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Abstract: In modern manufacturing environments, 

both multivariate and dynamic natures have become 
increasingly important. Many multivariate and dy-
namic processes, such as processes with feedback 
control and with high-frequency automatic sampling, 
have raised new challenges to conventional statistical 
process control (SPC) and statistical quality control 
(SQC). For the efficient and effective monitoring of 
multivariate processes with dynamic (time-varying) 
shifts, some conventional SPC schemes have been 
extended and implemented. Meanwhile, new tech-
niques have also been proposed to handle these chal-
lenges. This paper provides a literature review on the 
existing SPC techniques for multivariate and dynamic 
process monitoring. In addition, some novel alterna-
tives based on the ideas of joint monitoring and adap-
tive control chart are proposed. Illustrative examples 
are used to demonstrate and compare these techniques, 
and practical guidelines to implement the dynamic 
process control and monitoring are provided accord-
ingly. 
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1 Introduction  
In the modern business environment, quality is one 

of the decisive factors for the success and sustained 
development of an enterprise. In order to reduce the 
cost of poor quality, the root cause of quality prob-
lems must be identified. According to [1], “quality is 
inversely proportional to variability”. The author of [2] 
also defines quality as “the never-ending reduction of 
variation around a customer defined target in the 
absence of defects”. Therefore, the root cause of poor 
quality is large variability. Reducing process varia-
tions is the most important way of improving quality. 

Variations in processes can be classified as either 
common cause variations or assignable cause varia-
tions. The former type refers to the natural variability 
that causes the processes to vary within an acceptable 
tolerance. The latter type, however, is caused by cer-
tain isolated, identifiable and removable reasons. 
Identifying the existence of such assignable causes 
and helping remove them are the fundamental func-
tion of Statistical Process Control (SPC). 

No matter whether a sustained shift ([3], [4], [5] and 
[1]) or a deterministic drift happens ([6], [7], [8]) in a 
process, the behavior of observable variables may be 
very complex in a dynamic process. As [9] points out 
that a dynamic process, rather than responding to 
input changes immediately, undergoes a transitional 

period before establishing a new process level. Fur-
thermore, the dynamic behavior of a continuous proc-
ess in the modern manufacturing environment has 
been strengthened by employing short-interval sam-
pling plans ([10]).  

Inertial systems are one type of application that ex-
hibit dynamic natures. Depending on the degree of 
inertia, such systems respond slowly or quickly to 
sudden changes. More importantly, in the event of a 
constant shift in the process, the observed sequences 
usually demonstrate time-varying shift patterns. An 
example of shifts in inertial systems is shown in 
Figure 1. The process is subject to a sudden mean 
shift, while the observed output shows a slowly in-
creasing trend. After the shift has happened, it takes 
around 50 steps for the output to reach a new level.  
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Figure 1. An example of time-varying shifts in inertial systems. 

Solid: observations; dashed: EWMA predictions. 
 

To achieve a better control of quality, most proc-
esses are equipped with certain types of feedback 
controllers instead of being left alone ([11], [12], [13], 
[14]). If any deviation from the target is observed, the 
information will be fed into the controller to generate 
an optimal control action, which aims to compensate 
the deviation by changing the input variables. The 
trajectories of a feedback-controlled process are 
shown in Figure 2. The process is subject to a con-
stant mean shift. However, the observed process out-
put and control action exhibit strong oscillations.  
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Figure 2. An example of time-varying shifts in feedback-controlled 

processes. 
 
The various dynamic shifts shown above have given 

rise to distinct challenges to SPC. The fact that time-
varying shifts are more difficult to identify in a proc-
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ess drives the need for advanced charting techniques. 
In this paper, we review the charting techniques for 
monitoring dynamic processes. The basic model for 
illustrating dynamic signals and the conventional 
treatments for process monitoring are presented in 
Section 2. In Section 3, some new extensions to this 
issue are introduced. Section 4 presents a simulation 
example to demonstrate the performance of the new 
extensions. Section 5 concludes this paper with future 
research topics.  

 

2 Signal modeling and literature 
review  

Any dynamic shift of a univariate process can be 
characterized by two pieces of information: fault 
signature tf , which is a function of time that illus-
trates the fluctuation of the shift signal; and shift 
magnitude δ , which indicates the shift’s size. There-
fore, the output of a univariate process can be repre-
sented by the following model ([4], [5]):  
 t t tx a fδ= + , (1) 
where ta  is a series of white noises from which we 
want to detect signal tf . The exact form of tf  de-
pends on the process dynamics, the feedback control 
schemes being used, and the true disturbance models.  

