Conformal Triality and AdS/CFT^3 Correspondence

Han-Ying Guo Bin Zhou

Collaborators: Zhan Xu, Chao-Guang Huang and Yu Tian

> On the 23rd International Conference of DGMTP August 25, 2005

Outline

 \diamond The Beltrami model of dS and AdS;

proposal of special relativity on them

 \diamondsuit Conformal Mink-, dS- and AdS-spaces from a projective subspace

 \diamondsuit Conformal triality and AdS/CFT^3 correspondence

 CFT^3 : three kinds of CFTs.

 \diamondsuit Null geodesics in conformal Mink-, dS- and AdS- spaces

$1 \quad {\bf The \ Beltrami \ Model \ of \ } dS/AdS \\ {\bf and \ Special \ Relativity \ on \ Them}$

 \diamond References.

H.-Y. Guo, C.-G. Huang, Z. Xu and B. Zhou, "On Special Relativity with Cosmological Constant", Phys. Lett. A331 (2004) 1–7, hep-th/0403171.
H.-Y. Guo, C.-G. Huang, Z. Xu and B. Zhou, "On Beltrami Model of de Sitter Spacetime", Mod. Phys. Lett. A19 (2004) 1701, hep-th/0311156;
Basic ideas traced back to: K. H. Look (Qi-Keng Lu), "Why the Minkowski metric must be used?", (1970), unpublished.
The Beltrami coordinates: H. S. Snyder, Phys. Rev. 71 (1947) 38.
W. de Sitter, "Einstein's theory of gravitation III", Roy. Astr. Soc. Month. Not. 78 (1917) 3.
W. Pauli ('20), Theory of Relativity, Pergamon, 1958.

1.1 Why could there be a special relativity on dS/AdS?

1. Analogy in geometry.

Euclidean geometry SR on Minkowski
 Lobachevskian geometry SR on AdS?
 Riemann's spherical geometry SR on dS?
 Three kinds of SR from inverse Wick rotation — hep-th/0508094.

2. Experiments and observations.

- ► SR: supported by local experiments;
- \triangleright the cosmos: asymptotically dS.

Isn't it a good thing to have a theory supported by all these experiments and observations?

3. Different features of SR and GR. (1) In SR:

- existence of inertial reference frames;
- ▶ with the principle of SR related to them;
- metric as a background only;
- spacetime symmetry: the Poincaré group;
- symmetry group of dynamics: the Poincaré group;

▶ the Minkowski coordinates \Leftrightarrow inertial reference frames;

(2) In GR:

▶ no inertial reference frames, even no global frames in general;

- ▶ the principle of GR;
- metric background and dynamical;
- spacetime symmetry: generally, no;
- dynamics: diffeomorphic-invariant;
- coordinate independent;

• • •

(3) A question: how the features of GR turn out to be those of SR when the curvature is zero?
(4) The correct relation of SR and GR:
SR is a theory which describes a special solution of GR.

$$\lim_{\mathbf{R}\to 0} \mathrm{GR} \neq \mathrm{SR}.$$
 (1)

Then why there could not be theories of "SR" to describe other spacetimes?

1.2 dS and Its Geometry

 \diamond Usually viewed as a hypersurface in $\mathcal{M}^{1,4}$:

$$\eta_{AB}\,\xi^A\xi^B = -R^2.\tag{2}$$

 $(\eta_{AB})_{A,B=0,1,\dots,4} = \text{diag}(1,-1,-1,-1,-1).$

 \diamond Equivalently, $dS \cong S / \sim$

▶ $S \subset M^{1,4}$: the set of spacelike vectors;

 $\triangleright \sim$: the equivalence relation similar to that in projective geometry:

$$\xi' \sim \xi \quad \Leftrightarrow \quad \exists c > 0 \text{ s.t. } \xi'^A = c \xi^A.$$
 (3)

▶ dS: the set of spacelike rays from the origin of $\mathcal{M}^{2,4}$.

Why antipodal points not identified?Orientable and time orientable.

