, . . . , D(m, kn; sn)⊕ cn] is also an orthogonal array.

Then

D = [D(m, k; p), D(m, k1; s1), . . . , D(m, kn; sn)]
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is a normal mixed difference matrix.

Proof. Since Lp(s1 · · · sn) = (c1 · · · cn) is a normal orthogonal array, we have a group

homomorphism φl from G0 = {0, 1, . . . , p − 1} to Gl. Set c0 = (p) = (0, 1, . . . , p − 1)T , then

φl(c0) = cl. From Proposition 1 and the expansive replacement method in Hedayat et al. (1999),

if the levels 0, 1, . . . , p − 1 in [D(m, k; p) ⊕ (p), D(ml, kl; sl) ⊕ cl] are replaced with A1, . . . , Ap,

respectively, where Ai is the ith row of Lp, we can obtain a mixed orthogonal array with the

levels s1, · · · , sn. Pick out all the sl-level columns, we can get an sl-level orthogonal array, which

can be written as

[φl(D(m, k; p)), D(m, kl; sl)]⊕ cl.

It follows from Lemma 1 that [φl(D(m, k; p)), D(m, kl; sl)] is a difference matrix, l = 1, . . . , n.

We have D = [D(m, k; p), D(m, k1; s1), . . . , D(m, kn; sn)] is a normal mixed difference matrix.

3. Construction method for smaller normal mixed difference ma-
trices.

The following method is from orthogonal decomposition of projection matrices. We illustrate

its applications with examples.

Example 1. Construction of normal mixed difference matrix D = [D0(8, 5; 4), D1(8, 1; 2),

D2(8, 1; 2), D3(8, 1; 2)] and D = [D0(8, 6; 4), D1(8, 2; 2), D2(8, 2; 2), D3(8, 2; 2)]

Orthogonally decompose τ4 ⊗ I2 ⊗ τ4 as follows:

τ4 ⊗ I2 ⊗ τ4

= (τ2 ⊗ P2 ⊗ P2 ⊗ τ2 ⊗ P2 + P2 ⊗ τ2 ⊗ P2 ⊗ P2 ⊗ τ2 + τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ τ2)

+ (τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ P2 + P2 ⊗ τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 + τ2 ⊗ P2 ⊗ τ2 ⊗ τ2 ⊗ τ2)

+ (P2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 ⊗ τ2 + τ2 ⊗ P2 ⊗ P2 ⊗ τ2 ⊗ τ2)

+ (τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ P2 ⊗ τ2 ⊗ P2 ⊗ τ2 + P2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ τ2)

+ (τ2 ⊗ P2 ⊗ τ2 ⊗ τ2 ⊗ P2 + τ2 ⊗ τ2 ⊗ P2 ⊗ P2 ⊗ τ2 + P2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2)

+ P2 ⊗ τ2 ⊗ P2 ⊗ τ2 ⊗ P2 + τ2 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ τ2 + τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2.

By using the method in Zhang et al. (1999), we can construct an orthogonal array L32(218) as

follows:

L32(218)

= [((2)⊕ 02 ⊕ 02 ⊕ (2)⊕ 02, 02 ⊕ (2)⊕ 02 ⊕ 02 ⊕ (2), (2)⊕ (2)⊕ 02 ⊕ (2)⊕ (2)),

((2)⊕ (2)⊕ 02 ⊕ (2)⊕ 02, 02 ⊕ (2)⊕ (2)⊕ 02 ⊕ (2), (2)⊕ 02 ⊕ (2)⊕ (2)⊕ (2)),
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(02 ⊕ (2)⊕ (2)⊕ (2)⊕ 02, (2)⊕ (2)⊕ (2)⊕ 02 ⊕ (2), (2)⊕ 02 ⊕ 02 ⊕ (2)⊕ (2)),

((2)⊕ (2)⊕ (2)⊕ (2)⊕ 02, (2)⊕ 02 ⊕ (2)⊕ 02 ⊕ (2), 02 ⊕ (2)⊕ 02 ⊕ (2)⊕ (2)),

((2)⊕ 02 ⊕ (2)⊕ (2)⊕ 02, (2)⊕ (2)⊕ 02 ⊕ 02 ⊕ (2), 02 ⊕ (2)⊕ (2)⊕ (2)⊕ (2)),

02 ⊕ (2)⊕ 02 ⊕ (2)⊕ 02, (2)⊕ 02 ⊕ 02 ⊕ 02 ⊕ (2), (2)⊕ (2)⊕ (2)⊕ (2)⊕ (2)]

