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Abstract

1 Introduction

Factorial designs have wide applications in industrial and scientific studies.
Traditionally, they are classified based their combinatoric properties. Two
designs are considered to be isomorphic if one can be obtained by permuting
of the factors and level permutation within factors. Such isomorphism treats
levels of each factor nominal without natural ordering and is often referred
as combinatoric isomorphism. (Chang and Ye, 2004).

However, many researchers has realized that when factors are quantita-
tive, level permutations of a factorial design often result changes in design
properties such as estimation efficiencies, and the combinatoric isomorphism
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is not appropriate for classifying factorial designs with quantitative factors,
except for two-level designs. More noticeably, Cheng and Wu (2001) de-
fined “statistical isomorphism” based on the statistical properties, and Tsai,
Gilmore, and Mead (2000) implicitly defined an isomorphism in their paper as
well, both for three-level factorial designs. Furthermore, Cheng and Ye(2004)
argued that such a change of design properties is due to the change of the
geometric structure induced by level permutations. They defined geometric
isomorphism on general factorial designs and introduced a polynomial form
of indicator functions that uniquely represent factorial designs to character-
ize their geometric structures. For three-level factorial designs, geometric
isomorphism is equivalent to the “design family” defined in Tsai et al (2000).

Among all factorial designs that are not two-level, the L18 array is ar-
guably the most popular choice among experimenters because of its ability
of entertaining up to seven 3-level factors in only 18-runs. All three pa-
pers mentioned above attempted to further classify 18-run orthogonal arrays
beyond combinatorial isomorphism. However, none of them gives a com-
plete classification. The classification criteria used by Cheng and Wu (2001)
and Tsai et al (2000) depend on specification of certain statistical model.
Although the latter defined an isomorphism equivalent to geometric isomor-
phism, they used an easy-to-compter surrogate measure so called Q Criteria.
Cheng and Ye (2004) did not perform complete isomorphism check either,
instead, they used a generalized word-length pattern, β-WLP for classifica-
tion. Moreover, Tsai et al (2000) only considered 18-run orthogonal arrays
without the two-level factor, and Cheng and Ye (2004) only classified designs
with 3 or 4 three-level factors.

The main result of this paper is a complete catalog of all geometrically
non-isomorphic 18-run orthogonal arrays. The biggest obstacle in complete
classification of factorial designs, regardless of combinatoric or geometric iso-
morphism, is the computational burden to check isomorphism between two
designs, which requires large number of permutations on the array. We de-
veloped an efficient algorithm for checking isomorphism based on indicator
representation of a design, as proposed in Cheng and Ye (2004). As a re-
sult, our algorithm does not require row permutation on an array, and with
proper choice of data structure, the column permutation and level reversal
of an array can be handled very efficiently in the computer program.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the definition of geometric isomorphism. Section 3 summarizes the
complete catalog of 18-run orthogonal arrays. Section 4 describes our al-
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gorithms for check isomorphism, which is based on the indicator functions.
Section 5 describes how we construct the catalog.

2 Geometric Isomorphism

Throughout this paper, levels of orthogonal arrays are treated as quanti-
tative. Consider an n-run factorial design with k 3-level (evenly spaced)
quantitative factors, denoted by a matrix form [X1, · · · , Xk], which can also
be viewed as a collection of n points in the k dimension Euclidean space. It
is reasonable to consider its geometric structure being preserved under two-
types of operations, level reversal and factor exchange. Geometrically, if the
levels of a factor, say Xp, are reversed, i.e. the low level becomes the high
level and vise versa, the design points are reflected over the plane Xp = 0. If
two factors, Xp and Xq are exchanged, geometrically the designs points are
reflected over the plane Xp = Xq. Therefore, a new design obtained through
a series of these two types of operations has the same geometric structure
as the original design. This is true for general factorial designs if we limit
the factor exchange among factors with the same number of levels. Cheng
and Ye(2004) defined geometric isomorphism of general factorial designs as
following.

Definition 1 Let A and B be two factorial designs from the same design
space D, where the design space D is a full factorial design OA(N, s1s2 . . . sk).
Designs A and B are said to be geometrically isomorphic if one can be ob-
tained from the other by factor exchange among factors with the same number
of factors and/or reversing the level order of one or more factors.