 \diamondsuit The Beltrami coordinates — inhomogeneous co-ordinates.

$$x^{\mu} := R \frac{\xi^{\mu}}{\xi^4}, \quad (\mu = 0, 1, 2, 3)$$
 (4)

on the regions U_{±4} where ξ⁴ > 0 or ξ⁴ < 0.
> Other coordinate neighborhoods.
> σ(x) > 0 where

$$\sigma(x) := 1 - \frac{1}{R^2} \eta_{\mu\nu} x^{\mu} x^{\nu}.$$
 (5)

• The O(1,4) transformations:

$$x^{\prime \mu} = \pm \frac{\sqrt{\sigma(a)} D^{\mu}{}_{\nu} (x^{\nu} - a^{\nu})}{\sigma(a, x)}, \qquad (6)$$

$$D^{\mu}_{\ \nu} = L^{\mu}_{\ \nu} + \frac{R^{-2}L^{\mu}_{\ \rho} a^{\rho} a_{\nu}}{\sigma(a) + \sqrt{\sigma(a)}}, \tag{7}$$

$$\sigma(a, x) := 1 - \frac{1}{R^2} \eta_{\mu\nu} a^{\mu} x^{\nu}, \qquad (8)$$
$$(L^{\mu}_{\ \nu}) \in O(1, 3), \qquad \sigma(a) > 0$$

▶ Fractional linear.

▶ The same form as the O(3) transformations on S^2 or $\mathbb{R}P^2$.

▶ Turn out to be Poincaré transformations up to the order of $1/R^2$.

 \diamond

 \diamond The O(1, 4)-invariant metric:

$$ds^2 = g_{\mu\nu}(x) \, dx^\mu \, dx^\nu \tag{9}$$

$$g_{\mu\nu}(x) := \frac{\eta_{\mu\nu}}{\sigma(x)} + \frac{\eta_{\mu\alpha}\eta_{\nu\beta}x^{\alpha}x^{\beta}}{R^{2}\sigma(x)}.$$
 (10)

Induced from the hypersurface, or
derived from the invariant cross ratio.
The same form as that on S² or RP².
O(1,4)-invariant:

$$\frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} g_{\alpha\beta}(x) = g_{\mu\nu}(x').$$
(11)

► $g_{\mu\nu}(x) = \eta_{\mu\nu} + O(1/R^2)$

 \diamond Geodesics

► Geodesics are "projective" staight lines, and vice versa.

$$x^{\mu} = x_0^{\mu} + w(s) u^{\mu}, \qquad (12)$$

$$\frac{dw}{ds} = \sigma(x) = 1 - \frac{1}{R^2} \eta_{\mu\nu} x^{\mu} x^{\nu}.$$
 (13)

w ~ *s* if all *x^µ* ≪ *R*.
Preserved quantities:

$$P^{\mu} = \frac{m}{\sigma(x)} \frac{dx^{\mu}}{ds}, \quad L^{\mu\nu} = x^{\mu}P^{\nu} - x^{\nu}P^{\mu}.$$
(14)

$$\eta_{\mu\nu} P^{\mu} P^{\nu} - \frac{1}{2R^2} \eta_{\mu\rho} \eta_{\nu\sigma} L^{\mu\nu} L^{\rho\sigma} = m^2.$$
 (15)

1.3 Proposal of SR on dS/AdS

► Method of projective geometry works, nearly without use of DG.

► Inertial motions and inertial reference frames (IRF) can be defined intrinsically.

An IRF can be transformed to be another IRF by O(1,4) transformations.

▶ The Beltrami coordinates and the Minkowski coordinates cannot be distinguished in small scales.

► All the formulae can be degenerated to those in SR in small scales.

 \diamond If SR on dS/AdS is accepted, then nonzero curvature does not necessarily mean gravitation.

2 Conformal Transformations

 \diamondsuit For a $(M,\mathbf{g}),\,\psi:M\to M$ is a conformal transformation if

(1) it is a diffeomorphism and

(2)
$$\psi^* \mathbf{g} = \rho^2 \mathbf{g}.$$

$$x^{\mu} \to x'^{\mu} := \psi^* x^{\mu} = x'^{\mu}(x), \text{ then}$$
$$\frac{\partial x'^{\rho}}{\partial x^{\mu}} \frac{\partial x'^{\sigma}}{\partial x^{\nu}} g_{\rho\sigma}(x') = \rho^2(x) g_{\mu\nu}(x), \quad (16)$$
$$ds'^2 = \rho^2(x) ds^2. \quad (17)$$

 \diamond The conformal Minkowski space: Special conformal transformations are not diffeomorphisms on the Minkowski space. Additional points (points at infinity, ideal points) must be added.

