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Abstract

Fractional factorial split-plot (FFSP) designs with minimum aberration have received

much attention in industrial experiments. But they are not so easy to be constructed for the

cases when there are many whole plot (or sub-plot) factors and only few sub-plot (or whole

plot) factors. Weak minimum aberration is a weak version of minimum aberration. Based on

the theory of complementary designs, this paper provides some theoretical results which are

useful for constructing FFSP designs with weak minimum aberration for these cases. From

these results, many such FFSP designs are constructed and tabulated, and it is further shown

that quite a few of them are also minimum aberration designs.
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1 Introduction

A 2n−k design usually denotes a regular two-level fractional factorial (FF) design with n

2-level factors and 2n−k runs. Such designs are commonly used for factorial experiments.

But if the levels of some of the factors are difficult to be changed or controlled, it may be
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impractical or even impossible to perform the experimental runs of FF designs in a completely

random order (Cornell, 1988; Letsinger et al., 1996 and Bisgaard and Steinberg, 1997). In

situations of this kind, fractional factorial split-plot (FFSP) designs, which involve a two-

phase randomization, can be conveniently used to reduce costs and hence represent a practical

design option. Suppose we wish to run an experiment with n two-level factors in 2n−k runs,

and there are n1(1 ≤ n1 < n) hard-to-change factors with 2n1−k1 distinct level-combinations.

To perform such a design, we often first randomly choose one of the level-combinations of

these n1 hard-to-change factors and then run all of the level-combinations of the remaining

n2(= n − n1) factors in a random order with the n1 factors fixed. This is repeated for each

level-combination of the n1 factors. Then the design is said to be a 2(n1+n2)−(k1+k2) FFSP

design, where the n1 and n2 factors are called whole plot (WP) factors and sub-plot (SP)

factors, respectively, and there are k1 and k2(= k − k1) WP and SP factorial defining words,

respectively. In such a design, a WP defining word can not involve any SP factor, but a SP

defining word has to involve at least two SP factors. Here we refer to Box and Jones (1992)

for an illuminating discussion of FFSP designs in industrial experiments.

FFSP designs have received much attention in recent years, see for example, Huang et

al. (1998), Bingham and Sitter (1999a,b, 2001), Bisgaard (2000), Mukerjee and Fang (2002),

Bingham and Mukerjee (2006) and Yang et al. (2006) for details. As to what is a good FFSP

design, different criteria have been proposed, such as minimum aberration (Huang et al., 1998;

Bingham and Sitter, 1999a), clear effect criterion (Yang et al., 2006) and D-optimal criterion

(Goos, 2002). Huang et al. (1998) and Bingham and Sitter (1999) gave several algorithms

to search FFSP designs with minimum aberration. But when there are many WP (or SP)

factors and only few SP (or WP) factors, the construction of FFSP designs with minimum

aberration is not so easy to implement. Based on the theory of complementary designs, this

paper provides some theoretical results which are useful for constructing FFSP designs with

weak minimum aberration, and hence many such FFSP designs are constructed. Section 2

introduces some notion and existing results. Section 3 contains the theoretical results. The

constructed FFSP designs with weak minimum aberration are are tabulated in Section 4,
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most of which are also shown to have minimum aberration.

2 Existing results

In 2(n1+n2)−(k1+k2) FFSP design, the numbers 1, 2, . . . , n1 + n2 attached to the factors are

called letters and a product (juxtaposition) of any subset of these letters is called a word.