3 Summary of the complete catalog of 18-run

Orthogonal Designs

The main results of this paper, the complete catalog of geometrically non-
isomorphic 18-run orthogonal designs, is summarized in Table 1. There
are a total of 13 geometrically isomorphic OA(18, 33)s, 133 OA(18, 34)s, 332
OA(18, 35), 478 OA(18, 36) and 284 OA(18, 37)s, and a total of 119 geometri-
cally isomorphic OA(18, 2133)s, 1836 OA(18, 2134)s, 1332 OA(18, 2135)s, 1617
OA(18, 2136)s and 726 OA(18, 2137)s.
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In Table 1, we compared our complete catalog to the non-isomorphic
OA(18, 3p) obtained by Tsai et al (2000) using so called Q Criterion, as
listed in http://userweb.nhri.org.tw/ n930839/design.html. There are 4, 12,
38, 31 new cases for p = 4, 5, 6, 7 respectively. We also examined the β-Word
Length Patterns, proposed by Cheng and Ye (2004) to rank and classify
mixed-level and multi-level factorial designs with quantitative factors, of all
designs in the catalog, and list the number of distinct β-word length pattern
(WLP) of all 18-run orthogonal arrays in Table 1. Overall, the number of
distinct β-WLP of OA(18, 3m) designs is 90% of the number of geometrical
non-isomorphic OA(18, 3m), the number of distinct β-WLP of OA(18, 213m)
designs is 82% of the number of geometrical non-isomorphic OA(18, 213m).
And for each m, the number is no less than 70% of the number of geometrical
isomorphic designs. Therefore, both Q Criterion and β-WLP are fairly good
surrogate criteria to classify geometrical non-isomorphic designs.

We also found 44 OA(18, 34) and 852 OA(18, 2134) maximal (Resolution
III) designs, i.e., no more columns can be augmented to create a OA(18, 35).
Therefore, these designs cannot be found by taking projections from the
well-known L18 array. Note that all maximal (Resolution III) designs are
with four three-level factors. Hence, all designs in the catalog with m > 4,
can be created by level permutation, factor exchanging, and projection from
the L18 array. Cheng and Ye (2004) searched for the minimum aberration
(based on β-WLP) designs of OA(18, 3m) and OA(18, 213m) by evaluating
all projections (with level permutations) of L18. We compared their list
with the β-WLPs of MA designs found from the complete catalog and find
better OA(18, 2134)s according to β-WLP. The best β-WLP of OA(18, 2134)
we found is (β3, β4, β5) = (0, 2, 4), compare to (β3, β4, β5) = (0, 3.75, 0) found
in Cheng and Ye (2004). Not surprisingly, this new MA design is a maximal
design and is shown in Table 2. We also confirmed that all other MA designs
found by Cheng and Ye (2004) are indeed global MA designs.

Although we do not intend to extend the scope of this paper beyond
presenting the catalog and the constructing algorithms, we would like to show
that the geometric non-isomorphic designs indeed carry different statistical
properties so that our effort to carry out the complete classification add values
for practical purpose. We evaluated two Information Capacity (IC) criteria
for OA(18, 36). Criterion IC3 averages |X ′X| over all

(
6
3

)
= 20 three factors

second order polynomial models, where X is normalized model matrix of
the model with 10 degrees of freedoms (constant term, 6 main effects and 3
bilinear terms). Similarly, criterion IC4 averages over all

(
6
4

)
= 15 four factors
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Table 1: Summary of All Geometrically Non-Isomorphic 18-run Orthogonal
Arrays

OA(18,3m)
Number Of 3-Level Factors 3 4 5 6 7

Number Of Non-Isomorphic Designs 13 133 332 478 284
Number Of Different β−WLP 13 128 332 420 223
Number Of Maximal Designs 0 44 0 0 0

Number of Designs (Tsai et al, 2000) 13 129 320 440 253
OA(18, 213m)

Number Of 3-Level Factors 3 4 5 6 7
Number Of Non-Isomorphic Designs 119 1836 1332 1617 726

Number Of Distinct β−WLP 118 1293 1274 1406 556
Number of Maximal Designs 0 852 0 0 0

second order polynomial models with 15 degrees of freedoms (constant term,
8 main effects and 6 bilinear terms). All but two of 476 non-isomorphic
designs OA(18, 36) have equal values in both IC3 and IC4. Interestingly,
these two designs do not have the same β-WLP. Therefore, 58 new designs
not distinguishable by β-WLP have different statistical properties, and this
is very much true for the 38 new designs not found by Tsai et al (2000).