 \diamond Similar for conformal dS- and AdS-spaces.

3 Conformal dS/AdS-Spaces

 \diamond As hypersurfaces in $M^{1,4}$ and $M^{2,3}$, respectively,

$$H^{1,3}_{\theta}: \quad \eta_{\theta AB} \,\xi^A \xi^B = -\theta \,R^2. \tag{18}$$

$$\theta = \pm, \quad (\eta_{\theta AB})_{A,B=0,...,4} = \text{diag}(J, -\theta)(19)$$
$$J = (\eta_{\mu\nu}) = \text{diag}(1, -1, -1, -1). \tag{20}$$

 \diamond In $\mathcal{M}^{2,4}$, if set

$$\zeta^A = \kappa \,\xi^A, \ (A = 0, \dots, 4) \quad \zeta^5 = \kappa \,R, \tag{21}$$

then eq. (18) \Rightarrow

$$\mathcal{N}_{\theta}: \quad \eta_{\theta \,\hat{A}\hat{B}} \,\zeta^{\hat{A}} \zeta^{\hat{B}} = 0. \tag{22}$$

$$(\zeta^0, \dots, \zeta^5) \sim (\xi^0, \dots, \xi^4, R),$$
 (23)

$$dS \cong H^{1,3}_+ = \mathcal{N}_+ \cap \mathcal{P},\tag{24}$$

$$AdS \cong H^{1,3}_{-} = \mathcal{N}_{-} \cap \mathcal{P}, \qquad (25)$$

$$\mathcal{P}: \ \zeta^5 = R. \tag{26}$$

$$d\chi_{\theta}^2 = \kappa^2 \, ds_{\theta}^2 = \left(\frac{\zeta^5}{R}\right)^2 \, ds_{\theta}^2, \quad (27)$$

$$d\chi_{\theta}^2 := \eta_{\theta \,\hat{A}\hat{B}} \, d\zeta^{\hat{A}} d\zeta^{\hat{B}}, \qquad (28)$$

$$ds_{\theta}^2 := \eta_{AB} \, d\xi^A d\xi^B. \tag{29}$$

Each O(2,4) transformation induces a conformal transformation on $H^{1,3}_{\theta}$:

$$ds_{\theta}^{\prime 2} = \rho^2 \, ds_{\theta}^2, \qquad \rho = \frac{\zeta^5}{\zeta^{\prime 5}}. \tag{30}$$

\diamondsuit Conformal transformations on BdS and BAdS:

$$\zeta'^{\hat{A}} = C^{\hat{A}}_{\ \hat{B}} \,\zeta^{\hat{B}},\tag{31}$$

$$\zeta^{\prime \mu} = C^{\mu}_{\ \nu} \, \zeta^{\nu} + C^{\mu}_{\ 4} \, \zeta^4 + C^{\mu}_{\ 5} \, \zeta^5, \qquad (32)$$

$$\zeta'^{4} = C^{4}_{\ \alpha} \,\zeta^{\alpha} + C^{4}_{\ 4} \,\zeta^{4} + C^{4}_{\ 5} \,\zeta^{5}; \qquad (33)$$

$$\zeta'^{5} = C^{5}_{\ \alpha} \zeta^{\alpha} + C^{5}_{\ 4} \zeta^{4} + C^{5}_{\ 5} \zeta^{5}. \tag{34}$$

$$x'^{\mu} = R \, \frac{\xi'^{\mu}}{\xi'^4} = R \, \frac{\zeta'^{\mu}}{\zeta'^4} \tag{35}$$

$$x^{\prime\mu} = \frac{C^{\mu}_{\ \nu} x^{\nu} + C^{\mu}_{\ 4} R \pm C^{\mu}_{\ 5} R \sqrt{\sigma(x)}}{C^{4}_{\ 4} + \frac{1}{R} C^{4}_{\ \alpha} x^{\alpha} \pm C^{4}_{\ 5} \sqrt{\sigma(x)}}, \quad (36)$$
$$\rho = \frac{\pm \sqrt{\sigma(x)}}{C^{5}_{\ 4} + \frac{1}{R} C^{5}_{\ \alpha} x^{\alpha} \pm C^{5}_{\ 5} \sqrt{\sigma(x)}}. \quad (37)$$

