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Abstract We propose a class of hierarchical generalized linear models (HGLMs) with ran-
dom dispersions in this paper, and focus on the properties of the L-N estimators for the fixed
effect β in the extended Poisson-Gamma models which are typical hierarchical generalized
linear models. Under the proper assumptions on response variables and some smoothing
conditions, we obtain the strong consistency and the convergence rate of the L-N estima-
tor based on the combination of L-N and quasi-likelihood. Furthermore, we also obtain its
asymptotical normality based on the combination of the central limit theorem and the law
of large numbers. At last, an example is presented for the illustration of the proposed model
and the inference method.
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1. Introduction

The analysis of longitudinal data has been studied extensively in recent years [5]. An
important model class for longitudinal data is generalized linear models with normal random
effects [2]. Lee and Nelder [7, 8] introduced hierarchical generalized linear models(HGLMs)
by including random components in the linear predictor with arbitrary distributions in gen-
eralized linear models(GLMs)[11]. The main idea was using the joint likelihood of response
and random effects, which was called hierarchical-likelihood( H-likelihood), to substitute the
marginal likelihood for inference of HGLMs [7]. They developed a hierarchical algorithm
to give estimators of fixed effects and random effects through maximizing the H-likelihood
given dispersion components, and an estimator of dispersion through an adjusted profile H-
likelihood given fixed and random effects. This method has an advantage that integrating
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out of random effects is not required. The obtained estimators derived from maximizing the
H-likelihood are termed as maximum H-likelihood estimators (MHLEs). The frame work has
been heuristically extended to double HGLMs further [9].

However, the frame work needs a theoretical development. In fact, as that pointed out by
some authors, the MHLE might be biased [7]. In this paper, we extend a typical model family
in HGLMs, that is, Poisson-Gamma model to a model which allows random dispersions, and
investigate theoretically the H-likelihood method for the extended Poisson-Gamma family.
For convenience, with the distribution of the random effect v completely known, we refer to
the MHLEs for the fixed effect β as L-N estimators. The main purpose is to study the strong
consistency and its asymptotical normality of the L-N estimators. Under the conditions which
will be given in following section, we demonstrate the strong consistency and the asymptotical
normality as the number of groups t → ∞ and the convergence rate of the L-N estimator
for the Poisson-Gamma models (P-G models), based on the combination of L-N and quasi-
likelihood. The convergence rate is O(t−(δ−1/2)(log log t)1/2), where tδ is a lower bound of
smallest eigenvalue of information matrix. It is the optimal rate obviously in the case of
δ = 1, which is also the rate given by the law of the iterated logarithm.

The organization of this paper is as follows. In Section 2, we shall briefly introduce the
models and the main inference methods. In Section 3, we shall give the asymptotic properties
of the L-N estimator for the fixed effect β in P-G models. In the last section, we shall give
an example and the numerical results.

2. Models and the Inference Methods

Consider a trial in which t groups are involved, and there are ni subjects in the ith group.
Denote by yij and Xij respectively the response and the observation vector of covariates of the

jth subject in the ith group; where i = 1, · · · , t, and j = 1, · · · , ni. Let n =
t∑

i=1
ni, and Y i =

(yi1, · · · , yini)
τ . Suppose that the responses yi1, · · · , yini in the same group are associated to

a common random component ui, and the response vectors Y 1, · · · ,Y t for different groups
are independently distributed. Let v = v(u) be some known strictly monotonic function of u.

In HGLMs, the kernel of the conditional log likelihood for Y = (Y τ
i , · · · ,Y τ

t )
τ given the

random components v = (vτ
1 , · · · ,vτ

t )
τ has the GLM form

t∑

i=1

{
Y τ

i θ
′
i−1τb(θ′i)

}
/φ.

where vi = (vi, · · · , vi)τ is a ni dimension vector. The kernel of the likelihood for v is assumed
having the form

t∑

i=1

{
a1(α)vi − a2(α)b(vi)

}
.
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Then the kernel of the H-likelihood becomes

H =
t∑

i=1

{
Y τ

i θ
′
i−1τb(θ′i)

}
/φ +

t∑

i=1

{
a1(α)vi − a2(α)b(vi)

