Conformal Triality and $A d S / C F T^{3}$ Correspondence

Han-Ying Guo
Bin Zhou

Collaborators: Zhan Xu, Chao-Guang Huang and Yu Tian

On the 23rd International
Conference of DGMTP
August 25, 2005

Outline

\diamond The Beltrami model of $d S$ and $A d S$; proposal of special relativity on them \diamond Conformal Mink-, $d S$ - and $A d S$-spaces from a projective subspace
\diamond Conformal triality and $\operatorname{AdS} / C F T^{3}$ correspondence
$C F T^{3}$: three kinds of $C F T \mathrm{~s}$.
\diamond Null geodesics in conformal Mink-, $d S$ - and $A d S$ spaces

1 The Beltrami Model of $d S / A d S$ and Special Relativity on Them

References.

- H.-Y. Guo, C.-G. Huang, Z. Xu and B. Zhou, "On Special Relativity with Cosmological Constant", Phys. Lett. A331 (2004) 1-7, hep-th/0403171. - H.-Y. Guo, C.-G. Huang, Z. Xu and B. Zhou, "On Beltrami Model of de Sitter Spacetime", Mod. Phys. Lett. A19 (2004) 1701, hep-th/0311156; - Basic ideas traced back to:
K. H. Look (Qi-Keng Lu), "Why the Minkowski metric must be used?", (1970), unpublished.
- The Beltrami coordinates:
H. S. Snyder, Phys. Rev. 71 (1947) 38.
W. de Sitter, "Einstein's theory of gravitation III", Roy. Astr. Soc. Month. Not. 78 (1917) 3. W. Pauli ('20), Theory of Relativity, Pergamon, 1958.

1.1 Why could there be a special relativity on $d S / A d S$?

1. Analogy in geometry.

Euclidean geometry
Lobachevskian geometry
Riemann's spherical geometry $\quad \mathrm{SR}$ on $d S$?

- Three kinds of SR from inverse Wick rotation -hep-th/0508094.

2. Experiments and observations.

- SR: supported by local experiments;
- the cosmos: asymptotically $d S$.

Isn't it a good thing to have a theory supported by all these experiments and observations?

3. Different features of SR and GR.

(1) In SR:

- existence of inertial reference frames;
- with the principle of SR related to them;
- metric as a background only;
- spacetime symmetry: the Poincaré group;
- symmetry group of dynamics: the Poincaré group;
- the Minkowski coordinates \Leftrightarrow inertial reference frames;
(2) In GR:
- no inertial reference frames, even no global frames in general;
- the principle of GR;
- metric - background and dynamical;
- spacetime symmetry: generally, no;
- dynamics: diffeomorphic-invariant;
- coordinate independent;
(3) A question: how the features of GR turn out to be those of SR when the curvature is zero?
(4) The correct relation of SR and GR:

SR is a theory which describes a special solution of GR.

$$
\begin{equation*}
\lim _{\mathbf{R} \rightarrow 0} G R \neq S R . \tag{1}
\end{equation*}
$$

Then why there could not be theories of "SR" to describe other spacetimes?

$1.2 d S$ and Its Geometry

\diamond Usually viewed as a hypersurface in $\mathcal{M}^{1,4}$:

$$
\begin{gathered}
\eta_{A B} \xi^{A} \xi^{B}=-R^{2} \\
\left(\eta_{A B}\right)_{A, B=0,1, \ldots, 4}=\operatorname{diag}(1,-1,-1,-1,-1)
\end{gathered}
$$

\diamond Equivalently, $d S \cong \mathcal{S} / \sim$

- $\mathcal{S} \subset \mathcal{M}^{1,4}$: the set of spacelike vectors;
- \sim : the equivalence relation similar to that in projective geometry:

$$
\begin{equation*}
\xi^{\prime} \sim \xi \quad \Leftrightarrow \quad \exists c>0 \text { s.t. } \xi^{\prime A}=c \xi^{A} . \tag{3}
\end{equation*}
$$

- $d S$: the set of spacelike rays from the origin of $\mathcal{M}^{2,4}$.
- Why antipodal points not identified?

Orientable and time orientable.
\diamond The Beltrami coordinates - inhomogeneous coordinates.

$$
\begin{equation*}
x^{\mu}:=R \frac{\xi^{\mu}}{\xi^{4}}, \quad(\mu=0,1,2,3) \tag{4}
\end{equation*}
$$

on the regions $U_{ \pm 4}$ where $\xi^{4}>0$ or $\xi^{4}<0$.