 \diamond Examples.

$$C = \begin{pmatrix} I & 0 & 0 \\ 0 & \gamma & \gamma\beta \\ 0 & \gamma\beta & \gamma \end{pmatrix}, \qquad (38)$$

$$x^{\prime \mu} = \frac{x^{\mu} \sqrt{1 - \beta^2}}{1 \pm \beta \sqrt{\sigma(x)}}; \tag{39}$$

$$C = \begin{pmatrix} \delta^{\mu}_{\nu} - \frac{\theta}{R^2} \frac{b^{\mu} b_{\nu}}{1 + \sqrt{\sigma(b)}} & 0 & \frac{b^{\mu}}{R} \\ 0 & 1 & 0 \\ -\frac{b_{\nu}}{2} & 0 & \sqrt{\sigma(b)} \end{pmatrix}, \quad (40)$$

$$\chi'^{\mu} = x^{\mu} - \frac{\theta(b \cdot x)}{1 + \sqrt{\sigma(b)}} \frac{b^{\mu}}{R^2} \pm b^{\mu} \sqrt{\sigma(x)}.$$
 (41)

4 Triality

4.1 Outline and review

(1) A null-cone \mathcal{N} in $\mathcal{M}^{2,4}$: $\eta_{\hat{A}\hat{B}} \zeta^{\hat{A}} \zeta^{\hat{B}} = 0.$ (2) A 4-dim $[\mathcal{N}]$ is resulted in:

$$[\mathcal{N}] = \mathcal{N} - \{0\} / \sim, \qquad [\mathcal{N}] \cong S^1 \times S^3.$$

(3) An action of O(2,4) is induced on $[\mathcal{N}]$.

(4) The Minkowski space is $\mathcal{N} \cap \mathcal{P}$, with \mathcal{P} a null hyperplane

$$\zeta^{-} := \frac{1}{\sqrt{2}} \left(-\zeta^{4} + \zeta^{5} \right) = R.$$

(5) dS-space is $\mathcal{N} \cap \mathcal{P}$, with \mathcal{P} a hyperplane $\zeta^5 = R$. The normal vector of \mathcal{P} is timelike.

(6) For AdS-space, the normal vector of \mathcal{P} is space-like.

(7) Relation of metrics: For Minkowski and dS/AdS, respectively,

$$d\chi_M^2 = \left(\frac{\zeta^-}{R}\right)^2 ds_M^2, \qquad d\chi_M^2 = \kappa^2 \, ds_\theta^2.$$

The induced O(2,4) transformations on $\mathcal{N} \cap \mathcal{P}$ are conformal:

$$\begin{pmatrix} \underline{\zeta'}^- \\ \overline{R} \end{pmatrix}^2 ds'^2_M = d\chi'^2_M \equiv d\chi^2_M = \left(\frac{\underline{\zeta}^-}{R}\right)^2 ds^2_M \quad \Rightarrow \\ ds'^2_M = \rho^2 ds^2_M, \qquad \rho := \frac{\underline{\zeta}^-}{\underline{\zeta'}^-}; \\ \kappa'^2 ds'^2_\theta = d\chi'^2 \equiv d\chi^2 = \kappa^2 ds^2_\theta, \qquad \Rightarrow \\ ds'^2_\theta = \rho^2 ds^2_\theta, \quad \rho := \frac{\kappa}{\kappa'} = \frac{\underline{\zeta}^5}{\underline{\zeta'}^5}.$$

(8) Transformation law in terms of the Minkowksi or Beltrami coordinates.

4.2 A generic description

(1) \mathcal{P} : a hyperplane, not passing through the origin, orientation induced.

n: a normal vector of \mathcal{P} .