Considering the structure of FFSP designs, only words involing none or at least two SP factors

are permitted. The number of letters in a word is called the length of the word. Associated

with every 2(n1+n2)−(k1+k2) FFSP design is a set of k1 + k2 words called generators. The

set of distinct words formed by all possible products involving the k1 + k2 generators gives

the defining contrast subgroup of the design. Let Ai denote the number of words of length

i in the defining contrast subgroup, then the vector W = (A3, A4, . . . , An1+n2) is called the

word length pattern of the FFSP design. The resolution of a 2(n1+n2)−(k1+k2) FFSP design

is defined to be the smallest r such that Ar > 0. Such a design is said to have maximum

resolution if no other 2(n1+n2)−(k1+k2) FFSP design has larger resolution than it. Also a

2(n1+n2)−(k1+k2) FFSP design with maximum resolution Rmax is said to have weak minimum

aberration if it has the smallest ARmax among all candidate 2(n1+n2)−(k1+k2) FFSP designs and

is said to have minimum aberration if it minimizes Ai sequentially for i = 3, 4, · · · , n1 + n2.

The definitions of resolution, weak minimum aberration and minimum aberration for FFSP

designs are extensions of the corresponding ones for FF designs (see Box and Hunter, 1961;

Chen and Hedayat, 1996 and Fries and Hunter, 1980, respectively).

Let P be a regular two-level saturated design with resolution III and n − k independent

columns, e.g. for the case of n− k = 3, we have P = {1, 2, 12, 3, 13, 23, 123}, where 12, 13, 23

and 123 denote the columns generated by the element-by-element product of the correspond-

ing independent columns 1, 2 and 3, respectively. Suppose D is an FF design chosen from

P . Then the design formed by all the columns not involved in D, denoted by D, is called the

complementary design of D (Tang and Wu, 1996). Hence, for a saturated design P , we have

P = D ∪ D. The following result is due to Tang and Wu (1996).
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Lemma 1. For a 2n−k FF design D, we have

A3(D) = C − A3(D), (1)

where D is the complementary design of D and C is a constant not depending on the choice

of D.

This lemma established the relation of A3 values between design D and its complementary

design and will be the main tool in the following for constructing FFSP designs with weak

minimum aberration.

3 Main results

Now let P = P1 ∪P2 be a saturated design with (n1 − k1) + (n2 − k2) independent columns,

where P1 involves n1 − k1 independent columns and all the columns generated from these

independent ones. Furthermore, P1 and P2 can be divided into two parts, respectively, i.e.

P1 = D1∪D1, P2 = D2∪D2. We, therefore, have P = P1∪P2 = D1∪D1∪D2∪D2. Following

this way, a 2(n1+n2)−(k1+k2) FFSP design can be represented by D1 ∪ D2 with n1 = |D1| and

n2 = |D2|, where |S| means the number of columns in S and Di contains ni −ki independent

columns for i = 1, 2 (Yang et al., 2006).

3.1 Connection of A3 between D1 ∪ D2 and D1 ∪ D2

According to the definition of A3 and the structure of 2(n1+n2)−(k1+k2) FFSP designs, we have

A3(D1 ∪ D2) = A3(D1) + A3(D2) + M2(D1, D2). (2)

Similarly,

A3(D1 ∪ D2) = A3(D1) + A3(D2) + M2(D1, D2). (3)

Here, M2(Q1, Q2) means the number of words of length three with one column from Q1 and

the other two from Q2. Then from (1), we have

A3(D1 ∪ D2) + A3(D1 ∪ D2) = C + 2A3(D2) + M2(P1, D2),
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i.e.

A3(D1 ∪ D2) = C + 2A3(D2) + M2(P1, D2) − A3(D1 ∪ D2). (4)

So we have the following theorem.

Theorem 1. For a 2(n1+n2)−(k1+k2) FFSP design D1 ∪ D2, minimizing A3(D1 ∪ D2) is

equivalent to minimizing 2A3(D2) + M2(P1, D2) − A3(D1 ∪ D2).

This theorem is very useful in the construction of FFSP designs especially when D1 has

much more columns than D1 and D2 involves only few ones.

Corollary 1. In the case of n2 − k2 = 1, for given n1 and n2, minimizing A3(D1 ∪ D2) is

equivalent to maximizing A3(D1 ∪ D2).