- Other coordinate neighborhoods.
- $\sigma(x)>0$ where

$$
\begin{equation*}
\sigma(x):=1-\frac{1}{R^{2}} \eta_{\mu \nu} x^{\mu} x^{\nu} \tag{5}
\end{equation*}
$$

\diamond The $O(1,4)$ transformations:

$$
\begin{align*}
x^{\prime \mu}= & \pm \frac{\sqrt{\sigma(a)} D_{\nu}^{\mu}\left(x^{\nu}-a^{\nu}\right)}{\sigma(a, x)}, \tag{6}\\
D_{\nu}^{\mu}= & L_{\nu}^{\mu}+\frac{R^{-2} L_{\rho}^{\mu} a^{\rho} a_{\nu}}{\sigma(a)+\sqrt{\sigma(a)}}, \tag{7}\\
\sigma(a, x):= & 1-\frac{1}{R^{2}} \eta_{\mu \nu} a^{\mu} x^{\nu}, \tag{8}\\
& \left(L_{\nu}^{\mu}\right) \in O(1,3), \quad \sigma(a)>0
\end{align*}
$$

- Fractional linear.
- The same form as the $O(3)$ transformations on S^{2} or $\mathbb{R} P^{2}$.
- Turn out to be Poincaré transformations up to the order of $1 / R^{2}$.

\diamond The $O(1,4)$-invariant metric:

$$
\begin{align*}
d s^{2} & =g_{\mu \nu}(x) d x^{\mu} d x^{\nu} \tag{9}\\
g_{\mu \nu}(x) & :=\frac{\eta_{\mu \nu}}{\sigma(x)}+\frac{\eta_{\mu \alpha} \eta_{\nu \beta} x^{\alpha} x^{\beta}}{R^{2} \sigma(x)} . \tag{10}
\end{align*}
$$

- Induced from the hypersurface, or
- derived from the invariant cross ratio.
- The same form as that on S^{2} or $\mathbb{R} P^{2}$.
- $O(1,4)$-invariant:

$$
\begin{equation*}
\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} g_{\alpha \beta}(x)=g_{\mu \nu}\left(x^{\prime}\right) . \tag{11}
\end{equation*}
$$

- $g_{\mu \nu}(x)=\eta_{\mu \nu}+O\left(1 / R^{2}\right)$
\diamond Geodesics
- Geodesics are "projective" staight lines, and vice versa.

$$
\begin{align*}
x^{\mu} & =x_{0}^{\mu}+w(s) u^{\mu} \tag{12}\\
\frac{d w}{d s} & =\sigma(x)=1-\frac{1}{R^{2}} \eta_{\mu \nu} x^{\mu} x^{\nu} \tag{13}
\end{align*}
$$

- $w \sim s$ if all $x^{\mu} \ll R$.
- Preserved quantities:

$$
\begin{equation*}
P^{\mu}=\frac{m}{\sigma(x)} \frac{d x^{\mu}}{d s}, \quad L^{\mu \nu}=x^{\mu} P^{\nu}-x^{\nu} P^{\mu} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{\mu \nu} P^{\mu} P^{\nu}-\frac{1}{2 R^{2}} \eta_{\mu \rho} \eta_{\nu \sigma} L^{\mu \nu} L^{\rho \sigma}=m^{2} \tag{15}
\end{equation*}
$$

1.3 Proposal of SR on $d S / A d S$

- Method of projective geometry works, nearly without use of DG.
- Inertial motions and inertial reference frames (IRF) can be defined intrinsically.
- An IRF can be transformed to be another IRF by $O(1,4)$ transformations.
- The Beltrami coordinates and the Minkowski coordinates cannot be distinguished in small scales.
- All the formulae can be degenerated to those in SR in small scales.
\diamond If SR on $d S / A d S$ is accepted, then nonzero curvature does not necessarily mean gravitation.

2 Conformal Transformations

\diamond For a $(M, \mathbf{g}), \psi: M \rightarrow M$ is a conformal transformation if
(1) it is a diffeomorphism and
(2) $\psi^{*} \mathbf{g}=\rho^{2} \mathbf{g}$.

$$
\begin{align*}
& x^{\mu} \rightarrow x^{\prime \mu}:=\psi^{*} x^{\mu}=x^{\prime \mu}(x), \text { then } \\
& \frac{\partial x^{\prime \rho}}{\partial x^{\mu}} \frac{\partial x^{\prime \sigma}}{\partial x^{\nu}} g_{\rho \sigma}\left(x^{\prime}\right)=\rho^{2}(x) g_{\mu \nu}(x), \tag{16}\\
& d s^{\prime 2}=\rho^{2}(x) d s^{2} . \tag{17}
\end{align*}
$$

\diamond The conformal Minkowski space: Special conformal transformations are not diffeomorphisms on the Minkowski space. Additional points (points at infinity, ideal points) must be added.
\diamond Similar for conformal $d S$ - and $A d S$-spaces.