}
. (2.1)

where φ is the dispersion parameter. Given v, the link function is given by µ′i = Eβ(Y i|v) =
h(Xτ

i β + vi) = ḃ(θ′i), where Xi = (Xi1, · · · ,Xini); and the conditional covariance matrix
is COVβ(Y i|v) = b̈(θ′i)φ, where ḃ(θ′i) =

(
∂b

∂θ′i1
, · · · , ∂b

∂θ′ini

)τ
, b̈(θ′i) denotes the ni× ni second

order partial derivative matrix for b(θ′i) with respect to θ′i. h : Rni → Rni is a bijective and
twice continuously differentiable function. Lee and Nelder employ

∂H

∂β
= 0,

∂H

∂v
= 0 (2.2)

as estimating equations of β and v [7, 8].
Now suppose that each yij is disturbed by an individual random effect ηij , ui and ηij are

all unobserved, and given ui, (yi1, ηi1), · · · , (yini , ηini) are conditionally independent. Con-
sider multiplicative Poisson-Gamma models, in which yij |(ui, ηij) is distributed as over-
dispersed Poisson(µ′′ij), ηij |ui is distributed as Gamma(ρij ,ρij), and ui is distributed as
Gamma(α,α), a Gamma distribution with mean 1 and a known variance parameter α; where
ρij = ρij(Xτ

ijβ, ui) is a known function of Xτ
ijβ and ui, probably except a unknown param-

eter.
Some notations are listed below.

µ′′i = (µ′′i1, · · · , µ′′ini
)τ , µ′i = (µ′i1, · · · , µ′ini

)τ ,

µi = (µi1, · · · , µini)
τ , µ′ = (µ′τ1 , · · · ,µ′τt );

U = α diag(u1, · · · , ut), Xij = (x1ij , · · · , xpij)τ , X = (X1, · · · ,Xt);

β = (β1, · · · , βp)τ , β0 = (β01, · · · , β0p)τ , θ′i = (θ′i1, · · · , θ′ini
)τ ;

b(θ′i) =
(
b(θ′i1), · · · , b(θ′ini

)
)τ

, ηi = (ηi1, · · · , ηini)
τ , Z = (Z1, · · · , Zt);

Si = diag(µi1, µi2, · · · , µini), U i = diag(µ′i1, µ
′
i2, · · · , µ′ini

), U = diag(U1, · · · ,U t);

w = log µ′ + U−1(Y − µ′), R = Uv + (α1− αev), 1 = (1, · · · , 1)τ ,

where Zi is the t× ni matrix and its the ith row elements are 1, others are 0. For univariate
function b(x), use b(x) to denote column vector (b(x1), b(x2), · · · , b(xp))τ for a p column
vector x = (x1, · · · , xp)τ .

It holds that

• h(x) = ex, b(θ′i) = eθ′i , b(vi) = evi = ui.

• µ′′ij = µijuiηij = E(yij |u, η)

• µ′ij = µijui = E(yij |u); µij = e
Xτ

ijβ;
• COV (Y i|v) = φ(Xτ

i β)b̈(θ′i) = φ(Xτ
i β)U i;
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• E(ui) = 1; a1(α) = a2(α) = α.

• E(ηij) = 1; var(ηij) < ∞.

where φ(Xτ
i β) = diag(φ(Xτ

i1β), · · · , φ(Xτ
ini

β)) is the dispersion matrix, φ(Xτ
ijβ) = uie

Xτ
ijβ

ρij
+

1 is the dispersion of yij . Similar to equation (2.2), the estimating equations are

t∑

i=1

Xiφ
−1(Xτ

i β)(Yi − eXτ
i βui) = 0, (2.3)

{
(Yi − µiui)τ φ−1(Xτ

i β)1
}

+ α− αui = 0. (2.4)

These equations are extensions of the likelihood estimating equations. From (2.4), we have

ûi =
Y τ

i φ(Xτ
i β)1 + α

µτ
i φ(Xτ

i β)1 + α
. (2.5)

Denote E i = Y i − eXτ
i βui. Substituting ui with ûi in (2.3), we obtain the equation

t∑

i=1

Xiφ(Xτ
i β)

(
E i − eX

τ
i β1τφ(Xτ

i β)E iRi(β) + eXτ
i β(ui − 1)αRi(β)