Proof. For this special case, we have A3(D2) = 0 and M2(P1, D2) = 0 from the structure

of a 2(n1+n2)−(k1+k2) FFSP design. Then the assertion follows directly from Theorem 1. �

3.2 Connection of A3 between D1 ∪ D2 and D1 ∪ D2

With all the results in mind, the connection of A3 between D1 ∪ D2 and D1 ∪ D2 can be

easily obtained, which is the following theorem.

Theorem 2. For a 2(n1+n2)−(k1+k2) FFSP design D1 ∪ D2, minimizing A3(D1 ∪ D2) is

equivalent to maximizing 2A3(D2) + M2(P1, D2) − A3(D1 ∪ D2).

Proof. According to (1), we have

A3(D1 ∪ D2) = C1 − A3(D1 ∪ D2).

Then from Theorem 1,

A3(D1 ∪ D2) = C2 + 2A3(D2) + M2(P1, D2) − A3(D1 ∪ D2).

Combining the above two equations, we have

A3(D1 ∪ D2) = C − (2A3(D2) + M2(P1, D2) − A3(D1 ∪ D2)),
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where C1, C2, C are constants that do not depend on the choice of D1 and D2. Thus, the

conclusion follows directly. �

This theorem can be used to construct FFSP designs with weak minimum aberration,

when the SP section in an FFSP design has almost as many factors as P2 has but the WP

section contains few ones.

4 Applications

In this section, designs with weak minimum aberration will be constructed based on the above

theoretical results. For a 2(n1+n+2)−(k1+k2) FFSP design, Yang et al. (2006) pointed out that

when n1 ≥ 2n1−k1−1 + 1 or n1 + n2 ≥ 2(n1+n2)−(k1+k2)−1 + 1, the maximum resolution is III.

Therefore, for the parameters satisfying these conditions, by minimizing A3, we can obtain the

corresponding FFSP designs with weak minimum aberration. Based on Theorems 1, 2 and

Corollary 1, we have constructed many such FFSP designs with weak minimum aberration,

which are tabulated in Tables 1 to 5. Note that we only list one weak minimum aberration

FFSP design and its corresponding word length pattern for each case. For simplicity, only

the first five elements of each word length pattern are given in these tables except for the

case of n1 = 5, n2 = 1 in Table 1. Comparing with the FF designs listed in Chen, Sun and

Wu (1993), we can find that many designs in our tables are optimal in terms of minimum

aberration.

Example 1. Let us take the 2(6+4)−(3+3) FFSP design as an example to illustrate how to

obtain a weak minimum aberration design. In this case, we have |D1| = 1, |D2| = 4. To

minimize A3(D1∪D2), from Corollary 1, we can maximize A3(D1∪D2). So our purpose is to

choose D2 to constitute as many length-three words with one factor from D1 and two from

D2 as possible. One possible choice is to let D1 = {12} and D2 = {4, 124, 134, 234}. The

resulting design D1∪D2 has the same word length pattern as that of the minimum aberration

210−6 FF design listed in Chen, Sun and Wu (1993). And hence, the constructed FFSP design

with weak minimum aberration is also an FFSP design with minimum aberration.
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Note that for the constructed FFSP designs, many of the word length patterns are inferior

to that of the corresponding FF designs given in Chen, Sun and Wu (1993). One reason lies

in the additional constraints imposed by the structure of FFSP designs. In other words,

many minimum aberration FF designs have no such a structure required by FFSP designs.

However, all the FFSP designs given in our tables have weak minimum aberration, which are

guaranteed by Theorems 1, 2 or Corollary 1.

In the tables, each word length pattern marked with an asteria (∗) means that the corre-

sponding FFSP design has minimum aberration by comparing with the word length pattern

in Chen, Sun and Wu (1993). And the one marked with superscript (+) also means that the

corresponding design has minimum aberration. But this can be confirmed by the following

two ways: one is that the design can be declared to have minimum aberration if its word

length pattern is the best among those of the corresponding FF designs given in Chen, Sun

and Wu (1993) with the same A3 value; the other is for the case when the SP section has

only one factor (i.e. n2 = 1). In this case, the 2(n1+n2)−(k1+k2) FFSP design is judged to

have minimum aberration if its word length pattern is the same with that of the minimum

aberration 2n1−k1 FF design.