3 Conformal $d S / A d S$-Spaces

\diamond As hypersurfaces in $M^{1,4}$ and $M^{2,3}$, respectively,

$$
\begin{align*}
& H_{\theta}^{1,3}: \quad \eta_{\theta A B} \xi^{A} \xi^{B}=-\theta R^{2} . \tag{18}\\
& \theta= \pm, \quad\left(\eta_{\theta A B}\right)_{A, B=0, \ldots, 4}=\operatorname{diag}(J,-\theta)(18) \tag{19}\\
& J=\left(\eta_{\mu \nu}\right)=\operatorname{diag}(1,-1,-1,-1) . \tag{20}
\end{align*}
$$

$\diamond \operatorname{In} \mathcal{M}^{2,4}$, if set

$$
\begin{equation*}
\zeta^{A}=\kappa \xi^{A},(A=0, \ldots, 4) \quad \zeta^{5}=\kappa R \tag{21}
\end{equation*}
$$

then eq. (18) \Rightarrow

$$
\begin{align*}
& \mathcal{N}_{\theta}: \quad \eta_{\theta \hat{A} \hat{B}} \zeta^{\hat{A}} \zeta^{\hat{B}}=0 \tag{22}\\
& \left(\zeta^{0}, \ldots, \zeta^{5}\right) \sim\left(\xi^{0}, \ldots, \xi^{4}, R\right) \tag{23}\\
& d S \cong H_{+}^{1,3}=\mathcal{N}_{+} \cap \mathcal{P} \tag{24}\\
& A d S \cong H_{-}^{1,3}=\mathcal{N}_{-} \cap \mathcal{P} \tag{25}\\
& \mathcal{P}: \zeta^{5}=R \tag{26}
\end{align*}
$$

\diamond Induced metric:

$$
\begin{equation*}
d \chi_{\theta}^{2}=\kappa^{2} d s_{\theta}^{2}=\left(\frac{\zeta^{5}}{R}\right)^{2} d s_{\theta}^{2} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
d \chi_{\theta}^{2}:=\eta_{\theta \hat{A} \hat{B}} d \zeta^{\hat{A}} d \zeta^{\hat{B}} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
d s_{\theta}^{2}:=\eta_{A B} d \xi^{A} d \xi^{B} \tag{29}
\end{equation*}
$$

Each $O(2,4)$ transformation induces a conformal transformation on $H_{\theta}^{1,3}$:

$$
\begin{equation*}
d s_{\theta}^{\prime 2}=\rho^{2} d s_{\theta}^{2}, \quad \rho=\frac{\zeta^{5}}{\zeta^{\prime 5}} \tag{30}
\end{equation*}
$$

\diamond Conformal transformations on BdS and BAdS:

$$
\begin{gather*}
\zeta^{\prime \hat{A}}=C_{\hat{A}}^{\hat{A}} \zeta^{\hat{B}}, \tag{31}\\
\zeta^{\prime \mu}=C_{\nu}^{\mu} \zeta^{\nu}+C_{4}^{\mu} \zeta^{4}+C_{5}^{\mu} \zeta^{5}, \tag{32}\\
\zeta^{\prime 4}=C_{\alpha}^{4} \zeta^{\alpha}+C_{4}^{4} \zeta^{4}+C_{5}^{4} \zeta^{5} ; \tag{33}\\
\zeta^{\prime 5}=C_{\alpha}^{5} \zeta^{\alpha}+C_{4}^{5} \zeta^{4}+C_{5}^{5} \zeta^{5} . \tag{34}\\
x^{\prime \mu}=R \frac{\xi^{\prime \mu}}{\xi^{\prime 4}}=R \frac{\zeta^{\prime \mu}}{\zeta^{\prime 4}} \tag{35}\\
x^{\prime \mu}=\frac{C_{\nu}^{\mu} x^{\nu}+C_{4}^{\mu} R \pm C_{5}^{\mu} R \sqrt{\sigma(x)}}{C_{4}^{4}+\frac{1}{R} C_{\alpha}^{4} x^{\alpha} \pm C_{5}^{4} \sqrt{\sigma(x)}}, \tag{36}\\
\rho= \tag{37}\\
\frac{ \pm \sqrt{\sigma(x)}}{C_{4}^{5}+\frac{1}{R} C_{\alpha}^{5} x^{\alpha} \pm C_{5}^{5} \sqrt{\sigma(x)}} .
\end{gather*}
$$

Examples.

$$
\begin{align*}
C & =\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & \gamma & \gamma \beta \\
0 & \gamma \beta & \gamma
\end{array}\right) \tag{38}\\
x^{\prime \mu} & =\frac{x^{\mu} \sqrt{1-\beta^{2}}}{1 \pm \beta \sqrt{\sigma(x)}} \tag{39}\\
C & =\left(\begin{array}{ccc}
\delta_{\nu}^{\mu}-\frac{\theta}{R^{2}} \frac{b^{\mu} b_{\nu}}{1+\sqrt{\sigma(b)}} & 0 & \frac{b^{\mu}}{R} \\
0 & 1 & 0 \\
-\frac{b_{\nu}}{R} & 0 & \sqrt{\sigma(b)}
\end{array}\right), \tag{40}\\
x^{\prime \mu} & =x^{\mu}-\frac{\theta(b \cdot x)}{1+\sqrt{\sigma(b)}} \frac{b^{\mu}}{R^{2}} \pm b^{\mu} \sqrt{\sigma(x)} \tag{41}
\end{align*}
$$