)
= 0 (2.6)

where Ri(β) = 1/[(eXτ
i β)τφ−1(Xτ

i β)1 + α].
Equation (2.6) is an unbiased estimating equation with respect to β. From the point view

of generalized estimating equations[], we may replace the first φ(Xτ
i β) on the left hand side

by Λi(β) = diag(eXτ
i β)(I−Ri(β)φ(Xτ

i β)1(eXτ
i β)τ )Vi(β), where V i(β) is a given positive

definite matrix, i = 1, · · · , t. This leads to

Lt(β) ≡
t∑

i=1

XiΛi(β)
(
E i − eXτ

i β1τφ(Xτ
i β)E iRi(β) + eXτ

i β(ui − 1)αRi(β)
)

= 0 (2.7)

(2.7) is more flexible in the mean that the estimator obtained may still be consistent without
the correct assumptions for the conditional covariance matrix of Y i . We focus the estimator
of β obtained from (2.7), and call it the L-N estimator. An estimator (or prediction value)
of ui may be obtained by inserting the estimator obtained into (2.5).

3. Properties

Let β̂t be the solution of (2.6), and β0 is the true value of β. Suppose that β0 ∈ Bp, where
Bp is a bounded subset of p-dimensional Euclidean space. Denote

Qt(β) = 1
t Lt(β)

= 1
t

t∑
i=1

XiΛi(β)
(
E i − eXτ

i β1τφ−1(Xτ
i β)E iRi(β) + eXτ

i β(ui − 1)αRi(β)
)
,

W t(β) = COV (
√

tQt(β)).
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W t(β) is given as follows.
(i) When φ(Xτ

i β) is a fixed matrix, there is

W t(β) = 1
t

t∑
i=1

XiΛi(β)
[
(I −Ai)τφ(Xτ

i β)Si(I −Ai)

+eXτ
i β(eXτ

i β)ταR2
i (β)

]
XiΛi(β);

(ii) When φ(Xτ
i β) is a random matrix, there is

Wt(β) = 1
t

t∑
i=1

XiΛi(β)
[
E

(
(I − Ai)τ φ(Xτ

i β)Ui(I − Ai)
)

+eXτ
i β(eXτ

i β)τ α2E
(
(ui − 1)2R2

i (β)
)]

XiΛi(β).

where Ai = φ−1(Xτ
i β)1(eXτ

i β)τRi(β).
In order to obtain the strong consistency and the asymptotical normality of the L-N esti-

mator, we give some additional assumptions which are stated as follows.

A1. {Xi, i ≥ 1} is bounded, λt ≥ ctδ for sufficiently large t and δ ∈ (3/4, 1], where
λt is the smallest eigenvalue of the symmetric matrix

∑t
i=1XiX

τ
i ;

A2. E
[
COV β0

(Y i|ui)
]
≥ cI, i = 1, 2, · · · , supi≥1 Eβ0

‖Y i‖p̄ < ∞, p̄ = 8/3;

A3. φ(·) > c > 0 is twice continuously differentiable. Moreover, φ(·) and its first and
second order partial derivative are bounded in arbitrary bounded subset;

A4. For all i, V i(β) > cI for all β ∈ Bp, where c > 0 is a constant independent of i; and
all elements of V i(β) have continuous second order partial derivatives; moreover,
the elements of V i(β), their first and second order partial derivatives are bounded
in arbitrary subset of Bp.

A5. lim
t→∞W t(β0) = W (β0); where W (β0) is a positive matrix;

A6. For all β ∈ Bp, lim
t→∞Ft(β) = F (β), where Ft(β) = Eβ(−∂Qt(β)

∂βτ ),

denote −∂Qt(β)
∂βτ = Q̇t(β);

A7. {ni : i = 1, · · · , t} is bounded.

The main result is as following.

Theorem 1 Suppose Assumptions A1∼A4 hold, then there exists an estimator β̂t of β0

such that
P

(
Lt(β̂t) = 0, for all sufficiently large t

)
= 1

β̂t − β0 = O(t−(δ−1/2)(log log t)1/2) a.s..
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In the important special case of δ = 1, the convergence rate is

β̂t − β0 = O(t−1/2(log log t)1/2)

which is the same as the rate what the law of the iterated logarithm determined for partial
sums of independent identically distributed random variables.