For a p -dimensional multivariate process, replacing 
the variables in Equation (1) by vectors leads to the 
following model: 
 t t tδ= +x a f , (2) 
where tx , ta , and tf  are vectors of observations, 
noises, and failure signatures, respectively. The con-
trol chart to be used in practice depends heavily on the 
dimensions of the processes, p , and the format of the 
failure signatures, tf . 
 

 
 

Figure 3. A classification of conventional SPC charts. 
 
The area of SPC has seen substantial growth since 

the pioneering work of [15]. Early studies have fo-
cused on the monitoring of univariate processes with 
constant mean shifts ([15]). With the development of 
manufacturing and sensing technology, the monitor-
ing of autocorrelated processes ([16], [17], [18], [19], 
[20]) [21]) and multivariate processes ([22], [23], [24], 
[25], [26]) has gradually drawn wide attention. This 

trend is better summarized by Figure 3, within which 
popular SPC methods are also labeled.  

 
2.1 Monitoring constant mean shifts  

The lower-left block of Figure 3 assumes that the 
quality 1tf =  holds in Equations (1). Under such a 
condition, the shift becomes a constant level shift of 
size δ . Several univariate control charts, such as x  
chart, CUSUM chart and EWMA chart, are designed 
for this type of shifts.  

If the process dimension exceeds one, multivariate 
control charts should be considered. Given the as-
sumption that t =f 1  holds in Equation (2), the Hotel-
ling 2T  chart, MCUSUM chart and MEWMA charts 
are suitable for such applications.  

The Hotelling 2T  chart due to [22] has gained wide 
attention ever since its appearance. Recent discussions 
are given by [24], [27], [26] and [28]. The Hotelling 

2T  chart takes the form:  
 ( ) ( )2 1T

t t HT h−= − − >x μ Σ x μ . (3) 

When the covariance matrix, Σ , is known, the 2T  
statistics follow a chi-square distribution with p  
degrees of freedom. If the covariance matrix is esti-
mated from samples, the control limit is usually modi-
fied to gain a desired in-control ARL (see, e.g., [26], 
[1]).  

However, the Hotelling 2T  chart considers only the 
most recent observations and is a Shewhart-type con-
trol chart. It gives a satisfactory performance for lar-
ger shifts, but suffers from poor sensitivity to small 
shifts. Therefore, the multivariate version of EWMA 
and CUSUM charts, the multivariate EWMA 
(MEWMA) chart and the multivariate CUSUM 
(MCUSUM) chart respectively, have been developed 
in parallel ([29], [30], [31]).  

For processes with high dimensions, dimension re-
duction techniques are usually adopted to improve 
charting performance. One of the solutions is to re-
duce the dimension by utilizing principle component 
analysis (PCA) ([32], [33], [34], [35]). The basic idea 
of PCA monitoring is to find efficient principle com-
ponents (PCs), which are the linear combinations of 
the original variables, and monitor these PCs instead 
of the original ones. The number of principle compo-
nents to be monitored is usually less than that of the 
process variables.  

Recently, [13] proposed to monitor dynamic proc-
esses with dynamic PCA. Instead of using fixed prin-
ciple components, [13] proposed to conduct PCA 
online, which is more suitable for time-varying shifts. 
The application of dynamic PCA is also found in [36] 
and  [37]. 

All the above control charts assume the process is 
subject to a constant shift. If this assumption is vio-
lated, as [6] and [38] demonstrate, an increased num-
ber of false alarms will be seen. In the following sec-
tion, we will introduce some conventional charts that 
are designed for dynamic shift detection. 
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2.2 Monitoring dynamic mean shifts  
One of the natural solutions to dynamic process 

monitoring is applying conventional control charts. 
As excessive false alarms are usually seen due to 
process dynamics, the control limits of these charts 
are usually adjusted beforehand.  

In the univariate scenario, the practice of detecting 
dynamic shifts using EWMA charts ([19]) and 
CUSUM charts ([39], [20]) can be found. Since both 
types of charts are designed for detecting sustained 
shifts with known magnitudes, the optimal design of 
these charts requires the shift magnitude, δ , be 
known in advance. Therefore, the resulting perform-
ance is usually not satisfactory as a single shift magni-
tude is insufficient to represent a dynamic shift pattern 
([40]).  