4 Triality

4.1 Outline and review

(1) A null-cone \mathcal{N} in $\mathcal{M}^{2,4}: \quad \eta_{\hat{A} \hat{B}} \zeta^{\hat{A}} \zeta^{\hat{B}}=0$.
(2) A 4 -dim $[\mathcal{N}]$ is resulted in:

$$
[\mathcal{N}]=\mathcal{N}-\{0\} / \sim, \quad[\mathcal{N}] \cong S^{1} \times S^{3}
$$

(3) An action of $O(2,4)$ is induced on $[\mathcal{N}]$.
(4) The Minkowski space is $\mathcal{N} \cap \mathcal{P}$, with \mathcal{P} a null hyperplane

$$
\zeta^{-}:=\frac{1}{\sqrt{2}}\left(-\zeta^{4}+\zeta^{5}\right)=R
$$

(5) $d S$-space is $\mathcal{N} \cap \mathcal{P}$, with \mathcal{P} a hyperplane $\zeta^{5}=R$. The normal vector of \mathcal{P} is timelike.
(6) For $A d S$-space, the normal vector of \mathcal{P} is spacelike.
(7) Relation of metrics: For Minkowski and $d S / A d S$, respectively,

$$
d \chi_{M}^{2}=\left(\frac{\zeta^{-}}{R}\right)^{2} d s_{M}^{2}, \quad d \chi_{M}^{2}=\kappa^{2} d s_{\theta}^{2} .
$$

The induced $O(2,4)$ transformations on $\mathcal{N} \cap \mathcal{P}$ are conformal:

$$
\begin{gathered}
\left(\frac{\zeta^{\prime-}}{R}\right)^{2} d s_{M}^{\prime 2}=d \chi_{M}^{\prime 2} \equiv d \chi_{M}^{2}=\left(\frac{\zeta^{-}}{R}\right)^{2} d s_{M}^{2} \Rightarrow \\
d s_{M}^{2}=\rho^{2} d s_{M}^{2}, \quad \rho:=\frac{\zeta^{-}}{\zeta^{\prime-}} \\
\kappa^{\prime 2} d s_{\theta}^{\prime 2}=d \chi^{\prime 2} \equiv d \chi^{2}=\kappa^{2} d s_{\theta}^{2}, \quad \Rightarrow \\
d s_{\theta}^{\prime 2}=\rho^{2} d s_{\theta}^{2}, \quad \rho:=\frac{\kappa}{\kappa^{\prime}}=\frac{\zeta^{5}}{\zeta^{15}}
\end{gathered}
$$

(8) Transformation law in terms of the Minkowksi or Beltrami coordinates.

4.2 A generic description

(1) \mathcal{P} : a hyperplane, not passing through the origin, orientation induced.
\mathbf{n} : a normal vector of \mathcal{P}.

Items	Minkowski	$d S$	$A d S$
\mathbf{n}	null	timelike	spacelike
\mathcal{P}	null	spacelike	timelike
signature	$0,+,-,-,-$	$1+4$	$2+3$
$\mathcal{N} \cap \mathcal{P}$	Minkowski	$d S$	$A d S$
status of \mathbf{n}	up to a	determined	determined
	scalar		

0-19
(2) For null \mathcal{P},
\mathbf{l} : a null vector pointing to \mathcal{P}, and $\mathbf{l} \cdot \mathbf{n}=1$. determined by l.)
$\mathbf{e}_{\mu}(\mu=0,1,2,3):$ orthonormal, tangent to \mathcal{P},

$$
\begin{equation*}
\mathbf{l} \cdot \mathbf{e}_{\mu}=\mathbf{n} \cdot \mathbf{e}_{\mu}=0 \tag{42}
\end{equation*}
$$

$\left\{\mathbf{e}_{\mu}, \mathbf{n}, \mathbf{l}\right\}$ - orientation. \mathbf{e}_{0} future pointed.
\& $\zeta \in \mathcal{P}$ can be expressed as
$\boldsymbol{\zeta}=x^{\mu} \mathbf{e}_{\mu}+x^{+} \mathbf{n}+R \mathbf{1}, \quad \zeta \in \mathcal{N} \cap \Leftrightarrow x^{+}=-\frac{1}{2 R} \eta_{\mu \nu} x^{\mu} x^{\nu}$.
\& $C \in O(2,4)$ transforms $\boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P}$ to

$$
\begin{align*}
& \boldsymbol{\zeta}^{\prime}=x^{\prime \mu} \mathbf{e}_{\mu}+x^{\prime+} \mathbf{n}+R \mathbf{l}=\rho C \boldsymbol{\zeta} \tag{44}\\
& d s_{M}^{\prime 2}=\rho^{2} d s_{M}^{2} \tag{45}
\end{align*}
$$