By using the generalized Hadamard product in Zhang et al. (2001), i.e.,((2)⊕02)2(02⊕(2)) =

(4) and its MI satisfies m(((2) ⊕ 02)2(02 ⊕ (2))) = τ2 ⊗ P2 + P2 ⊗ τ2 + τ2 ⊗ τ2 = τ4, we can

construct an orthogonal array

L32(4523) = [L32(45), 02 ⊕ (2)⊕ 02 ⊕ (2)⊕ 02, (2)⊕ 02 ⊕ 02 ⊕ 02 ⊕ (2), (2)⊕ (2)⊕ (2)⊕ (2)⊕ (2)]

where L32(45) = D(8, 5; 4)⊕ (4) and

D(8, 5; 4) =




0 0 0 0 0
0 1 3 3 2
1 3 3 2 1
1 2 0 1 3
2 2 1 3 3
2 3 2 0 1
3 1 2 1 2
3 0 1 2 0




.

From orthogonal decomposition of τ4 ⊗ I2 ⊗ τ4 and the construction of 4-level columns, we

can easily construct a normal mixed difference matrix D = [D0(8, 5; 4), D1(8, 1; 2), D2(8, 1; 2),

D3(8, 1; 2)] (see table 1).

Table 1. The mixed difference matrix D = [D0(8, 5; 4), D1(8, 1; 2), D2(8, 1; 2), D3(8, 1; 2)]
D0(8, 5; 4) D1(8, 1; 2) D2(8, 1; 2) D3(8, 1; 2)
0 0 0 0 0 0 0 0
0 1 3 3 2 0 0 1
1 3 3 2 1 1 0 1
1 2 0 1 3 1 0 0
2 2 1 3 3 0 1 1
2 3 2 0 1 0 1 0
3 1 2 1 2 1 1 0
3 0 1 2 0 1 1 1

Furthermore, since τ4 ⊗ I2 ⊗ τ4, P8 ⊗ τ4 and P4 ⊗ τ2 ⊗ τ4 are pairwise orthogonal, we can

construct orthogonal array L32(4626) = [L32(45), 08 ⊕ (4), (02 ⊕ (2) ⊕ 02, 02 ⊕ 02 ⊕ (2)) ⊕ (2) ⊕
02, ((2)⊕ 02 ⊕ 02, 02 ⊕ 02 ⊕ (2))⊕ 02 ⊕ (2), ((2)⊕ (2)⊕ (2), 02 ⊕ 02 ⊕ (2))⊕ (2)⊕ (2)]. Then we

can obtain a normal mixed difference matrix D = [D0(8, 6; 4), D1(8, 2; 2), D2(8, 2; 2), D3(8, 2; 2)]

(see table 2).
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Table 2. The mixed difference matrix D = [D0(8, 6; 4), D1(8, 2; 2), D2(8, 2; 2), D3(8, 2; 2)]
D0(8, 6; 4) D1(8, 2; 2) D2(8, 2; 2) D3(8, 2; 2)
0 0 0 0 0 0 00 00 00
0 0 1 3 3 2 01 01 11
0 1 3 3 2 1 10 00 10
0 1 2 0 1 3 11 01 01
0 2 2 1 3 3 00 10 10
0 2 3 2 0 1 01 11 01
0 3 1 2 1 2 10 10 00
0 3 0 1 2 0 11 11 11

Example 2. Construction of normal mixed difference matrix [D0(24, 20; 4), D1(24, 4; 2),

D2(24, 4; 2), D3(24, 4; 2)]

By using the construction method in Zhang et al. (2002), we can obtain a difference matrix

D(12, 12; 4) as follows:

D(12, 12; 4) =




0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 2 2 2 3 3 3 1 1 1
0 0 0 3 3 3 1 1 1 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 2 3 1 2 3 1
1 2 3 3 1 2 3 1 2 3 1 2
2 3 1 1 2 3 2 3 1 3 1 2
2 3 1 2 3 1 3 1 2 1 2 3
2 3 1 3 1 2 1 2 3 2 3 1
3 1 2 1 2 3 3 1 2 2 3 1
3 1 2 2 3 1 1 2 3 3 1 2
3 1 2 3 1 2 2 3 1 1 2 3




.