To adapt for time-varying shifts, [41] proposed an 
adaptive EWMA control chart. The smoothing pa-
rameter of the EWMA chart is modified step by step 
based on the most recent observations. However, the 
design of the adaptive EWMA chart needs to solve a 
complex optimization problem, which is beyond the 
scope of most practitioners. Similar extension of the 
CUSUM chart is given by [42]. The adaptive 
CUSUM chart due to  [42] updates the reference pa-
rameter in the conventional CUSUM chart and tries to 
capture the true shift magnitudes. The ARL perform-
ance of the adaptive CUSUM chart has recently been 
studied by [43]. 

As a control chart specific designed for monitoring 
time-varying shifts in univariate processes, the Cus-
core chart was developed from Fisher’s efficient score 
([44]), and it was later studied by [40, 45-49]. Given 
the dynamic signals, tf , the stopping time of a one-
sided Cuscore chart is ([48]): 

1 1
inf 1: max

2

t
i

SO i i Cuscorek t i t k

r
T t r x h

≤ ≤ = − +

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= ≥ − >⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ , (4) 

where { }i ir fδ=  is the reference signature. It is easy 
to learn from (4) that in order to set up a Cuscore 
chart, the shift pattern and magnitude must be known 
in the design phase.  

 
The GLRT chart is another chart that is designed for 

detecting dynamic shift patterns in a univariate proc-
ess ([50]). [4] developed the GLRT chart for monitor-
ing autocorrelated processes and found that the per-
formance of GLRT is superior to either CUSUM or a 
Shewhart chart on the residuals for various models. 
However, the implementation of the GLRT chart 
requires the shift pattern information, tf , to be known 
prior to design. The magnitude of the shift, μ , is 
replaced by its maximum likelihood estimator. The 
downside of this procedure is its demand for intensive 
computation since it cannot be expressed in a recur-
sive form. One method suggested by [4] is to apply a 
sliding window with a fixed size to reduce the compu-
tational demand. The shift magnitude is therefore 
estimated from the observations covered by the slid-
ing window.  

Lately, the RFCuscore chart proposed by [40] has 
suggested a simple solution to detecting dynamic 
shifts in univariate processes. Compared with the 
aforementioned two charts, the RFCuscore chart has 
further released the requirement for prior information 
about the process. In the RFCuscore chart, the abso-
lute value of the latest observation, | |tx , is treated as 
an estimation of the current shift. The resulting chart 
can be implemented in a recursive form like the con-
ventional CUSUM and Cuscore charts. However, the 
estimation of dynamic shifts using | |tx  is easily con-
taminated by process noises. [40] summarized that 
RFCuscore and Cuscore are better than the GLRT in 
detecting small mean changes, and RFCuscore is 
quicker than Cuscore when the mean change is large.  

Similar to the extension of CUSUM and EWMA 
charts to monitor univariate processes with dynamic 
shifts, the 2T  chart, MCUSUM and MEWMA chart 
can be implemented by ignoring the dynamics in 
process shifts.  

In an endeavor to monitor feedback-controlled proc-
esses, [51] proposed a 0U  chart and a U∞  chart. As 
time-varying shifts are exhibited in feed-back con-
trolled processes, the author identified two snapshots 
of the dynamic shifts, 0f  and ∞f , which are believed 
to be important to fault detection. The quantity 0f  is 
the direction of the process shift in the transient stage 
and ∞f  is the shift direction when the process enters 
its steady state. The 0U  chart and U∞  chart, which 
are given by:  
 1

0 0 tU −= f Σ x , (5) 
and  
 1

tU −
∞ ∞= f Σ x , (6) 

respectively, are optimized for detecting the two spe-
cific shifts. However, as the real shift direction keeps 
changing, none of the charts is uniformly better than 
others.  

To improve the efficiency of a directionally variant 
chart with unknown shifts, [52] proposed to use both 
directionally variant and invariant charts simultane-
ously. In their example, the vector, tV , contains the 
largest ten principle components of a forging machine. 
Directionally variant charts are designed to detect pre-
known process faults and a directionally invariant 
chart is used to detect unknown and general process 
faults. However, the establishment of the directionally 
variant charts requires the assumption that some pre-
known faults are more frequently encountered than 
others, this information may still be difficult to obtain 
in practice. Furthermore, the assumed shifts, once 
they occur, should be a constant over time. Otherwise, 
the usefulness of the directionally variant charts will 
be degraded.  