\& $\{\mathcal{P},-\mathcal{P}\} C$-invariant $\Leftrightarrow C$ induces a Poincaré transformation on $\mathcal{N} \cap \mathcal{P}$.
\% Change of 1 induces a Poincaré coordinate transformation:

$$
\begin{aligned}
& R \mathbf{1}^{\prime}=a^{\mu} \mathbf{e}_{\mu}+a^{+} \mathbf{n}+R \mathbf{1} \quad \Rightarrow \\
& \mathbf{e}_{\mu}^{\prime}=\mathbf{e}_{\mu}-\frac{\eta_{\mu \nu}}{R} a^{\nu} \mathbf{n}, \quad x^{\prime \mu}=x^{\mu}-a^{\mu} .(47)
\end{aligned}
$$

(3) For a spacelike $\mathcal{P}:(\mathcal{N} \cap \mathcal{P} \cong d S)$
$\left\{\mathbf{e}_{A}, \mathbf{n} \mid A=0,1, \ldots, 4\right\}$ - oriented orthonormal basis,
\mathbf{n} - unit timelike normal vector pointing to \mathcal{P},
\mathbf{e}_{0} - future pointed.
\& $\zeta \in \mathcal{P}$:
$\boldsymbol{\zeta}=\xi^{A} \mathbf{e}_{A}+R \mathbf{n}, \quad \boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P} \quad \Leftrightarrow \quad \eta_{A B} \xi^{A} \xi^{B}=-R^{2}$.
(48)
\& Beltrami coordinates can be defined. E.g.,

$$
\begin{align*}
& x^{\mu}:=R \frac{\xi^{\mu}}{\xi^{4}} . \Rightarrow \xi^{4}= \pm \frac{R}{\sqrt{\sigma(x)}} \tag{49}\\
& \sigma(x)>0, \sigma(x):=1-\frac{1}{R^{2}} \eta_{\mu \nu} x^{\mu} x^{\nu} .(50)
\end{align*}
$$

\& $C \in O(2,4)$ transforms $\boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P}$ to

$$
\begin{align*}
& \boldsymbol{\zeta}^{\prime}=\xi^{\prime A} \mathbf{e}_{A}+R \mathbf{n}=\rho C \boldsymbol{\zeta} \tag{51}\\
& d s_{+}^{\prime 2}=\rho^{2} d s_{+}^{2} \tag{52}
\end{align*}
$$

\& $\{\mathcal{P},-\mathcal{P}\} C$-invariant $\Leftrightarrow C$ induces a de Sitter transformation on $\mathcal{N} \cap \mathcal{P}$.
(4) For a timelike $\mathcal{P}:(\mathcal{N} \cap \mathcal{P} \cong A d S)$
$\left\{\mathbf{e}_{\mu}, \mathbf{n}, \mathbf{e}_{4}\right\}$ - oriented orthonormal basis,
\mathbf{n} - unit spacelike normal vector pointint to \mathcal{P},
\mathbf{e}_{0} - future pointed.
\& $\zeta \in \mathcal{P}$:
$\boldsymbol{\zeta}=\xi^{A} \mathbf{e}_{A}+R \mathbf{n}, \quad \boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P} \Rightarrow \eta_{A B} \xi^{A} \xi^{B}=R^{2}$.
(53)
\& Beltrami-Hua-Lu coordinates can be defined. E.g.,

$$
\begin{aligned}
& x^{\mu}:=R \frac{\xi^{\mu}}{\xi^{4}} . \Rightarrow \xi^{4}= \pm \frac{R}{\sqrt{\sigma(x)}} \\
& \sigma(x)>0, \sigma(x):=1+\frac{1}{R^{2}} \eta_{\mu \nu} x^{\mu} x^{\nu}
\end{aligned}
$$

\& $C \in O(2,4)$ transforms $\boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P}$ to

$$
\begin{align*}
& \boldsymbol{\zeta}^{\prime}=\xi^{\prime A} \mathbf{e}_{A}+R \mathbf{n}=\rho C \boldsymbol{\zeta} \tag{56}\\
& d s_{-}^{\prime 2}=\rho^{2} d s_{-}^{2} \tag{57}
\end{align*}
$$

\& $\{\mathcal{P},-\mathcal{P}\}$ is C-invariant $\Leftrightarrow C$ induces an antide Sitter transformation on $\mathcal{N} \cap \mathcal{P}$.

