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Outline

{»> The Beltrami model of dS and AdS;
proposal of special relativity on them
¢ Conformal Mink-, dS- and AdS-spaces from a

projective subspace
{ Conformal triality and AdS/CFT? correspon-

dence
CFT3: three kinds of CFTs.

> Null geodesics in conformal Mink-, dS- and AdS-
spaces
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1 The Beltrami Model of dS/AdS
and Special Relativity on Them
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1.1 Why could there be a special rel-
ativity on dS/AdS?

1. Analogy in geometry.
Euclidean geometry SR on Minkowski
Lobachevskian geometry SR on AdS?
Riemann’s spherical geometry SR on dS7?
» Three kinds of SR from inverse Wick rotation —
hep-th/0508094.

2. Experiments and observations.
» SR: supported by local experiments;
» the cosmos: asymptotically dS.
Isn’t it a good thing to have a theory supported
by all these experiments and observations?



3. Different features of SR and GR.

(1) In SR:

» existence of inertial reference frames:;

» with the principle of SR related to them:;

» metric as a background only;

» spacetime symmetry: the Poincaré group;

» symmetry group of dynamics: the Poincaré group;
» the Minkowski coordinates < inertial reference
frames;

(2) In GR:

» no inertial reference frames, even no global frames
in general;

» the principle of GR;

» metric — background and dynamical;

» spacetime symmetry: generally, no;

» dynamics: diffeomorphic-invariant;

» coordinate independent;
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(3) A question: how the features of GR turn out to
be those of SR when the curvature is zero?

(4) The correct relation of SR and GR:

SR is a theory which describes a special solution of

GR.

lim GR # SR. (1)

Then why there could not be theories of “SR” to
describe other spacetimes?



1.2 dS and Its (Geometry

(> Usually viewed as a hypersurface in M4
nap 4¢P = —R?. (2)

(NaB)A.B=0.1....4 = diag(1,—1, -1, -1, —1).

{ Equivalently, dS &2 S/ ~

» S C MDb?: the set of spacelike vectors:

» ~: the equivalence relation similar to that in pro-
jective geometry:

¢ ~E o Je>0st. &4 =ced (3)

» dS: the set of spacelike rays from the origin of
M2’4.

» Why antipodal points not identified?

Orientable and time orientable.



{») The Beltrami coordinates — inhomogeneous co-
ordinates.

&
6_47
on the regions Uy, where £* > 0 or £* < 0.

» Other coordinate neighborhoods.
» o(x) > 0 where

2" = R (b=0,1,2,3) (4)



¢ The O(1,4) transformations:

@ DYy —a)

o(a,x)

—2
R L“p ala,

o(a) + /o(a)

, (6)

DH — L,uy +

v

1 1%
ola,x) = 1— T2 v atx”, (8)
(L") € O(1,3), ola) >0
» Fractional linear.
» The same form as the O(3) transformations on S?
or RP?.
» Turn out to be Poincaré transformations up to the

order of 1/R?.




¢ The O(1,4)-invariant metric:

ds* = gu(v)dz" dx”
& .0
Ny Npa My LT
9u (@) = S T T Ry

» Induced from the hypersurface, or

» derived from the invariant cross ratio.
» The same form as that on S? or RP?.
» O(1,4)-invariant:

oz OxP ,
or't Hx'v gag(:l:) — g,UJV(:C )

> gW/(J?) = Nuv T 0(1/R2)

(10)

(11)



{ Geodesics

» Geodesics are “projective” staight lines, and vice

vVersa.

ot = xf +w(s)ut,
dw 1 5
o = J(x)zl—ﬁnwx“a; .

» w ~ s if all * < R.
» Preserved quantities:

m dx*

PH = LM = gt PY — 2V P¥.

o(x) ds’

1

77,&1/ PMPV - ﬁ nup Nvo L'LWLPU — m2.