Note that for some of the parameters given in our tables, minimum aberration designs

were also derived by Huang et al. (1998) and Bingham and Sitter (1999a). Comparing with

their methods, we see that our approaches have the following two advantages. Firstly, for

some specific parameters, the methods in Huang et al. (1998) cannot produce minimum

aberration FFSP designs if the corresponding minimum aberration FF designs have no split

structure. Ours, however, have no this restriction. Secondly, Bingham and Sitter (1999a)

obtained minimum aberration FFSP designs by search algorithms. But here we construct

the FFSP designs based on the theoretical results, which may be regarded as an initial work

in this direction.

7



Acknowledgements

We would like to thank Pengfei Li for his helpful suggestions. This work was partially sup-

ported by the NNSF of China grants 10571093 and 10301015 and the SRFDP of China Grant

20050055038, Liu’s research was also supported by the Science and Technology Innovation

Fund of Nankai University and the Visiting Scholar Program at Chern Institute of Mathe-

matics.

References

Bingham, D., Mukerjee, R. (2006), Detailed wordlength pattern of regular fractional factorial split-plot
designs in terms of complementary sets. Discrete Math., to appear.

Bingham, D., Sitter, R. R. (1999a), Minimum aberration two-level fractional factorial split-plot designs.
Technometrics 41, 62–70.

Bingham, D., Sitter, R. R. (1999b), Some theoretical results for fractional factorial split-plot designs. Ann.

Statist. 27, 1240–1255.

Bingham, D., Sitter, R. R. (2001), Design issues in fractional factorial split-plot experiments. J. Quality

Technol. 33, 2–15.

Bisgaard, S. (2000), The design and analysis of 2k−p
× 2q−r split-plot experiments. J. Quality Technol. 32,

39–56.

Bisgaard, S., Steinberg, D. M. (1997), The design and analysis of 2k−p
× s prototype experiments. Techno-

metrics 39, 52–62.

Box, G. E. P., Hunter, J. S. (1961), The 2k−p fractional factorial designs. Technometrics 3, 311–351.

Box, G. E. P., Jones, S. (1992), Split-plot designs for robust product experimentation. Appl. Statist. 19,
3–26.

Chen, H., Hedayat, A. S. (1996), 2n−l designs with weak minimum aberration. Ann. Statist. 24, 2536–2548.

Chen, J., Sun, D. X., Wu, C. F. J. (1993), A catalogue of two-level and three-level fractional factorial designs
with small runs, Internat. Statist. Rev. 61, 131–145.

Cornell, J. A. (1988), Analyzing data from mixture experiments containing process variables: a split-plot
approach. J. Quality Technol. 20, 2–33.

Fries, A., Hunter, W. G. (1980), Minimum aberration 2k−p designs. Technometrics 22, 601–608.

Goos, P. (2002), The optimal design of blocked and split-plot experiments, New York: Springer-Verlag.

Huang, P., Chen, D., Voelkel, J. (1998), Minimum aberration two-level split-plot designs. Technometrics 40,
314–326.

Letsinger, J. D., Myers, R. H., Lentner, M. (1996), Response surface methods for bi-randomization structures.
J. Quality Technol. 28, 381–397.

Mukerjee, R., Fang, K. T. (2002), Fractional factorial split-plot designs with minimum aberration and max-
imum estimation capacity. Statist. Sinica 12, 885–903.

Tang, B., Wu, C. F. J. (1996), Characterization of minimum aberration 2n−k designs in terms of their
complementary designs. Ann. Statist. 24, 2549–2559.

Yang, J. F., Li, P. F., Liu, M. Q., Zhang, R. C. (2006), 2(n1+n2)−(k1+k2) Fractional factorial split-plot designs
with clear effects. J. Statist. Plan. Inference, in press.