4.3 Conformal maps between conformal Minkowski, $d S$ and $A d S$

(1) Conformal map from the Minkowski to $d S / A d S$. \mathcal{P} : null, $\mathcal{N} \cap \mathcal{P}$ Minkowski,
\mathcal{P}^{\prime} : spacelike or timelike, $\mathcal{N} \cap \mathcal{P} \cong d S$ or $A d S$, respectively.
\& $\boldsymbol{\zeta}=x^{\mu} \mathbf{e}_{\mu}+x^{+} \mathbf{n}+R \mathbf{l} \in \mathcal{N} \cap \mathcal{P} \quad \sim$
$\boldsymbol{\zeta}^{\prime}=\xi^{A} \mathbf{e}_{A}^{\prime}+R^{\prime} \mathbf{n}^{\prime} \in \mathcal{N} \cap \mathcal{P}^{\prime}$,
$\boldsymbol{\zeta}^{\prime}=\rho \boldsymbol{\zeta} \quad \Rightarrow$

$$
\begin{equation*}
x^{\prime \mu}=R^{\prime} C_{\nu}^{\mu} x^{\nu}-\frac{1}{2^{\frac{3}{2}} R}\left(C_{4}^{\mu}+C_{5}^{\mu}\right)(x \cdot x)-\frac{1}{\sqrt{2}}\left(C_{4}^{\mu}-C_{5}^{\mu}\right) R ~\left(C^{4} x^{\alpha}-\frac{1}{2^{\frac{3}{2}} R}\left(C_{4}^{4}+C_{5}^{4}\right)(x \cdot x)-\frac{1}{\sqrt{2}}\left(C_{4}^{4}-C_{5}^{4}\right) R ~, ~\right. \tag{58}
\end{equation*}
$$

0-23

$$
\begin{gather*}
\rho=\frac{R^{\prime}}{C_{\alpha}^{5} x^{\alpha}-\frac{1}{2^{\frac{3}{2}} R}\left(C_{4}^{5}+C_{5}^{5}\right)(x \cdot x)-\frac{1}{\sqrt{2}}\left(C_{4}^{5}-C_{5}^{5}\right) R}, \tag{59}\\
d s_{\theta}^{\prime 2}=\rho^{2} d s_{M}^{2}, \quad \theta= \pm 1 \tag{60}
\end{gather*}
$$

\& A special example.
$x^{\prime \mu}=-\frac{x^{\mu}}{1+\frac{1}{4 R^{\prime 2}}(x \cdot x)}$,

$$
d s_{\theta}^{\prime 2}=\frac{d s_{M}^{2}}{\left[1-\frac{1}{4 R^{\prime 2}}(x \cdot x)\right]^{2}}
$$

(2) The conformal map from $d S$ to $A d S$.
\& Generic transformation.

$$
\begin{align*}
x^{\prime \mu} & =R^{\prime} \frac{C_{\nu}^{\mu} x^{\nu}+C_{4}^{\mu} R \pm C_{5}^{\mu} R \sqrt{\sigma(x)}}{C_{\alpha}^{4} x^{\alpha}+C_{4}^{4} R \pm C_{5}^{4} R \sqrt{\sigma(x)}} \\
\rho & =\frac{ \pm R^{\prime} \sqrt{\sigma(x)}}{C^{5}{ }_{\alpha} x^{\alpha}+C_{4}^{5} R \pm C_{5}^{5} R \sqrt{\sigma(x)}}, \tag{63}\\
d s_{-}^{\prime 2} & =\rho^{2} d s_{+}^{2} . \tag{64}
\end{align*}
$$

\& A special example:

$$
\begin{equation*}
x^{\prime \mu}= \pm \frac{R^{\prime}}{R} \frac{x^{\mu}}{\sqrt{\sigma(x)}}, \quad \rho= \pm \frac{R^{\prime}}{R} \sqrt{\sigma(x)} \tag{65}
\end{equation*}
$$

The inverse map:

$$
\begin{align*}
& x^{\mu}= \pm \frac{R}{R^{\prime}} \frac{x^{\prime \mu}}{\sqrt{\sigma^{\prime}\left(x^{\prime}\right)}} \tag{66}\\
& \rho^{\prime}= \pm \frac{R}{R^{\prime}} \sqrt{\sigma^{\prime}\left(x^{\prime}\right)} \tag{67}\\
& \sigma^{\prime}\left(x^{\prime}\right) \sigma(x)=1 \tag{68}
\end{align*}
$$

\odot

$$
\begin{align*}
& \sigma^{\prime}\left(x^{\prime}\right)=1+\frac{1}{R^{\prime 2}} \eta_{\mu \nu} x^{\prime \mu} x^{\prime \nu} \tag{69}\\
& \sigma(x)=1-\frac{1}{R^{2}} \eta_{\mu \nu} x^{\mu} x^{\nu} \tag{70}
\end{align*}
$$

0-25
\diamond Triality.