0-10

(14)

(15)



1.3 Proposal of SR on dS/AdS

» Method of projective geometry works, nearly with-
out use of DG.

» [nertial motions and inertial reference frames (IRF)
can be defined intrinsically.

» An IRF can be transformed to be another IRF by
O(1,4) transformations.

» The Beltrami coordinates and the Minkowski co-
ordinates cannot be distinguished in small scales.

» All the formulae can be degenerated to those in
SR in small scales.

{ If SR on dS/AdS is accepted, then nonzero cur-
vature does not necessarily mean gravitation.
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2 Conformal Transformations

{ Fora (M,g),: M — M is a conformal trans-
formation if

(1) it is a diffeomorphism and

(2) v*g =p*g.

ot — 't = p* P = x'F(x), then

ox'P 0x'? N 9
O aet) = @), (16

ds” = p?(z)ds°. (17)

{»> The conformal Minkowski space: Special con-
formal transformations are not diffeomorphisms on
the Minkowski space. Additional points (points at
infinity, ideal points) must be added.

{» Similar for conformal dS- and AdS-spaces.
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3 Conformal dS/AdS-Spaces

¢ As hypersurfaces in M* and M?3, respectively,

Hy? @ ngap&teP = —0R% (18)
0==x, (o AB)A,B:O ..... 4 = diag(J, —6)(19)
J = (77/“/) — dlag(la -1, -1, _1) (20)

O In M2, if set
(A =ke?, (A=0,...,4) (°=kR, (21)

then eq. (18) =

Ny nya5¢°¢P =0. (22)
(€% ..., ) ~ (&0, &L R), (23)
dS = H> =N, NP, (24)
AdS = H"” = N_nP, (25)
P: (°=R. (26)
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{> Induced metric:

Y’
dxg = k° ds; = (—) dss, (27)

R
where dxg =Ny in dCAdCB, (28)
ds2 == nap dEAdED. (29)

Each O(2,4) transformation induces a conformal

. 1
transformation on H 9’3:

<=5

dsg = p° dsj, p = Iz (30)
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{> Conformal transformations on BdS and BAdS:

¢t =0 ", (31)
(F=Cr Y+ O O, (32)
(*=CG+ OO (33)
(°=C% ¢+ O+ C% . (34)
m_pel _ps’ 35
Tl T )
, CH x¥ + C* R+ C" R\/o(x)
o — . , (36)
C%+ 5 C%xr £C% \/o(x)
) = ++/0(x) 67

C5 + + C°, x> £ C5% /o (z)
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¢ Examples.
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4 'Triality

4.1 QOutline and review

(1) A null-cone N in M?*: Nif ¢ACB =0.
(2) A 4-dim [N] is resulted in:

N =N —{0}/ ~, (N =St x 5.

(3) An action of O(2,4) is induced on [N].
(4) The Minkowski space is NN P, with P a null
hyperplane

- 1 4, 45
= — (—(C + = R.
¢ 7 (¢ +¢)
(5) dS-space is N NP, with P a hyperplane ¢*° = R.
The normal vector of P is timelike.

(6) For AdS-space, the normal vector of P is space-
like.

(7) Relation of metrics: For Minkowski and dS/AdS,
respectively,

N\ 2
dxs; = (%) ds3,, dx3; = K* ds;.
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The induced O(2,4) transformations on N' NP are
conformal:

- N2
(%) ds’?, = dx3 = dx3; = (%) ds5; =

dS/Q :102 ds%w, p:: C’_;
K?dsy = dx"? =dx* = k*ds;, =

K ¢

dsi = p* ds3, pi= = o

U

(8) Transformation law in terms of the Minkowksi
or Beltrami coordinates.
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4.2 A generic description

(1) P: a hyperplane, not passing through the origin,
orientation induced.
n: a normal vector of P.