Lemma 1 If F t(β), Q̇t(β) satisfy the above assumptions, then for β0 ∈ Bp, we have

‖Q̇t(β0)− F t(β0)‖ a.s.→ 0 (t →∞).

Lemma 2 Suppose Assumptions A1∼A7 hold, then

√
t Qt(β0)

L→ N(0,W (β0)).

Theorem 2 The conditions are stated as that in Lemma 2, then

√
t(β̂t − β0)

L→ N(0,F−1(β0)W (β0)F
−1(β0)).

Remark For the proofs of the theorems refer to [16]. Some conditions above could be
weaken technically. For example, the asymptotic normality needs only the consistency, and
the condition on the smallest eigenvalue in A1 could be given similar to [3].

4. Numerical Results

4.1 Algorithm
We develop an algorithm motivated by Fisher scoring method. It includes two steps given

as following, and is shown very efficient computationally.
(1) Iterative weighted least square for estimating β and v


 XWXτ XWZτ

ZWXτ ZWZτ + U





 β + δβ

v + δv


 =


 XWw

ZWw + R


 (4.1)

where W = diag(φ−1(Xτ
11β)µ′11, · · · , φ−1(Xτ

tnt
β)µ′tnt

), δβ and δv are the adjustment of β

and v respectively; w is the adjusted dependent variable.
(2) Estimate the variance parameter α

t∑

i=1

{vi + log α + 1− ui − ψ(α)} − 1
2
tr {Kdiag(u1, · · · , ut)} = 0 (4.2)
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where ψ(α) is digamma function, β = β̂ and v = v̂ are re-evaluated in each iteration in (4.1),
and K is determined from


 XWXτ XWZτ

ZWXτ ZWZτ + U



−1

=


 A B

C K


 .

4.2 An example
As an illustration of the new model, we present the analysis of data arising from a clinical

trial of 59 epileptics carried out by Leppik et al(1985)[14]. Patients suffering from simple
or complex partial seizures were randomized to receive either the antiepileptic drug pro-
gabide(Trt=1) or a placebo(Trt=0), as an adjuvant to standard chemotherapy. Baseline
data available at entry into the trial included the number of epileptic seizures recorded in
the preceding 8-week period and age in years. The logarithm of 1

4 the number of baseline
seizures(B) and the logarithm of age(A) were treated as covariates in the analysis. A multi-
variate response variable consisted of the counts of seizures during the 2-weeks before each
of four clinic visits(Visit, coded Visit=(-3,-1,1,3)/10). Preliminary analysis indicated that
the counts were substantially lower during the fourth visit and a binary variable(V4=1 for
fouth visit, 0 otherwise) was constructed to model such effects. There are several authors
have analyzed these data by using various models, i.e. Thall and Vail(1990)[15], Breslow
and Clayton(1993)[2], Lee and Nelder(1996)[7], Diggle(2002)[5] and so on. We use the above
Poisson-Gamma models to analyze these data, for which t = 59, ni = 4, p = 7, n = 236. Our
main arithmetic are stated as follows.

The model described in Section 2 might include a random dispersion. For the purpose
of comparison, we present the results of fitting to the epileptic data corresponding to the
following two models.

Model 1: ρij = uie
Xτ

ijβ, φ(Xτ
ijβ) = 2.

Model 2: ρij = eX
τ
ijβ, φ(Xτ

ijβ) = 1 + ui.

Model 1 is a conventional model with a constant dispersion, and Model 2 has random
dispersions 1 + ui, which allows the dispersions varying with the common group random
effects.

Because some observations had been identified as outliers [15], we first give out the Q-Q
plots of the standardized residuals r̃ij1 = (r̂ij1 − r̄1)/σ̂1 and the standardized conditional
residuals r̃ij2 = (r̂ij2 − r̄2)/σ̂2 of the complete data for Model 1 and Model 2 respectively in