In order to improve the performance in detecting 
dynamic shifts in multivariate processes, [53] pro-
posed an autoregressive (AR) chart. By collecting L  
successive historical observations, the AR-chart first 
forms a L -dimensional vector, 
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1 1[ , ,..., ]T
t t t t Lx x x− − +=X , then monitors the vector by 

Hotelling’s 2T  chart. The work was further extended 
by [5] to a dynamic 2T  chart to monitor feedback-
controlled processes. The idea of using lagged obser-
vations for monitoring was also addressed by [54].  

 

3 New extensions  
One noticeable phenomenon that differentiates a 

univariate process from a multivariate process is the 
observable failure patterns, which define the way in 
which process variables behave when a failure occurs. 
As there is only one response variable in a univariate 
process, its shift pattern is usually simple. In a multi-
variate process, however, the pattern is much more 
complicated. Each process fault could lead to a differ-
ent number and combination of variables to deviate. 
For example, in the aforementioned DRIE process, a 
shift in etching/deposition ratio would lead to devia-
tions in trench profiles, but not uniformity; while a 
shift in gas pressure has an impact on uniformity but 
not trench profiles. Furthermore, an increase in platen 
power can result in an increase in both etching rate 
and selectivity. Obviously, different physical failures 
are reflected by different quality characteristics. If a 
failure is known to have happened in the gas flow, the 
wafer’s uniformity should be checked more carefully 
than other variables. Therefore, monitoring and put-
ting emphasis on the appropriate variables will im-
prove charting performance.  

Depending on the sensitivity to a specific shift, a 
control chart can be classified as either a directionally 
variant or a directionally invariant chart. A control 
chart that is designed to detect shifts along a particular 
direction is a directionally variant chart. For example, 
in order to gain fast detection of platen power shifts in 
the DRIE process, a chart that monitors a weighted 
sum of all variables but puts more weight on the etch-
ing rate and the selectivity is more sensitive than a 
chart that treats all variables equally. However, this 
chart is undoubtedly insensitive to gas pressure shifts, 
as the charting variables are not influenced by gas 
pressure. Generally, a directionally variant is usually 
favored in detecting known shifts. While if an unex-
pected shift in other directions indeed occurs, the 
chart will perform worse than a general chart. Like-
wise, a control chart that has no prior assumption of 
shift direction and is designed for general process 
failures is called a directionally invariant chart ([26]). 
A directionally invariant chart has good performance 
in detecting general failures with large shift magni-
tudes but not a specific failure of interest.  

In this section, we propose an adaptive 2T  chart to 
monitor multivariate processes. The basic idea is to 
make use of the predictability of a shift. First, a fore-
casting algorithm is utilized to estimate shift direc-
tions. Then, the adaptive 2T  chart, which is a direc-
tionally variant chart, will adjust its reference vector 
and maximize its detection power for the predicted 
shift.  

Let tx  be a vector of observations sampled from a 
multivariate process at step t . The vector follows a 
p -dimensional normal distribution with mean μ  and 

variance Σ , ~ ( , )t Nx μ Σ . Without loss of generality, 
we assume 0=μ  when the process is in-control. In 
the event of any physical failure, the mean of the 
process shifts to a new position, td . The statistic, td , 
is a time-varying statistic that reflects the dynamic 
shifts of the process. The following hypothesis illus-
trates the concern of the process status: 

 0

1

: 0
: ,t

H
H

=⎧
⎨ =⎩

μ
μ d

 (7) 

The log-likelihood ratio of the previous hypothesis is 
a powerful statistic for testing whether the process is 
in-control. Therefore, we construct a control chart 
based on the log-likelihood ratio:  

 2 1 1
2 2

1
2

T T
AT t t t t ATT h− −= − >d Σ x d Σ d . (8) 

We define the above procedures an adaptive 2T  (AT2) 
chart. The new charting statistic subscripts the shifts 
of interest by a time stamp. By continuously updating 

td , the chart adjusts itself at each step to maximize its 
detection power for shift td . The resulting perform-
ance is expected to be optimized. 