Items	Minkowski	dS	AdS
n	null	$\operatorname{timelike}$	spacelike
${\cal P}$	null	spacelike	$\operatorname{timelike}$
signature	0, +, -, -, -	1 + 4	2 + 3
$\mathcal{N}\cap\mathcal{P}$	Minkowski	dS	AdS
status of \mathbf{n}	up to a	determined	determined
	scalar		

(2) For null \mathcal{P} ,

l: a null vector pointing to \mathcal{P} , and $\mathbf{l} \cdot \mathbf{n} = 1$. (**n** determined by **l**.)

 $\mathbf{e}_{\mu} \ (\mu = 0, 1, 2, 3)$: orthonormal, tangent to \mathcal{P} ,

$$\mathbf{l} \cdot \mathbf{e}_{\mu} = \mathbf{n} \cdot \mathbf{e}_{\mu} = 0. \tag{42}$$

 $\{\mathbf{e}_{\mu}, \mathbf{n}, \mathbf{l}\}$ — orientation. \mathbf{e}_{0} future pointed. $\boldsymbol{\zeta} \in \mathcal{P}$ can be expressed as

$$\boldsymbol{\zeta} = x^{\mu} \mathbf{e}_{\mu} + x^{+} \mathbf{n} + R \mathbf{l}, \quad \boldsymbol{\zeta} \in \mathcal{N} \cap \Leftrightarrow x^{+} = -\frac{1}{2R} \eta_{\mu\nu} x^{\mu} x^{\nu}.$$
(43)

 $\mathcal{L} \in O(2,4)$ transforms $\boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P}$ to

$$\boldsymbol{\zeta}' = x'^{\mu} \mathbf{e}_{\mu} + x'^{+} \mathbf{n} + R \mathbf{l} = \boldsymbol{\rho} C \boldsymbol{\zeta}. \quad (44)$$
$$ds'^{2}_{M} = \rho^{2} ds^{2}_{M}. \quad (45)$$

 $\{\mathcal{P}, -\mathcal{P}\} C \text{-invariant} \Leftrightarrow C \text{ induces a Poincaré trans-formation on } \mathcal{N} \cap \mathcal{P}.$

Change of l induces a Poincaré coordinate transformation:

$$R\mathbf{l}' = a^{\mu}\mathbf{e}_{\mu} + a^{+}\mathbf{n} + R\mathbf{l} \quad \Rightarrow \qquad (46)$$
$$\mathbf{e}_{\mu}' = \mathbf{e}_{\mu} - \frac{\eta_{\mu\nu}}{R} a^{\nu}\mathbf{n}, \qquad x'^{\mu} = x^{\mu} - a^{\mu}.(47)$$

0-20

(3) For a spacelike $\mathcal{P}: (\mathcal{N} \cap \mathcal{P} \cong dS)$ $\{\mathbf{e}_A, \mathbf{n} | A = 0, 1, \dots, 4\}$ — oriented orthonormal basis,

 \mathbf{n} — unit timelike normal vector pointing to \mathcal{P} , \mathbf{e}_0 — future pointed.

$$arphi\in\mathcal{P}$$
:

$$\boldsymbol{\zeta} = \xi^A \, \mathbf{e}_A + R \, \mathbf{n}, \qquad \boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P} \quad \Leftrightarrow \quad \eta_{AB} \, \xi^A \xi^B = -R^2.$$
(48)

& Beltrami coordinates can be defined. E.g.,

$$x^{\mu} := R \frac{\xi^{\mu}}{\xi^{4}}, \quad \Rightarrow \quad \xi^{4} = \pm \frac{R}{\sqrt{\sigma(x)}}. \tag{49}$$
$$\sigma(x) > 0, \qquad \sigma(x) := 1 - \frac{1}{R^{2}} \eta_{\mu\nu} x^{\mu} x^{\nu}. \tag{50}$$

♣ $C \in O(2,4)$ transforms $\zeta \in \mathcal{N} \cap \mathcal{P}$ to

$$\boldsymbol{\zeta}' = \boldsymbol{\xi}'^A \, \mathbf{e}_A + R \, \mathbf{n} \quad = \quad \boldsymbol{\rho} \, C \, \boldsymbol{\zeta}, \qquad (51)$$

$$ds_{+}^{\prime 2} = \rho^2 \, ds_{+}^2. \tag{52}$$

 $\begin{array}{l} \clubsuit \ \{\mathcal{P}, -\mathcal{P}\} \ C\text{-invariant} \Leftrightarrow C \ \text{induces a de Sitter} \\ \text{transformation on } \mathcal{N} \cap \mathcal{P}. \end{array}$