Figure 1 and Figure 2, where r̂ij1 = yij − eX
τ
ijβ̂, r̂ij2 = yij − eX

τ
ijβ̂ûi, r̄h = 1

236

∑
i,j

r̂ijh, σ̂h =
√

1
235

∑
i,j

(r̂ijh − r̂ijh)2, h = 1, 2. In each figure, the above plot is of the standardized residuals,

and the below one is of the standardized conditional residuals. Both figures show that the 3rd
response of patient 227 (control group) and the 1st response of patient 207 (treatment group)
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have unusual residuals. Boxplots and other residula plots show the same. Furthermore,
the conditional residual plots show the 3rd response of patient 227, corresponding to the
highest points in the plots, is more outlying. A careful observation to the data digs out
that the response 76 of patient 227 is about 3 times of his other responses (18, 27 and 25
respectively), while the 1st response of patient 207 is not so high compared with his other
response, although his all four response are much more higher than those of other patients
apparently. In fact, the conditional residual plots do not display evidence for the 1st response
of patient 207 being an outlier.
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Figure 1: φ(Xτ
ijβ) = 2, complete data.
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Figure 2: φ(Xτ
ijβ) = 1 + ui, complete data.

For the purpose of comparison with respect to conventional analysis, we delete the data of
patient 227 and 207, although this might not be necessary. Then the figures become Figure
3 and Figure 4. No more unusual observations are found in the plots.

Secondly, we give the estimates and the asymptotic standard deviations of the fixed effect
βs and their p values of Wald tests for the significance of the fixed effects. Table 1 and Table
2 are the results of Model 1 and Model 2 respectively. The results for complete data in the
two tables are followed by the results after deletion of the two patients given in parentheses.
The two models give very different explanations for the data. The conventional model shows
that only the baseline observation is significant at level 0.05, while the model with random
dispersion tell us that not only the treatment, age and baseline have significant influence for
the therapy, but also there is an interaction between the treatment and baseline. This is also
find by Lee and Nelder with a much more complicated model [9]. In addition, Model 2 gives
smaller asymptotic standard deviations for the estimates of the fixed effects, see also [15, 2].
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Figure 3: φ(Xτ
ijβ) = 2,

227 and 207 are deleted.
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Figure 4: φ(Xτ
ijβ) = 1 + ui,

227 and 207 are deleted.

This might because Model 2 accounts for heteroscedasticity, dependence among repeated
observations and overdispersion simultaneously.

Table 1 φ(Xτ
ijβ) = 2,

summaries of analyses for the eplieptics data

Parameter β̂t Asymptotic standard error p value

β0 -1.2512 1.5482 0.4190

(-1.1737) (1.5307) (0.4433)

βT -0.8802 0.5372 0.1013

(-0.7268) (0.5555) (0.1907)

βA 0.4899 0.4525 0.2790

(0.4787) (0.4469) (0.2841)

βB 0.8743 0.1736 4.7735×10−7

(0.7975) (0.1747) (4.9617×10−6)

βV -0.1481 0.2904 0.6099

(-0.3747) (0.2946) (0.2034)

βT∗B 0.3383 0.2733 0.2158

(0.2706) (0.2916) (0.3536)

βV4
-0.1015 0.1547 0.5116

(0.0302) (0.1571) (0.8476)
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Table 2 φ(Xτ
ijβ) = 1 + ui,

summaries of analyses for the eplieptics data

Parameter β̂t Asymptotic standard error p value

β0 -1.2913 0.7094 0.0687

(-1.1983) (0.4631) (0.0097)

βT -0.8958 0.1190 5.1292×10−14

(-0.7388) (0.1606) (4.2067×10−6)

βA 0.4888 0.0486 0

(0.4758) (0.0583) (4.4409×10−16)

βB 0.8807 0.0294 0

(0.8046) (0.0285) (0)

βV -0.2913 5.0888 0.9544

(-0.4372) (2.8956) (0.8800)

βT∗B 0.3419 0.0410 0

(0.2717) (0.0636) (1.9626×10−5)

βV4
-0.0069 2.7286 0.9980

(0.0866) (1.5422) (0.9553)

We have also compared many other choices of dispersion. The results obtained show
the models with random dispersions are better than those with fixed dispersions, and the
significance of the covariates is the same.

At last, we give the plots of standardized conditional residuals for the complete data and
the data with patients 227 and 207 deleted respectively in Figure 5 and Figure 6 for model
2 on the log baseline counts at four occasion. The figures show the dispersion structure is
needed.

It might be possible to introduce an unknown parameter in the dispersion function ρ(·, ·).
We shall present further results on this in future papers.
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