A close examination of (8) reveals that the prior 
knowledge, td , plays an essential role in determining 
the performance of the chart. However, in industrial 
practices, the occurrence of physical failures is rarely 
known in advance. The only way to obtain informa-
tion about td  is to use forecasting algorithms.  

In general, a forecasting algorithm is either model-
based or model-free. A model-based algorithm in-
volves fitting an ARMA( p , q ) model to the dataset 
for each stream first, then obtaining the one-step-
ahead estimations based on the model and treating 
them as the true values ([55], [53]). However, the 
performance of model-based forecasting depends 
heavily on the accuracy of the time series model. Poor 
estimates of model parameters will lead to poor fore-
casting accuracy. A model-free method does not re-
quire an explicit fitting of any specific models. As 
suggested by [56], the EWMA statistic is, in many 
cases, a good approximation of time series models. [9] 
successfully utilized an EWMA-base method in inten-
sity forecasting in a plastic product manufacturing 
station. In addition, the EWMA procedure has a sim-
ple form and good interpretability. Therefore, EWMA 
forecasting will be utilized in this chapter for mean 
shift estimation.  

In the EWMA forecasting procedure, the recursive 
updating of td  is achieved by calculating the 
weighted average of the latest observation and the 
previous estimation: 
 1(1 )t t tλ λ −= + −d x d , (9) 
where λ  is a smoothing parameter. The above model-
ing procedure is analogous to the multivariate EWMA 
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procedure for monitoring multivariate applications 
(see [26] and the references therein).  

The smoothing parameter in (9), which satisfies 
0 1λ≤ ≤ , determines the spread of weights over the 
most recent and historical observations. A large λ  
gives a higher emphasis to the most recent observa-
tion. Therefore, changes in the process would be cap-
tured quickly. However, the resulting predicted series 
may be easily contaminated by noises. Conversely, a 
small λ  makes the EWMA forecasting robust to 
process noises but insensitive to real process shifts. 
The impact of λ  on the performance of the adaptive 

2T  chart will be analyzed in later sections.  
The philosophy of the adaptive 2T  procedure can be 

illustrated by a radar example. The Hotelling 2T  chart 
performs like a global-wised radar that tries to scan 
the full horizon for any abnormal signals, as shown in 
Figure 4 (a). The conventional directionally variant 
chart concentrates on only one part of the circle and 
performs like a specific radar, as shown in Figure 4 
(b). However, the adaptive 2T  chart performs like a 
smart tracking radar. As shown in Figure 4 (c), it 
starts from a specific direction, and keeps tracking the 
most likely suspect by changing its beaming direction. 

 

  
(a) a general 2T  chart (b) a directional 2T  chart 

 

 

(c) an adaptive 2T  chart  
Figure 4. The philosophy of different control charts. 

 
It is also interesting to consider two extreme cases 

of the adaptive 2T  chart. If the smoothing parameter 
is chosen as λ =1, the equality t t=d x  always holds, 
and the predicted sequence becomes identical to the 
observed sequence. The adaptive 2T  procedure in 
Equation (8) would reduce to  
 2 1

2 / 2T
AT t tT −= x Σ x , (10) 

which is equivalent to the Hotelling 2T  chart. If, 
instead, λ =0, it results in 1 0t t−= = =d d d . The 
predicted shift direction remains constant as the initial 
value. The adaptive procedure would reduce to 
 2 1 1

0 0 0 / 2T T
tT − −= −d Σ x d Σ d , (11) 

which is equivalent to a directionally variant 2T  chart 
that is designed for a single specific shift, 0d . In 
general, the adaptive 2T  chart takes the value 
0 1λ< < ; it is then expected to maintain the advan-
tages of both directionally variant and invariant charts, 
and give good overall charting performance.  

According to [31], the ARL performance of an 
MEWMA chart depends on the process mean, μ , and 
covariance matrix, Σ , only through the value of the 
following noncentrality parameter (NCP)  
 1Tc −= μ Σ μ . (12) 
It can be proved that the ARL performance the adap-
tive 2T  chart depends on the mean vector and covari-
ance matrix only through the NCP. This leads to a 
much easier design guideline for the AT2 chart.  

Figure 5 shows the optimal smoothing parameter for 
different design parameters. As is seen, the optimal λ  
increases with noncentrality parameter. Practitioners 
can choose the optimal settings based on this figure 
easily. More results are given in [57].  
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 Figure 5. Optimal smoothing parameters. 