Items Minkowski dS AdS

n null timelike spacelike

P null spacelike timelike

signature 0,+,——,— 144 243

NNP Minkowski dS AdS

status of n  up to a determined determined
scalar
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(2) For null P,
l: a null vector pointing to P, and 1-n = 1. (n
determined by 1.)
e, (1 =0,1,2,3): orthonormal, tangent to P,

l-e,=n-e, =0. (42)

{e,,n,1} — orientation. ey future pointed.
& ¢ € P can be expressed as

1

¢ =a'e,+z n+Rl, (eNN&at = —5p ahz”.
(43)
& C € O(2,4) transforms ¢ € N NP to
¢'=a2"e,+2 n+R1 = pC¢. (44)
ds? = p? ds3,. (45)

& {P,—P} C-invariant < C induces a Poincaré trans-
formation on N N P.

& Change of 1 induces a Poincaré coordinate trans-
formation:

RY =a"e, +a ™ n+ R1 = (46)
e’uzeu—n%a”n, o't =t — a".(47)
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(3) For a spacelike P: (N NP = dS)
{ea,n|A=0,1,...,4} — oriented orthonormal ba-
sis,

n — unit timelike normal vector pointing to P,
eyp — future pointed.

& cP:
CZﬁAeA—I—Rn, CeNNP <« nAB§A§B — —R2.
(48)
& Beltrami coordinates can be defined. E.g.,
3 1 1!
2t =R>—. = =+ : 49
' S o(x) (49)
1 174
o(x) >0, o(x):=1-— T2 v xtx¥ .(50)
& C € O(2,4) transforms ¢ e N NP to
¢=¢4es+Rn = pCC  (51)
ds'? = p* ds?. (52)

& {P,—P} C-invariant < C induces a de Sitter
transformation on N' N P.
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(4) For a timelike P: (MNP = AdS)
{e,,n,es} — oriented orthonormal basis,
n — unit spacelike normal vector pointint to P,
eo — future pointed.

& eP:
(=¢Aes+Rn, CENNP = nap el = B2
(53)
& Beltrami-Hua-Lu coordinates can be defined. E.g.,
& 4 i
= R>—. = =+ : 54
1 1%
o(z) >0, o(x) = 1+§ Nuw chx” . (55)
& C € 0O(2,4) transforms ¢ € N NP to
('=¢%es+Rn = pC¢  (56)
ds"? = p* ds* . (57)

& {P,—P} is C-invariant < C induces an anti-
de Sitter transformation on N N P.
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4.3 Conformal maps between confor-
mal Minkowski, dS and AdS

Minkowski
| l < P

A
s

(1) Conformal map from the Minkowski to dS/AdS.
P: null, NN P Minkowski,

P’: spacelike or timelike, N NP = dS or AdS, re-
spectively.

& ¢=zte,+2Tn+RleNNP ~
¢'=¢&tey+ R e NP,

/
¢ =pC =
chya? — 5 — (€ + 0l (@-2) - J5(C - CHR
z'H = R’ 22 R . (58)
C% = - %1 (C4Y +0%) (@ 2) — J=(CY —CHR
22 R
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R/

) L 59
co oz — L (C5 +CB)(x-2) - (0B —CB)R
I 5 AN 5
dsg = p* ds3,, 6 = +1. (60)
& A special example.
2
CC,'LL _ xt d8/2 — dSM
1 1 Y 0 1 2
T IR (ZC ' :Ij) [ T AR? (x ' :U)]
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(2) The conformal map from dS to AdS.
& Generic transformation.

[ CH ¥ + C* R+ C" Ry\/o(2)

" = R (62
C* z*+ CY% R+ CL R\/o(x) (62)
+R'\/o(z)
Co, x4+ C° R+ C°% Ry/o(x)
ds”? = p°dsi. (64)

& A special example:
R x#
R \fo(x)

The inverse map:

H =+

pz:l:E/\/a(m). (65)

R 't
H =4 66
X R 0'/(33/), ( )
R
,0/ = :I:ﬁ \/ O'/(.CE,). (67)
o'(¢')o(x) =1, (68)
v
1(oIN 1 0
o(z') = 1+ﬁnuv$ x', (69)
1 1%
o(x) = l—ﬁnw il (70)



& Triality.
Minkowski

N]
dS = > AdS
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5 Null GGeodesics, Massive Par-
ticles

{» Null geodesics are conformally transformed to
each other.