8



Table 1: FFSP designs with weak minimum aberration obtained through Corollary 1 (n1 −
k1 = 3, n2 − k2 = 1)

n1 n2 k1 k2 |D1| |D2| D1 D2 W

7 1 4 0 0 1 φ {4} (7 7 0 0 1)+

6 1 3 0 1 1 {123} {4} (4 3 0 0 0)+

5 1 2 0 2 1 {123, 13} {4} (2 1 0 0)+

7 2 4 1 0 2 φ {4, 14} (8 10 4 4 4)+

6 2 3 1 1 2 {12} {4, 124} (4 6 4 0 0)
5 2 2 1 2 2 {12, 13} {4, 124} (2 3 2 0 0)∗

7 3 4 2 0 3 φ {4, 14, 24} (10 16 12 12 10)
6 3 3 2 1 3 {12} {4, 14, 24} (6 10 8 4 2)
5 3 2 2 2 3 {12, 13} {4, 124, 134} (3 7 4 0 1)+

7 4 4 3 0 4 φ {4, 14, 24, 34} (13 25 25 27 23)+

6 4 3 3 1 4 {12} {4, 124, 134, 234} (8 18 16 8 8)∗

5 4 2 3 2 4 {12, 13} {4, 124, 134, 234} (4 14 8 0 4)∗

Table 2: FFSP designs with weak minimum aberration obtained through Theorem 2 (n1 −
k1 = 3, n2 − k2 = 1)

n1 n2 k1 k2 |D1| |D2| D1 D2 W

3 8 0 7 3 0 {1, 2, 3} φ (12 26 28 24 20)∗

3 7 0 6 3 1 {1, 2, 3} {1234} (9 16 15 12 7)+

3 6 0 5 3 2 {1, 2, 3} {124, 34} (6 9 9 6 0)+

4 8 1 7 4 0 {1, 2, 3, 123} φ (16 39 48 48 48)∗

4 7 1 6 4 1 {1, 2, 3, 123} {124} (12 26 28 24 20)∗

4 6 1 5 4 2 {1, 2, 3, 123} {14, 24} (8 18 16 8 8)∗

4 5 1 4 4 3 {1, 2, 3, 123} {14, 24, 34} (4 14 8 0 4)∗

Table 3: FFSP designs with weak minimum aberration obtained through Theorem 2 (n1 −
k1 = 2, n2 − k2 = 2)

n1 n2 k1 k2 |D1| |D2| D1 D2 W

2 12 0 10 2 0 {1, 2} φ (28 77 112 168 232)+

2 11 0 9 2 1 {1, 2} {1234} (22 55 72 96 116)+

2 10 0 8 2 2 {1, 2} {13, 23} (16 39 48 48 48)∗

2 9 0 7 2 3 {1, 2} {13, 23, 124} (12 26 28 24 20)∗

2 8 0 6 2 4 {1, 2} {13, 24, 1234, 34} or (8 18 16 8 8)∗

3 12 1 10 3 0 {1, 2, 12} φ (35 105 168 280 435)+

3 11 1 9 3 1 {1, 2, 12} {1234} (28 77 112 168 232)+

3 10 1 8 3 2 {1, 2, 12} {13, 23} (22 55 72 96 116)+

3 9 1 7 3 3 {1, 2, 12} {13, 24, 1234} (16 39 48 48 48)∗

3 8 1 6 3 4 {1, 2, 12} {13, 24, 1234, 14} (12 26 28 24 20)∗
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Table 4: FFSP designs with weak minimum aberration obtained through Corollary 1 (n1 −
k1 = 4, n2 − k2 = 1)

n1 n2 k1 k2 |D1| |D2| D1 D2 W

15 1 11 0 0 1 φ {5} (35 105 168 280 435)+

15 2 11 1 0 2 φ {5, 15} (36 112 196 364 624)

15 3 11 2 0 3 φ {5, 15, 25} (38 126 252 532 1002)