From Lemma 2, we have D(12, 12; 4) ⊕ (4) is an orthogonal array and its matrix image

satisfies that m(D(12, 12; 4) ⊕ (4)) = I12 ⊗ τ4. On the other hand, D(12, 12; 4) ⊕ (4) can be

written as

D(12, 12; 4)⊕ (4) =

[D(4, 3; 4)⊕ 03⊕ (4), T1(D(4, 3; 4)⊕ 03⊕ (4)), T2(D(4, 3; 4)⊕ 03⊕ (4)), T3(D(4, 3; 4)⊕ 03⊕ (4))],

where the difference matrix D(4, 3; 4), and the operation ⊕, and the permutation matrices T1,

T2 and T3 are as follows:

D(4, 3; 4) =




0 0 0
1 2 3
2 3 1
3 1 2


 ,

⊕ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

T1 = diag(σ(1), σ(2), σ(3),K(3, 3)⊗ I4),
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T2 = diag(σ(2), σ(3), σ(1), (diag(I3, N3, N
2
3 )K(3, 3))⊗ I4),

T3 = diag(σ(3), σ(1), σ(2), (diag(I3, N
2
3 , N3)K(3, 3))⊗ I4),

where σ(1), σ(2) and σ(3) are the following permutation matrices: σ(1) = I2⊗N2, σ(2) = N2⊗I2

and σ(3) = N2 ⊗N2.

Then we have

I12 ⊗ τ4 =
3∑

i=0

Ti(τ4 ⊗ P3 ⊗ τ4)T T
i ,

where T0 = I48. It follows that

I24 ⊗ τ4

= (I12 ⊗K(2, 4))(I12 ⊗ τ4 ⊗ I2)(I12 ⊗K(2, 4)T )

= (I12 ⊗K(2, 4))[(
3∑

i=0

Ti(τ4 ⊗ P3 ⊗ τ4)T T
i )⊗ I2](I12 ⊗K(2, 4)T )

=
3∑

i=0

Mi(P3 ⊗ τ4 ⊗ I2 ⊗ τ4)MT
i ,

where M0 = K(4, 3) ⊗ I8, Mi = (I12 ⊗ K(2, 4))(Ti ⊗ I2)(I12 ⊗ K(4, 2))(K(4, 3) ⊗ I8). The

decomposition is orthogonal because of the orthogonality in each step.

From Example 1, we can find an orthogonal array L32(4523) = D(8, 5; 4) ⊕ (4), 02 ⊕ (2) ⊕
02 ⊕ (2) ⊕ 02, (2) ⊕ 02 ⊕ 02 ⊕ 02 ⊕ (2), (2) ⊕ (2) ⊕ (2) ⊕ (2) ⊕ (2)] such that its MI is less than

or equal to τ4 ⊗ I2 ⊗ τ4. From the orthogonal decomposition of I24 ⊗ τ4, we can construct an

orthogonal array

L96(420212) = [M0(03⊕L32(2345)),M1(03⊕L32(2345)),M2(03⊕L32(2345)),M3(03⊕L32(2345))].

Now we consider a 4-level subarray L1 of L96(420212).

L1 = [M0(03 ⊕ L32(45)),M1(03 ⊕ L32(45)),M2(03 ⊕ L32(45)),M3(03 ⊕ L32(45))].

And

M0(03 ⊕ L32(45))

= (K(4, 3)⊗ I8)(03 ⊕D(8, 5; 4)⊕ (4))

= [(K(4, 3)⊗ I2)(03 ⊕D(8, 5; 4))]⊕ (4).

Set D24 = (K(4, 3)⊗ I2)(03 ⊕D(8, 5; 4)), we have

M1(03 ⊕ L32(45))

= (I12 ⊗K(2, 4))(T1 ⊗ I2)(I12 ⊗K(4, 2))(K(4, 3)⊗ I8)(03 ⊕D(8, 5; 4)⊕ (4))

= diag(I2 ⊗ σ(1), I2 ⊗ σ(2), I2 ⊗ σ(3),K(3, 3)⊗ I8)[D24 ⊕ (4)]

= D′
24 ⊕ (4),
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where

D′
24 =




1⊕D1(2, 5, 4)
2⊕D2(2, 5, 4)
3⊕D3(2, 5, 4)

(K(3, 3)⊗ I2)D4(18, 5, 4)




and D1(2, 5, 4), D2(2, 5, 4), D3(2, 5, 4) and D4(18, 5, 4) are respectively the first two rows, the

3th and 4th rows, the 5th and 6th rows and the last 18 rows of the matrix D24.