Because the total number of non-isomorphic 18-run orthogonal designs
is close to 7000, we are unable to publish our entire catalog in print. The
complete catalog of design matrices are available from the correspondent
author upon request. More statistical properties of those designs can be
found in Tsai (2005) and forthcoming papers.
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Table 2: Minimum Aberration (β-WLP) 18-run OA(18, 2134)

1 0 0 0 1
-1 0 0 1 0
-1 0 1 0 2
1 0 1 2 2
1 0 2 1 0

-1 0 2 2 1
1 1 0 2 0

-1 1 0 2 2
1 1 1 1 1

-1 1 1 1 1
-1 1 2 0 0
1 1 2 0 2

-1 2 0 0 1
1 2 0 1 2
1 2 1 0 0

-1 2 1 2 0
-1 2 2 1 2
1 2 2 2 1
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4 Algorithm for checking geometric isomor-

phism

4.1 Indicator Function

The indicator function was originally proposed by Fontana, Pistone, and Ro-
gantin(2000) to represent a factorial design. The efficiency of our algorithm
for checking geometric isomorphism largely depends on this representation.
To make the present paper more self-contained, we will briefly introduce in-
dicator functions before presenting our algorithm. For more details on this
topic , please see Cheng and Ye(2004).

Definition 2 Let A be a design in the design space D. The indicator func-

tion FA(x) of A is a function defined on D, such that for x ∈ D, the value

of FA(x) is the number of appearances of point x in design A.

Furthermore, the indicator function can be written as a linear combina-
tion of an orthonormal basis. Let A be a factorial design in design space
D = OA(N, s1s2 · · · sk), where si is the number of levels of ith factor.

Let C0
i(x), C1

i(x), · · · , Csi−1
i(x) be the orthogonal contrasts of the ith

factor, such that ∑
x∈{0,1,...,si−1}

Cu
i(x)Cv

i(x) =

{
0, if u 6= v,

si, if u = v,

where u and v ∈ Ti = {0, 1, ..., si − 1}. Then {Ct(x) =
∏k

i=1 Cti
i(xi)|t ∈ T },

where t = (t1, t2, ..., tk) ∈ T = T1 × T2 × ... × Tk, forms the orthonormal
contrast basis of the functional space on D such that for u and v ∈ T∑

x∈D

Cu(x)Cv(x) =

{
0, if u 6= v,

N, if u = v.

Cheng and Ye (2004) showed that the indicator function of a factorial
design A can be written as

FA(x) =
∑
t∈T

btCt(x), (1)
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where bt = 1
N

∑
x∈A Ct(x).

Furthermore, they gave a Theorem that connected geometric isomorphism
to indicator functions. We presented it below since it is essential to our
algorithm for isomorphism check between two designs.

Theorem 3 Let A and B be two factorial designs of the design space D, and

Ct(x) be an orthogonal polynomial basis (OPB) defined on D. Let FA(x) =∑
atCt(x) and FB(x) =

∑
btCt(x) be the indicator functions of A and B,

respectively. Designs A and B are geometrically isomorphic if and only if

there exists a permutation (i1i2...ik) and a binary vector (j1j2...jk), where

jl’s are either 0 or 1, such that

at1t2...tk = (
∏
i=1

k
(−1)jltil )btil ti2 ...tik

(2)

for all t = (t1t2...tk) ∈ T .

4.2 An Algorithm for Checking Geometric Isomorphism

To identify whether two design matrices are isomorphic, traditionally one
has to consider all possible row permutations, column permutations, and
level permutations (level reversal in the cases of geometric isomorphism)
within each column. Our approach using indicator functions to represent
the designs only requires the consideration of column permutations and level
reversals. We also implemented several measures to further improve the
efficiency so that the non-isomorphism of two designs are determined without
going through all possible permutations and level reversals. First, no level
reversal will be needed if no permutation can be found to match the absolute
values of the indicator function coefficients of two designs. Second, we can
quickly determine if such permutation exists using the following proposition.