Timelike or spacelike geodesics cannot be.

Is there a clear picture?

¢ Momentum and angular momentum as conserved
quantities in inertial motions. What if under confor-
mal transformations/maps?

{» For two linear independent {,,{; € N,

Col #IC1]. =

A 2-dim linear supspace X spanned by ¢, and ¢, or
a projective straight line in M?* — {0}/ ~.

Is it in [N]7

*Co, 1 EN=((=0,¢ ¢ =0

V¢ e X, ¢ =x(y+yCy. Since ¢ - ¢ =22y (- Cy;

YCN & (¢ =0 <

¥ NP is a straight line in N' N P.
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{» The equation of X NP: Assume ¢y, ¢; € P,

C=1-1)¢o+1¢;. (71)
In terms of the Minkowski/Beltrami coordinates:

ds 1
K — aH H _— = — 2
ot = a" +w(s)u”, Jo "~ o) (72)

Conserved momentum and angular momentum along
geodesics:

1  dx*

Pt = LPY .= gt PY — ¥ PH73
o(x) ds’ ! z PAT3)

For BdS,
L =rH, LY = [" = RP”. (74)
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{ For X, define L =y A (;:

LAB = P - P (75)
When {¢,, ¢} — {¢0,¢1), €= Ajv: Cjs
L' = (det A) L. (76)

Y. is specified by LAB up to a nonzero scaling con-
stant.

& When {,, (; € P, XNPis

dg

C(t)=(1—1%)¢o+1t¢y, E:Q_Co-

L is the conserved angular momentum:

dg
A=

& When {,-¢; = 0, XNP is a null geodesic in N NP.

L =¢(t) (77)
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& If NN P is Minkowski, with P being (- = R,

zH(t) = zfy + to*, ot = af — a2
Define
LMY = gh(t)v” — x¥ (t)vH, Pt =k,
Then
LMY = LMY
L~# — RPW,
LTH = —ZL}; (xhzdv! — 2xhv ),

LT =n,xhv".
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& When N NP is dS/AdS,

o (t) = zfy + w(t)v?, o* =z — xf, (84)
¢ 4
w0 = gy )
Pr = U(lx) dj: —yH, LW .= ghPY _ gV PH,
(86)
g™ £5yzi< o a )
Vo(xo)o(a) o(z1) (o)
(87)
RP" R? R
£4I/ _ ’ £45 — .
Vo) aler) " ( () o(svo))
(83)
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{»> Massive case.

(1) A: (14 2)-dim or (2 + 1)-dim.

(2) (2 + 1)-dim: timelike straight line (n € A) or
hyperbola.

(3) (1 4+ 2)-dim: spacelike straight line (n € A) or
conic curve.
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6

S OSSO

AdS5/CFT? Correspondence

AdSs5: a “projective” subspace

IN] = 0AdS5

[N]: the conformal Minkowski, d.S- or AdS-space.
Conformal maps, conformal triality.

CFT on Minkowski = CFT on dS= CFT on

AdS.

%
%

Three kinds of AdS5/CFT correspondence.
Can be generalized to AdS4.1/CFT? correspon-

dence.
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7 Conclusion

{»> Conformal Minkowski, dS- and AdS-spaces are
the same thing.

{» They are three landscapes from different point
of view.

) They can be linked mutually to each other and
to themselves by conformal maps.

{> Minkowski coordinates and Beltrami coordinates
are at the equal footing.

> Physical contents can be moved around from
these spaces, provided they are conformally “covari-
ant” .

> Projective might be “dead” in mathematics, but
it is finding a new life in physics.

0-34



Thanks!
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