15 4 11 3 0 4 φ {5, 15, 25, 35} (41 147 337 791 1597)

14 1 10 0 1 1 {1234} {5} (28 77 112 168 232)+

14 2 10 1 1 2 {1234} {5, 12345} (28 84 140 224 344)

14 3 10 2 1 3 {123} {5, 1235, 2345} (30 96 184 348 598)

14 4 10 3 1 4 {12} {5, 125, 35, 1235} (32 116 256 528 992)

13 1 9 0 2 1 {12, 13} {5} (17 39 48 65 86)+

13 2 9 1 2 2 {12, 13} {5, 125} (22 61 94 136 188)

13 3 9 2 2 3 {12, 13} {5, 125, 135} (23 73 132 216 347)

13 4 9 3 2 4 {12, 13} {5, 125, 135, 145} (26 88 184 356 610)

12 1 8 0 3 1 {12, 13, 23} {5} (16 39 48 48 48)+

12 2 8 1 3 2 {12, 13, 23} {5, 125} (16 45 64 72 96)

12 3 8 2 3 3 {12, 13, 23} {5, 125, 135} (16 57 96 120 192)

12 4 8 3 3 4 {12, 13, 23} {5, 125, 135, 235} (16 76 144 192 352)

11 1 7 0 4 1 {12, 13, 23, 14} {5} (12 26 28 24 20)+

11 2 7 1 4 2 {12, 13, 23, 14} {5, 125} (12 31 40 40 48)

11 3 7 2 4 3 {12, 13, 23, 14} {5, 125, 135} (12 41 64 72 104)

11 4 7 3 4 4 {12, 13, 23, 14} {5, 125, 135, 235} (12 57 100 120 200)

10 1 6 0 5 1 {12, 13, 23, 14, 24} {5} (8 18 16 8 8 )+

10 2 6 1 5 2 {12, 13, 23, 14, 24} {5, 125} (8 23 24 16 24)

10 3 6 2 5 3 {12, 13, 23, 14, 24} {5, 125, 135} (8 31 40 40 56)

10 4 6 3 5 4 {12, 13, 23, 14, 24} {5, 125, 135, 235} (8 45 64 72 112)

9 1 5 0 6 1 {12, 13, 23, 124, 134, 234} {5} (4 14 8 0 4)+

9 2 5 1 6 2 {12, 13, 23, 124, 134, 234} {5, 125} (4 18 12 8 12)

9 3 5 2 6 3 {12, 13, 23, 124, 134, 234} {5, 125, 135} (4 26 20 24 28)

9 4 5 3 6 4 {12, 13, 23, 124, 134, 234} {5, 125, 135, 235} (4 39 32 48 56)
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Table 5: FFSP designs with weak minimum aberration obtained through Theorem 2 (n1 −
k1 = 3, n2 − k2 = 2)

n1 n2 k1 k2 |D1| |D2| D1 D2 W

7 2 4 0 0 2 φ {4, 5} (7 7 0 0 1)
6 2 3 0 1 2 {123} {4, 5} (4 3 0 0 0)
5 2 2 0 2 2 {12, 13} {4, 5} (2 1 0 0 0)

7 3 4 1 0 3 φ {4, 5, 145} (7 8 3 4 5)
6 3 3 1 1 3 {123} {4, 5, 1234} (4 6 4 0 0)
5 3 2 1 2 3 {12, 13} {4, 5, 124} (2 3 2 0 0)

7 4 4 2 0 4 φ {4, 5, 145, 245} (8 12 10 12 12)
6 4 3 2 1 4 {123} {4, 5, 1234, 1235} (4 10 8 0 4)
5 4 2 2 2 4 {12, 13} {4, 5, 145, 234} (3 5 2 2 3)

7 5 4 3 0 5 φ {4, 5, 14, 245, 345} (9 17 21 27 27)
7 6 4 4 0 6 φ {4, 5, 14, 15, 245, 345} (10 25 38 50 58)
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