5 Null Geodesics, Massive Particles

Null geodesics are conformally transformed to each other.
Timelike or spacelike geodesics cannot be.
Is there a clear picture?
\diamond Momentum and angular momentum as conserved quantities in inertial motions. What if under conformal transformations/maps?
\diamond For two linear independent $\boldsymbol{\zeta}_{0}, \boldsymbol{\zeta}_{1} \in \mathcal{N}$,

$$
\left[\zeta_{0}\right] \neq\left[\zeta_{1}\right] . \quad \Rightarrow
$$

A 2-dim linear supspace Σ spanned by $\boldsymbol{\zeta}_{0}$ and $\boldsymbol{\zeta}_{1}$, or a projective straight line in $\mathcal{M}^{2,4}-\{0\} / \sim$.
Is it in $[\mathcal{N}]$?
${ }_{Q} \boldsymbol{\zeta}_{0}, \boldsymbol{\zeta}_{1} \in \mathcal{N} \Rightarrow \boldsymbol{\zeta}_{0} \cdot \boldsymbol{\zeta}_{0}=0, \boldsymbol{\zeta}_{1} \cdot \boldsymbol{\zeta}_{1}=0$.
$\forall \boldsymbol{\zeta} \in \Sigma, \boldsymbol{\zeta}=x \boldsymbol{\zeta}_{0}+y \boldsymbol{\zeta}_{1}$. Since $\boldsymbol{\zeta} \cdot \boldsymbol{\zeta}=2 x y \boldsymbol{\zeta}_{0} \cdot \boldsymbol{\zeta}_{1}$,

$$
\Sigma \subset \mathcal{N} \quad \Leftrightarrow \quad \zeta_{0} \cdot \zeta_{1}=0 \quad \Leftrightarrow
$$

$\Sigma \cap \mathcal{P}$ is a straight line in $\mathcal{N} \cap \mathcal{P}$.
\diamond The equation of $\Sigma \cap \mathcal{P}: \quad$ Assume $\boldsymbol{\zeta}_{0}, \boldsymbol{\zeta}_{1} \in \mathcal{P}$,

$$
\begin{equation*}
\boldsymbol{\zeta}=(1-t) \boldsymbol{\zeta}_{0}+t \boldsymbol{\zeta}_{1} . \tag{71}
\end{equation*}
$$

In terms of the Minkowski/Beltrami coordinates:

$$
\begin{equation*}
x^{\mu}=a^{\mu}+w(s) u^{\mu}, \quad \frac{d s}{d w}=\frac{1}{\sigma(x)} . \tag{72}
\end{equation*}
$$

Conserved momentum and angular momentum along geodesics:

$$
P^{\mu}:=\frac{1}{\sigma(x)} \frac{d x^{\mu}}{d s}, \quad L^{\mu \nu}:=x^{\mu} P^{\nu}-x^{\nu} P^{\mu}(.73)
$$

For $B d S$,

$$
\begin{equation*}
\mathcal{L}^{\mu \nu}=L^{\mu \nu}, \quad \mathcal{L}^{4 \nu}=-\mathcal{L}^{\nu 4}=R P^{\nu} \tag{74}
\end{equation*}
$$

\diamond For Σ, define $\mathcal{L}=\boldsymbol{\zeta}_{0} \wedge \boldsymbol{\zeta}_{1}$:

$$
\begin{equation*}
\mathcal{L}^{\hat{A} \hat{B}}:=\zeta_{0}^{\hat{A}} \zeta_{1}^{\hat{B}}-\zeta_{0}^{\hat{B}} \zeta_{1}^{\hat{A}} \tag{75}
\end{equation*}
$$

When $\left\{\boldsymbol{\zeta}_{0}, \boldsymbol{\zeta}_{1}\right\} \rightarrow\left\{\boldsymbol{\zeta}_{0}^{\prime}, \boldsymbol{\zeta}_{1}^{\prime}\right\}, \boldsymbol{\zeta}_{i}^{\prime}=A_{i}^{j} \boldsymbol{\zeta}_{j}$,

$$
\begin{equation*}
\mathcal{L}^{\prime}=(\operatorname{det} A) \mathcal{L} \tag{76}
\end{equation*}
$$

Σ is specified by $\mathcal{L}^{\hat{A} \hat{B}}$ up to a nonzero scaling constant.
${ }_{\infty}$ When $\boldsymbol{\zeta}_{0}, \boldsymbol{\zeta}_{1} \in \mathcal{P}, \Sigma \cap \mathcal{P}$ is

$$
\boldsymbol{\zeta}(t)=(1-t) \boldsymbol{\zeta}_{0}+t \boldsymbol{\zeta}_{1}, \quad \frac{d \boldsymbol{\zeta}}{d t}=\boldsymbol{\zeta}_{1}-\boldsymbol{\zeta}_{0} .
$$