The algorithm presented here applies to general factorial designs. With-
out loss of generality, we limited our discussion to designs with only three-
level factors.
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Table 3: Grouping of coefficients of the indicator function of OA(n, 33)
Coefficient index t Group

111 1
222 2
112 3
121 3
211 3
122 4
212 4
221 4

Proposition 4 Let A and B be two k-factor three-level factorial designs of

the design space D, and Ct(x) be an orthogonal polynomial basis(OPB) de-

fined on D. FA(x) =
∑

atCt(x) and FB(x) =
∑

btCt(x) be the indicator

functions of A and B, respectively. Let T (t) = (T0(t), T1(t), T2(t)), where

Ti(t) = #{tj = i | 0 ≤ j ≤ k} for i = 0, 1, or 2. If designs A and B are geo-

metrically isomorphic, then {|at| | for all t where T (t) = (l0, l1, l2)} = {|bt| |

for all t where T (t) = (l0, l1, l2)} for all (l1, l2, l3) such that l1 + l2 + l3 = k.

The proof of the above Proposition is straightforward. Note that the column
permutations only permute coefficients within each group. Suppose not, then
we can not find any permutation to make |at1t2...tk | = |btil ti2 ...tik

|. Hence there
is a contradiction.

Based on the above proposition, we divide the coefficients into distinct
groups according to the number of linear and quadratic terms they involve.
For example, when k = 3, the coefficients in the indicator functions are
grouped as in Table 4.2. Note that b0 is constant for all designs with the same
number of runs, and for an orthogonal array bt = 0 where T1(t) + T1(t) ≤ 2.
Therefore, we omit those coefficients in the table. In the remainder of the
paper, we will refer these groups as {Ti} groups.
Main Algorithm

In general, to check geometric isomorphism of two designs, we followed
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these steps:
Step 1: Compare the number of the non-zero coefficients in each {Ti} group.
If they do not match in any one {Ti} group, return false as the two designs
are not geometrically isomorphic. Otherwise, go to step 2.
Step 2: Compare the distribution of the absolute values of coefficients within
each {Ti} group. If they are not the same, return false. Otherwise, go to
step 3.
Step 3: Apply the first permutation to the coefficients of A. Denote the
new coefficients be a′t. Compare |a′t| with |bt|. If the equation holds for all
coefficients in the first {Ti} group, check the next group. Otherwise, repeat
step 3 with next permutation. If a permutation matches all coefficients, then
go to Step 4. If none of the permutation matches all coefficients, return false.
Step 4: Start from the first binary vector in Zk

2 , say (j1, j2, ..., jk). If j1t1 +
j2t2+...+jktk = 0(mod 2) for all at

′ = bt, and j1t1+j2t2+...+jktk = 1(mod 2)
for all a′t = −bt, the two designs are isomorphic. If not, apply the next binary
vector. If no match are found with all binary vectors, go back to Step 3 and
start with next permutation. If the last permutations is reached, return false.

Note that in Step 4, we also check the equality by {Ti} groups, as de-
scribed in more details later. It is possible to expedite this step much more
by eliminating the need to evaluate all possible level reversals. We did not
implement such methods since our algorithm is already efficient enough to
handle its current task.
Implementation

As last part of this section, we now discuss several measures we imple-
mented that improve the efficiency of our computer program.
1. Computing indicator function coefficients. The orthogonal contrasts for
three-level factors are

C0(x) = 1,

C1(x) =
√

3
2
(x− 1),

C2(x) =
√

1
2
(3(x− 1)2 − 2).

where x takes values 0, 1 and 2. In our program, we ignored normalizing

constant,
√

3
2

in C1(x) and
√

1
2

in C2(x) for computational conveniences.

We did not calculate the coefficients bt such that T1(t)+T2(t) ≤ 2 since they
are zero.
2. Data structure of indicator functions. An indicator function of a design
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is fully determined by its coefficients. In our java program, none-zero co-
efficients of an indicator function are kept as a List. Each element of the
list has k + 2 + 1 attributes, k indices of the coefficient, its absolute value
and sign, and which {Ti} group it belongs to. Note that when ith column
is exchanged with jth column in a design, we only need to exchange the ith
and jth indices across the list to obtain the indicator function of the new
design, which is a very efficient operation.
3. Column permutations. When we evaluate all column permutations, we
use an algorithm described in Nigenhuis and Wilf (1978) that generates all
k! permutations in the way such that the next one differs from the current
one only by a pair switch.
4. Level reversal. Note that coefficients in those {Ti} groups such that
T1(t) = 0, are invariant to level reversal. Therefore, if the signs of coeffi-
cients in those group does not match, we will move to the next permutation
immediately in Step 4.