Table 3. The normal mixed difference matrix D = [D0(24, 20; 4), D1(24, 4; 2), D2(24, 4; 2),

D3(24, 4; 2)]

D0(24, 20; 4) D1(24, 4; 2) D2(24, 4; 2) D3(24, 4; 2)
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 0 0 1 1 0 1 0 1 0 1 1 0
0 1 3 3 2 1 0 2 2 3 2 3 1 1 0 3 2 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1
0 0 0 0 0 2 2 2 2 2 3 3 3 3 3 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1
0 1 3 3 2 2 3 1 1 0 3 2 0 0 1 1 0 2 2 3 0 1 1 0 0 0 1 1 1 0 1 0
0 0 0 0 0 3 3 3 3 3 1 1 1 1 1 2 2 2 2 2 0 1 0 1 0 1 1 0 0 0 1 1
0 1 3 3 2 3 2 0 0 1 1 0 2 2 3 2 3 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0
0 2 2 3 0 0 2 2 3 0 0 2 2 3 0 0 2 2 3 0 1 1 1 1 1 1 1 1 0 0 0 0
0 3 1 0 2 0 3 1 0 2 0 3 1 0 2 0 3 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1
0 2 2 3 0 3 3 0 2 2 3 3 0 2 2 3 3 0 2 2 1 0 0 0 1 0 0 0 0 0 0 0
0 3 1 0 2 3 2 3 1 0 3 2 3 1 0 3 2 3 1 0 1 0 0 0 1 0 0 0 1 1 1 1
0 2 2 3 0 2 0 3 0 3 2 0 3 0 3 2 0 3 0 3 1 1 1 1 1 0 0 0 0 1 1 1
0 3 1 0 2 2 1 0 3 1 2 1 0 3 1 2 1 0 3 1 1 1 1 1 1 0 0 0 1 0 0 0
0 0 3 1 1 3 1 1 0 3 0 0 3 1 1 1 3 0 3 0 1 0 1 0 1 0 1 1 0 0 0 1
0 1 0 2 3 3 0 2 3 1 0 1 0 2 3 1 2 3 0 2 1 0 1 0 1 0 1 1 1 1 1 0
0 0 3 1 1 0 0 3 1 1 1 3 0 3 0 3 1 1 0 3 1 1 0 0 1 1 1 0 0 0 1 0
0 1 0 2 3 0 1 0 2 3 1 2 3 0 2 3 0 2 3 1 1 1 0 0 1 1 1 0 1 1 0 1
0 0 3 1 1 1 3 0 3 0 3 1 1 0 3 0 0 3 1 1 1 0 0 1 1 1 0 1 0 1 0 0
0 1 0 2 3 1 2 3 0 2 3 0 2 3 1 0 1 0 2 3 1 0 0 1 1 1 0 1 1 0 1 1
0 2 1 2 1 2 0 0 1 2 0 2 1 2 1 1 1 2 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 3 2 1 3 2 1 3 2 0 0 3 2 1 3 1 0 1 3 2 0 0 0 1 0 1 0 0 1 0 1 0
0 2 1 2 1 1 1 2 0 0 2 0 0 1 2 0 2 1 2 1 0 1 0 0 0 0 1 0 0 1 1 0
0 3 2 1 3 1 0 1 3 2 2 1 3 2 0 0 3 2 1 3 0 1 0 0 0 0 1 0 1 0 0 1
0 2 1 2 1 0 2 1 2 1 1 1 2 0 0 2 0 0 1 2 0 0 1 0 0 0 0 1 0 0 1 1
0 3 2 1 3 0 3 2 1 3 1 0 1 3 2 2 1 3 2 0 0 0 1 0 0 0 0 1 1 1 0 0

Hence L1 can be written as L = D(24, 20; 4)⊕ (4) = [D24, D
′
24, D

′′
24, D

′′′
24]⊕ (4), where

D′′
24 =




2⊕D1(2, 5, 4)
3⊕D2(2, 5, 4)
1⊕D3(2, 5, 4)

((diag(I3, N3, N
2
3 )K(3, 3))⊗ I2)D4(18, 5, 4)
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and

D′′′
24 =




3⊕D1(2, 5, 4)
1⊕D2(2, 5, 4)
2⊕D3(2, 5, 4)

((diag(I3, N
2
3 , N3)K(3, 3))⊗ I2)D4(18, 5, 4)


 .