\mathcal{L} is the conserved angular momentum:

$$
\begin{equation*}
\mathcal{L}=\boldsymbol{\zeta}(t) \wedge \frac{d \boldsymbol{\zeta}}{d t} \tag{77}
\end{equation*}
$$

\& When $\boldsymbol{\zeta}_{0} \cdot \boldsymbol{\zeta}_{1}=0, \Sigma \cap \mathcal{P}$ is a null geodesic in $\mathcal{N} \cap \mathcal{P}$.
\& If $\mathcal{N} \cap \mathcal{P}$ is Minkowski, with \mathcal{P} being $\zeta^{-}=R$,

$$
\begin{equation*}
x^{\mu}(t)=x_{0}^{\mu}+t v^{\mu}, \quad v^{\mu}=x_{1}^{\mu}-x_{0}^{\mu} . \tag{78}
\end{equation*}
$$

Define

$$
\begin{equation*}
L^{\mu \nu}:=x^{\mu}(t) v^{\nu}-x^{\nu}(t) v^{\mu}, \quad P^{\mu}=v^{\mu} \tag{79}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathcal{L}^{\mu \nu}=L^{\mu \nu} \tag{80}\\
& \mathcal{L}^{-\mu}=R P^{\mu} \tag{81}\\
& \mathcal{L}^{+\mu}=-\frac{\eta_{\rho \sigma}}{2 R}\left(x_{0}^{\rho} x_{0}^{\sigma} v^{\mu}-2 x_{0}^{\rho} v^{\sigma} x_{0}^{\mu}\right), \tag{82}\\
& \mathcal{L}^{+-}=\eta_{\mu \nu} x_{0}^{\mu} v^{\nu} \tag{83}
\end{align*}
$$

\& When $\mathcal{N} \cap \mathcal{P}$ is $d S / A d S$,

$$
\left.\begin{array}{c}
x^{\mu}(t)=x_{0}^{\mu}+w(t) v^{\mu}, \quad v^{\mu}:=x_{1}^{\mu}-x_{0}^{\mu}, \\
w(t):=\frac{t \xi_{1}^{4}}{\xi_{0}^{4}+t\left(\xi_{1}^{4}-\xi_{0}^{4}\right)} . \\
P^{\mu}:=\frac{1}{\sigma(x)} \frac{d x^{\mu}}{d t}=v^{\mu}, \quad L^{\mu \nu}:=x^{\mu} P^{\nu}-x^{\nu} P^{\mu} . \tag{86}\\
\mathcal{L}^{\mu \nu}=\frac{L^{\mu \nu}}{\sqrt{\sigma\left(x_{0}\right) \sigma\left(x_{1}\right)}}, \quad \mathcal{L}^{5 \nu}= \pm\left(\frac{x_{1}^{\nu}}{\sqrt{\sigma\left(x_{1}\right)}}-\frac{x_{0}^{\nu}}{\sqrt{\sigma\left(x_{0}\right)}}\right), \\
\mathcal{L}^{4 \nu}=\frac{R P^{\nu}}{\sqrt{\sigma\left(x_{0}\right) \sigma\left(x_{1}\right)}}, \quad \mathcal{L}^{45}=\mp\left(\frac{R^{2}}{\sqrt{\sigma\left(x_{1}\right)}}-\frac{R^{2}}{\sqrt{\sigma\left(x_{0}\right)}}\right) . \\
(88)
\end{array}\right) .
$$

\diamond Massive case.
(1) $\Delta:(1+2)$-dim or $(2+1)$-dim.
(2) $(2+1)$-dim: timelike straight line $(\boldsymbol{n} \in \Delta)$ or hyperbola.
(3) $(1+2)$-dim: spacelike straight line $(\boldsymbol{n} \in \Delta)$ or conic curve.

$6 A d S_{5} /$ CFT 3 Correspondence

$\diamond A d S_{5}$: a "projective" subspace $[\mathcal{N}]=\partial A d S_{5}$
$[\mathcal{N}]$: the conformal Minkowski, $d S$ - or $A d S$-space.
Conformal maps, conformal triality.
\diamond CFT on Minkowski $=$ CFT on $d S=$ CFT on $A d S$.
\diamond Three kinds of $A d S_{5} / \mathrm{CFT}$ correspondence.
Can be generalized to $A d S_{d+1} / \mathrm{CFT}_{d}^{3}$ correspondence.

7 Conclusion

\diamond Conformal Minkowski, $d S$ - and $A d S$-spaces are the same thing.
\diamond They are three landscapes from different point of view.

They can be linked mutually to each other and to themselves by conformal maps.
\diamond Minkowski coordinates and Beltrami coordinates are at the equal footing.
\diamond Physical contents can be moved around from these spaces, provided they are conformally "covariant".
\diamond Projective might be "dead" in mathematics, but it is finding a new life in physics.

Thanks!