5 Construction of the Complete Catalog of

18-run Orthogonal Designs

The construction of our complete catalog of 18-run orthogonal designs was
completed in two stages. We first obtained all non-isomorphic cases of
OA(18, 3m). Then, we added the two-level column to the OA(18, 3m)s con-
structed in the first stage to obtain OA(18, 213m)s.

5.1 Construction of Non-isomorphic OA(18, 3m)

Our construction of the complete catalog of 18-run orthogonal array follows
the same basic idea used by Sun, Li and Ye (2002) to construct all non-
isomorphic OA(12, 2m)s, OA(16, 2m)s, and OA(20, 2m)s. Tsai et al (2000)
used the same methods to obtain a catalog of OA(18, 3m)s classified by “Q
Criterion”. We start with the only non-isomorphic case of OA(18, 32), then
augment a column to it to construct all cases of OA(18, 33), and subsequently
add another column to find all cases of OA(18, 34), and so on. Using this
method, we are able to obtain all geometric non-isomorphic 18-run orthogo-
nal arrays, as shown in the following proposition.

Proposition 5 Denote [A v] an array formed by an array A augmented
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with a vector v. Let C be the collection of all geometrically non-isomorphic
OA(n, pm). We can find all geometrically non-isomorphic OA(n, pm+1) among
{[A v]}, where A ∈ C and v is a p-level vector.

PROOF: Let Y = [v1 v2 ... vm+1] be an OA(n, pm+1). Since [v1 v2 ... vm] is
an OA(n, pm), it must be geometrically isomorphic to one of the design in C,
say A. Therefore, Y can be constructed by [A v]. We have completed the
proof.2

There is only one geometrically non-isomorphic OA(18, 32), that is, OA(9, 32)
replicated twice. Note that by the definition of orthogonal arrays, all possi-
ble level combinations of an OA(18, 32) have to appear the same number of
times. Hence, each of the 9 level-combinations has to appear exactly twice.
Without loss of generality, we start our construction of 18-run orthogonal
arrays from the OA(18, 32) with two columns

v1
t = [000000111111222222]

v2
t = [001122001122001122]

.

Proposition 5 shows that all geometrically non-isomorphic OA(18, 33) can
be found from OAs obtained by adding an additional column to v1 and v2.
To achieve this, we first identified all 23436 vectors that are orthogonal to
v1 and v2 from all 18!

6!6!6!
= 17, 153, 136 possible balanced three-level vectors.

Then we found a set of geometrically non-isomorphic OA(18, 33)s, denoted
by C, from the set of 23436 OAs, denoted by F , in the following steps:
Step 1: Select an arbitrary OA from F into a set C. Remove it from F .
Step 2: Select an OA from F and remove it from F . If it is geometrically
isomorphic to any existing OAs in C, discard it. Otherwise, add it to C.
Step 3: If F is not empty, repeat Step 2. Otherwise, C has all geometrically
non-isomorphic OA(18, 33).

The above procedure is repeated to find all non-isomorphic cases of OA(18, 3p)
for p = 4, 5, 6, 7 subsequently. For each p, F initially contains OAs con-
structed by adding an additional column to each of the non-isomorphic
OA(18, 3p−1)s. Note that the additional column is first selected from the
same 23436 vectors orthogonal to v1 and v2, its orthogonality with other
columns is subsequently checked.

5.2 Construction of Non-Isomorphic OA(18, 213m)

Following the same arguments of Proposition 5, to find all geometrically non-
isomorphic designs of OA(18, 213m), we only need to consider the orthogonal
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arrays obtained by augmenting a two-level column to all non-isomorphic
OA(18, 3m)s. Moreover, we will show that two OA(18, 213m)s constructed
from two non-isomorphic OA(18, 3m)s are also non-isomorphic.