 

4 Performance study  
To better understand the performance of the adap-

tive 2T  chart, we apply the chart to a multivariate 
process with sustained shifts and investigate its per-
formance. Without loss of generality, we assume a 
bivariate process, 1 2[ , ]Tx x=x , that has the following 
covariance structure: 

 
1 0

.
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ   

That is, no correlation exists between the two vari-
ables. Furthermore, we assume the mean of the proc-
ess is zero when it is in-control. If x  has a general 
covariance matrix, the transformed variable 1/ 2−Σ x  
has a zero mean and an identity covariance structure 
when the process is in-control, and a mean of 1/ 2−Σ μ  
and an identity covariance structure when the process 
is out-of-control ([58]). As the general Hotelling 2T  
chart (denoted as GT2) is a popular scheme for moni-
toring multivariate processes with general failures, we 
will compare it with the adaptive 2T  chart in terms of 
their ARL performance. For fair comparison, the in-
control ARL of both charts are forced to be roughly 
200. Each ARL value is obtained by running at least 
10,000 replicates via Monte Carlo simulations.  

Two shift patterns, which correspond to two differ-
ent types of physical failures, are considered in the 
simulation: shifts in 1x , and shifts in both variables. 
The noncentrality parameter, c , changes from zero to 
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three to cover both small and large shifts. Simulation 
results are shown in Figure 6.  
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Figure 6. Performance comparison between GT2 and AT2 charts. 
 
As is seen from Figure 6 that when the smoothing 

parameter, λ , takes the values 0.2, the AT2 chart 
outperforms the GT2 chart for all shifts less than 2.4. 
This range contains both small and moderate shifts. 
The performance of the AT2 chart deteriorates only 
when the shift magnitude becomes large. This obvi-
ously shows the power of the AT2 chart in detecting 
small process shifts. For small shifts, the EWMA 
prediction can easily capture the shift trend by 
smoothing historical observations. Therefore, the AT2 
chart is powerful in detecting such shifts. When the 
shift magnitude is large, due to the averaging effect of 
the EWMA equation, the prediction sequence is 
slowed down. Therefore, the AT2 chart is slightly 
inferior to the GT2 chart.  

Furthermore, the performance of the AT2 chart in 
detecting large shifts can be improved by adjusting 
the smoothing parameter, λ . When λ =0.5 is utilized, 
the AT2 chart performs better than or close to the 
GT2 chart for both small and large shifts. However, 
increasing the smoothing parameter makes the predic-
tions less accurate when the shift size is small. There-
fore, although the performance of the AT2 chart for 
small shifts with λ =0.5 is superior to that of the GT2 
chart, it is inferior to the AT2 chart when λ =0.2 is 
utilized.  

 

5 Conclusions 
Both univariate and multivariate dynamic processes 

are widely seen in industrial practices. However, the 
charting techniques designed for monitoring time-
varying shifts usually rely on certain assumptions and 
conditions. In this paper, we illustrate the develop-
ment trend of SPC, and provide a literature review of 
the charting techniques for detecting time-varying 
shifts. The advantageous and limitations of these 
methods are identified. The results can serve as a 
guideline for practitioners to choose specific charts 
for practical applications.  

An adaptive 2T  chart has been proposed as an ex-
tension to conventional methods. The purpose of the 
adaptive 2T  chart is to handle dynamic shift patterns 
in multivariate processes. The newly proposed chart 
features monitoring a directionally variant statistic 
and updating its reference vector repeatedly via expo-
nentially weighted moving average (EWMA) fore-
casting. Therefore, its detection power is maximized 

at each step with respect to the predicted shifts. It is 
shown that the average run length (ARL) performance 
of the adaptive 2T  chart depends on the process mean 
and covariance matrix only through the value of the 
noncentrality parameter of the charting statistic. In 
addition, the adaptive 2T  chart is flexible in design; 
its smoothing parameter can be tuned so that its per-
formance over a desired shift range can be improved.  

The current implementation of the adaptive 2T  
chart is carried out based on EWMA-based or oscil-
lated-EWMA-based forecasting methods. We believe 
that the EWMA forecasting is not a method that can 
be globally utilized. More advanced and accurate 
methods are required to further improve the perform-
ance of the adaptive 2T  chart.  
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