By Theorem 1, D(24, 20; 4) is a difference matrix, which is listed in Table 3.

And through similar computing, L96(420212) can be written as

[D1(24, 4; 2)⊕ ((2)⊕ 02), D2(24, 4; 2)⊕ (02 ⊕ (2)), D3(24, 4; 2)⊕ ((2)⊕ (2)), D(24, 20; 4)⊕ (4)].

From orthogonal decompositions of I24 ⊗ τ4, τ4 ⊗ I2 ⊗ τ4 and Theorem 1, it is obvious that

D = [D0(24, 20; 4), D1(24, 4; 2), D2(24, 4; 2), D3(24, 4; 2)] is a normal mixed difference matrix

(see Table 3).

Theorem 2 Suppose that Lp(s1 · · · sn) = (c1, . . . , cn) is a normal orthogonal array, and

that D(m, k; p) is a difference matrix. If we partition D(m, k; p) into [D(m, k; p) = [D(m, k −
r; p), D(m, r; p)], then [D(m, k − r; p), φ1(D(m, r; p)), . . . , φn(D(m, r; p))] is a normal mixed dif-

ference matrix, where φi is as in (1).

Proof. It follows from that φi(D(m, k; p)) is a si-level difference matrix.

4. Construction method for larger normal mixed difference ma-
trices.

The following Lemma is due to Zhang et al.(2002).

Lemma 3 Suppose that both

D(r, r; r) = (dij)r×r = (d1, . . . , dr)

and

D(r + 1, r + 1; p) =

(
0 0
0 A

)
=

(
0 0
0 (aij)r×r

)
=

(
0 0 · · · 0
0 a1 · · · ar

)

are difference matrices with entries from two additive groups Gr = {0, 1, . . . , r − 1} and Gp =

{0, 1, . . . , p− 1}, respectively. For any dij ∈ Gr, define a permutation matrix σ(dij) as follows

σ(dij) · (r) = dij + (r). (2)

Set F = (σ(dij)A)1≤i≤r,1≤j≤r. Then the following array

D(r(r + 1), r(r + 1); p) =

(
0 A⊕ 0T

r

A⊕ 0r F

)
.

is a difference matrix.
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Lemma 4 If D = [D(m, k; p), D(m, k1; s1), . . . , D(m, kn; sn)] is a normal mixed difference

matrix based on a normal orthogonal array Lp(s1 · · · sn) = (c1, . . . , cn), then D is still an normal

mixed difference matrix after performing the following operations:

(1) adding an i (i ∈ {0, 1, . . . , p− 1} to any column of D(m, k; p) or adding an ij ij ∈ Gj to any

column of D(m, kj ; sj).

(2) adding an i (i ∈ {0, 1, . . . , p − 1} to row of D(m, k; p) and adding φj(i) to the same row of

D(m, kj ; sj) for j = 1, . . . , n.

Proof It is obvious from the definition of normal mixed difference matrix.

Theorem 3. Under the conditions of Lemma 3, suppose that [D(r + 1, k + 1; p), D1(r +

1, k1; s1), . . . , Dm(r + 1, km; sm)] is a normal mixed difference matrix based on a normal orthog-

onal array Lp(s1 · · · sm) = (c1, . . . , cm) and that D(r, r; r) is a difference matrix. Then we can

obtain a normal mixed difference matrix

[D(r(r + 1), k(k + 1); p), D1(r(r + 1), k1(r + k + 1); s1), . . . , Dm(r(r + 1), km(r + k + 1); sm)]

based on the normal orthogonal array Lp(s1 · · · sm).

Proof. From Lemma 4, we assume that

[D(r + 1, k + 1; p), D(r + 1, kt; st)] =

(
0 0
0 H

)
=

(
0 0
0 (hij)r×rt

)
=

(
0 0 · · · 0
0 h1 · · · hrt

)
,

where rt = k + kt and H = (Ar×k, Br×kt). And set F = (σ(dij)H)1≤i≤r,1≤j≤rt , where σ(dij) is

as in (2). Then we construct a matrix K as follows

K =

(
0 H ⊕ 0T

rt

H ⊕ 0r F

)
.