Lemma 6 Let A be an OA(N, d1ek) and FA(x) =
∑

atCt(x) be its indicator
function. Without loss of generality, the d-level factor is the first column.
Let A′ be the projection of A to all of its e level factors, and FA′(x′) =∑

at′Ct′(x′) where x′ = (x2, x3, ..., xk+1) and t′ = (t2, t3, ..., tk+1). Then
at′ = da0t2t3...tk+1

.

The lemma is a special case of Corollary 2.1 in Cheng and Ye (2004).

Proposition 7 Let A and B be two OA(N, d1ek) factorial designs of the de-
sign space D. Let A′ be the projection of A that contains all the e-level factors
and B′ be the projection of B design that contains all the e-level factors. If
A′ and B′ are geometrically non-isomorphic, then A and B are geometrically
non-isomorphic.

PROOF: It goes without loss of generality, let the d-level factor be the first
column of A and B, respectively.

Let Ct(x) be an orthogonal polynomial basis(OPB) defined on D. Let
FA(x) =

∑
atCt(x) and FB(x) =

∑
btCt(x) be the indicator functions of

A and B, respectively. Following the similar notation used in the lemma,
FA′(x′) =

∑
at′Ct′(x′) and FB′(x′) =

∑
bt′Ct′(x′) be the indicator function

of A′ and B′.
Suppose not, then A and B are geometrically isomorphic. By Theorem

3, there exist one permutation P = (i1i2 · · · ik) and a binary vector R =
(j1j2...jk), such that,

bt1t2...tktk+1
= (

∏
i=1

k+1
(−1)jltil )btil ti2 ...tik tk+1

′
(3)

Since the only d-level factor is the first column, we have i1 = 1 in P . By the
lemma, we also know that at′ = da0t2t3...tk+1

and bt′ = db0t2t3...tk+1
. Hence,

at′ = da0t2...tk+1
= d(

∏
l=1

k+1
(−1)jltil )b0ti2 ...tik

′
(4)

= (
∏
l=2

k+1
(−1)jltil )db0ti2 ...tik

′
(5)

= (
∏
i=2

k+1
(−1)jltil )bt′ (6)
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Therefore, A′ is geometrically isomorphic to B′, after the permutation P ′ =
(i2 · · · ik) and level reversal R′ = (j2 · · · jk). It contradicts the assumption.
Hence we have completed the proof.2

The above proposition can be easily extended to more general cases of
mixed-level designs. By the Proposition, we only need to check isomorphism
between the OA(18, 213m) that are constructed from the same OA(18, 3m).
We constructed all non-isomorphic OA(18, 213m) as following:
Step 1: pick an OA(18, 3m), say A, from the set of all non-isomorphic
OA(18, 3m), denoted as C.
Step 2: find all binary vectors v that is orthogonal to A to form a set of OAs
[vA], call this set F ,
Step 3: check the isomorphism of OAs in F , eliminate all redundant ones,
and keep all non-isomorphic cases,
Step 4: pick a new OA(18, 3m) from C, and go back to Step 2. Stop if there
is no new OA(18, 3m) left.

6 Concluding Remarks

In this paper, we present the complete catalog of geometrically non-isomorphic
18-run orthogonal arrays. What is instrumental in our construction is an
efficient algorithm for check isomorphism that is based on indicator func-
tion representation of factorial designs. Our computer program is written in
JAVA. When run on a Pentium 4 2.0GHz Desktop PC with 256Mb RAM, it
took about 120 minutes to find all OA(18, 2137) non-isomorphic designs from
OA(18, 37) designs. The time taken to construct 18-run orthogonal designs
of any other size is less. The total CPU time to construct the entire catalog
is less than 12 hours. However, this is achieved through a great effort was
spent to implement the algorithm in the most efficient way.

The completion of this catalog makes it very easy to find optimal 18-
run orthogonal designs. Given any criterion, by evaluating its values on the
designs in the catalog one can easily find the global optimal design, without
repeating over isomorphic designs. This can be done even for the cases only
combinatoric isomorphism is relevant, since all combinatoric non-isomorphic
cases is a subset of our catalog. Nonetheless, it is still of theoretical interest
to obtain a complete catalog of combinatoric non-isomorphic designs, and
we are working with our collaborators to further classify the designs in our
catalog for construct a complete catalog of combinatoric non-isomorphic 18-
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run orthogonal arrays.
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