And in the K, set K0 =

(
0

H ⊕ 0r

)
and Kj =




hj ⊕ 0T
rt

σ(d1j)H
· · ·

σ(drj)H


 for j = 1, . . . , rt. Moreover, if hj

is a p-level column i.e. a column of Ar×k, we take Kj as follows

Kj =




hj ⊕ 0T
k , φt(hj)⊕ 0T

kt

σ(d1j)(A,B)
· · ·

σ(drj)(A,B)


 ,

and if hj is a st-level column i.e. a column of Br×kt , we take Kj as follows

Kj =




hj ⊕ 0T
rt

σ(d1j)(φt(A), B)
· · ·

σ(drj)(φt(A), B)


 .
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Through some column permutation, K can be written as

K = [D(r(r + 1), k(k + 1); p), Dt(r(r + 1), kt(rt + k + 1); st)].

It easily follows from Lemma 3 that all the p-level columns of K constitute a difference

matrix D(r(r + 1), k(k + 1); p).

Now we prove that [φt(D(r(r + 1), k(k + 1); p)), Dt(r(r + 1), kt(rt + k + 1); st)] is a difference

matrix based on the group Gt.

Let

[φt(D(r + 1, k + 1; p)), Dt(r + 1, kt; st)] =

(
0 0 0
0 φt(A) B

)
.

By using D(r, r; r) and Lemma 3, we can construct an st-level difference matrix

Kφt = [D(r(r + 1), k(k + 1) + kt(rt + k + 1); st)] =

(
0 (φt(A), B)⊕ 0T

rt

(φt(A), B)⊕ 0r F1

)
,

where F1 = (σ(dij)(φt(A), B))1≤i≤r,1≤j≤rt . On the other hand, through some column permu-

tation, we just have that Kφt can be written as Kφt = [φt(D(r(r + 1), k(k + 1); p)), Dt(r(r +

1), kt(rt + k + 1); st)]. Hence, to take t = 1, . . . , m, respectively, we can get a normal mixed

difference matrix

[D(r(r + 1), k(k + 1); p), D1(r(r + 1), k1(r1 + k + 1); s1), . . . , Dm(r(r + 1), km(rm + k + 1); sm)]

based on the normal orthogonal array Lp(s1 · · · sm).

Example 3. Construction of normal mixed difference matrices [D0(132, 30; 6), D1(132, 42; 3),

D2(132, 102; 2)] and [D0(132, 20; 6), D1(132, 112; 3), D2(132, 112; 2)].

By Lemma 4, we can make the normal mixed difference matrix [D0(12, 6; 6), D1(12, 3; 3),

D2(12, 6; 2)] in Wang (1996) the following form
(

0 0
0 H

)
.

Then using the difference matrix D(11, 11; 11) and Theorem 2, we can construct a normal mixed

difference matrix [D0(132, 30; 6), D1(132, 42; 3), D2(132, 102; 2)].

Similarly by using [D0(12, 5; 6), D1(12, 7; 3), D2(12, 7; 2)] in Wang (1996), we can obtain a

normal mixed difference matrix [D0(132, 20; 6), D1(132, 112; 3), D2(132, 112; 2)].

Remark In theorem 3, if r(r+1)−1 is a prime or prime power, then we can use the method

again to construct a new normal mixed difference matrix. For example, by using difference

matrix D(131, 131; 131) and Theorem 3 again, we can construct a normal mixed difference matrix

[D0(131×132, 19×20; 6), D1(131×132, 112× (131+20); 3), D2(131×132, 112× (131+20); 2)] =

[D0(17292, 380; 6), D1(17292, 16912; 3), D2(17292, 16912; 2)].
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Example 4. Construction of normal mixed difference matrix [D0(23× 24, 380; 4), D1(23×
24, 172; 2), D2(23× 24, 172; 2), D3(23× 24, 172; 2)]

By Lemma 4, we can make the [D0(24, 20; 4), D1(24, 4; 2), D2(24, 4; 2), D3(24, 4; 2)] in Ex-

ample 2 the following form (
0 0
0 H

)
.

Then using the difference matrix D(23, 23; 23) and Theorem 2, we can construct a normal mixed

difference matrix [D0(23×24, 380; 4), D1(23×24, 172; 2), D2(23×24, 172; 2), D3(23×24, 172; 2)].

When difference matrix D(r, r, , r) does not exist, we state the following theorem.

Theorem 4. Under the conditions of Lemma 3, suppose that [D(r + 1, k + 1; p), D1(r +

1, k1; s1), . . . , Dm(r + 1, km; sm)] is a normal mixed difference matrix based on a normal orthog-

onal array Lp(s1 · · · sm) = (c1, . . . , cm) and that there exists an orthogonal array Lr2(rx+1) =

[(r)⊗ 1r, Q1(1r ⊗ (r)), · · · , Qx(1r ⊗ (r))] where Qj = diag(σ1j , · · · , σrj) is a permutation matrix

satisfying Qj((r)⊗ 1r) = (r)⊗ 1r. Then we can obtain a normal mixed difference matrix

[D(r(r + 1), k(k + 1); p), D1(r(r + 1), y1; s1), . . . , Dm(r(r + 1), ym; sm)]

based on the normal orthogonal array Lp(s1 · · · sm), where

yt =

{
kt(2k + kt + 1) if x ≥ k + kt

kt(k + 1) + (x− k)(k + kt) if k ≤ x < k + kt

If x < k, the above normal mixed difference matrix becomes

[D(r(r + 1), k(x + 1); p), D1(r(r + 1), k1(x + 1); s1), . . . , Dm(r(r + 1), km(x + 1); sm)].

Proof. We only prove the case k ≤ x < k + kt, the other cases are similar to Theorem 3

and the above case.

From Lemma 4, we assume that

[D(r + 1, k + 1; p), D(r + 1, kt; st)] =

(
0 0
0 H

)
=

(
0 0
0 (hij)r×rt

)
=

(
0 0 · · · 0
0 h1 · · · hrt

)
,

where rt = k + kt and H = (Ar×k, Br×kt). And set F = (Q1(1r ⊗H), . . . , Qx(1r ⊗H)). Then

we construct a matrix K as follows

K =

(
0 (h1, · · · , hx)⊕ 0T

rt

H ⊕ 0r F

)
.

And in the K, set K0 =

(
0

H ⊕ 0r

)
and Kj =

(
hj ⊕ 0T

rt

Qj(1r ⊗H)

)
for j = 1, . . . , x. Moreover, if

hj is a p-level column i.e. a column of Ar×k, we take Kj as follows

Kj =

(
hj ⊕ 0T

k , φt(hj)⊕ 0T
kt

Qj(1r ⊗H)

)
,
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and if hj is a st-level column i.e. a column of Br×kt , we take Kj as follows

Kj =

(
hj ⊕ 0T

rt

Qj(1r ⊗ (φt(A), B))

)
.

Through some column permutation, K can be written as

K = [D(r(r + 1), k(k + 1); p), Dt(r(r + 1), kt(k + 1) + (x− k)rt; st)].

It easily follows from Lemma 3 that all the p-level columns of K constitute a difference

matrix D(r(r + 1), k(k + 1); p).

Now we prove that [φt(D(r(r + 1), k(x + 1); p)), Dt(r(r + 1), kt(k + 1) + (x − k)rt; st)] is a

difference matrix based on the group Gt.

Let

[φt(D(r + 1, k + 1; p)), Dt(r + 1, kt; st)] =

(
0 0 0
0 φt(A) B

)
.

By using orthogonal array and similar to Theorem 3, we can construct an st-level difference

matrix

Kφt = [D(r(r + 1), k(k + 1) + kt(k + 1) + (x− k)rt; st)]

=

[
0 (φt(A), B)⊕ 0T

x

(φt(A), B)⊕ 0r (Q1(1r ⊗ (φt(A), B)), . . . , Qx(1r ⊗ (φt(A), B)))

]
.

On the other hand, through some column permutation, we just have that Kφt can be written

as Kφt = [φt(D(r(r + 1), k(k + 1); p)), Dt(r(r + 1), kt(k + 1) + (x − k)rt; st)]. Hence, to take

t = 1, . . . , m, respectively, we can get a normal mixed difference matrix [D(r(r + 1), k(k +

1); p), D1(r(r + 1), k1(k + 1) + (x− k)r1; s1), . . . , Dm(r(r + 1), km(k + 1) +(x− k)rm; sm)] based

on the normal orthogonal array Lp(s1 · · · sm).
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