(4) For a timelike P: (N ∩ P ≅ AdS)
{e_μ, n, e₄} — oriented orthonormal basis,
n — unit spacelike normal vector pointint to P,
e₀ — future pointed.
ζ ∈ P:

$$\boldsymbol{\zeta} = \xi^A \, \mathbf{e}_A + R \, \mathbf{n}, \qquad \boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P} \, \Rightarrow \, \eta_{AB} \, \xi^A \xi^B = \frac{R^2}{(53)}.$$

Beltrami-Hua-Lu coordinates can be defined. E.g.,

$$x^{\mu} := R \frac{\xi^{\mu}}{\xi^4}. \quad \Rightarrow \quad \xi^4 = \pm \frac{R}{\sqrt{\sigma(x)}}. \tag{54}$$

$$\sigma(x) > 0, \qquad \sigma(x) := 1 + \frac{1}{R^2} \eta_{\mu\nu} x^{\mu} x^{\nu}.$$
(55)

 $\clubsuit C \in O(2,4) \text{ transforms } \boldsymbol{\zeta} \in \mathcal{N} \cap \mathcal{P} \text{ to}$

$$\boldsymbol{\zeta}' = \boldsymbol{\xi}'^A \, \mathbf{e}_A + R \, \mathbf{n} = \rho \, C \boldsymbol{\zeta}, \quad (56)$$
$$ds'^2_{-} = \rho^2 \, ds^2_{-}. \quad (57)$$

 $\begin{array}{l} \clubsuit \ \{\mathcal{P}, -\mathcal{P}\} \text{ is } C \text{-invariant } \Leftrightarrow C \text{ induces an anti-} \\ \text{de Sitter transformation on } \mathcal{N} \cap \mathcal{P}. \end{array}$

4.3 Conformal maps between conformal Minkowski, dS and AdS

(1) Conformal map from the Minkowski to dS/AdS. \mathcal{P} : null, $\mathcal{N} \cap \mathcal{P}$ Minkowski,

 \mathcal{P}' : spacelike or timelike, $\mathcal{N} \cap \mathcal{P} \cong dS$ or AdS, respectively.

$$\begin{aligned} &\clubsuit \boldsymbol{\zeta} = x^{\mu} \mathbf{e}_{\mu} + x^{+} \mathbf{n} + R \mathbf{l} \in \mathcal{N} \cap \mathcal{P} \quad \sim \\ &\boldsymbol{\zeta}' = \xi^{A} \mathbf{e}_{A}' + R' \mathbf{n}' \in \mathcal{N} \cap \mathcal{P}', \\ &\boldsymbol{\zeta}' = \rho \boldsymbol{\zeta} \quad \Rightarrow \end{aligned}$$

$$x^{\prime \mu} = R^{\prime} \frac{C^{\mu}_{\nu} x^{\nu} - \frac{1}{2^{\frac{3}{2}}R} (C^{\mu}_{4} + C^{\mu}_{5}) (x \cdot x) - \frac{1}{\sqrt{2}} (C^{\mu}_{4} - C^{\mu}_{5}) R}{C^{4}_{\alpha} x^{\alpha} - \frac{1}{2^{\frac{3}{2}}R} (C^{4}_{4} + C^{4}_{5}) (x \cdot x) - \frac{1}{\sqrt{2}} (C^{4}_{4} - C^{4}_{5}) R}, \quad (58)$$

$$\rho = \frac{R'}{C_{\alpha}^5 x^{\alpha} - \frac{1}{2^{\frac{3}{2}}R} (C_4^5 + C_5^5) (x \cdot x) - \frac{1}{\sqrt{2}} (C_4^5 - C_5^5) R}, \qquad (59)$$

$$ds_{\theta}^{\prime 2} = \rho^2 \, ds_M^2, \qquad \theta = \pm 1.$$
 (60)

A special example.

$$x^{\prime \mu} = -\frac{x^{\mu}}{1 + \frac{1}{4R^{\prime 2}} (x \cdot x)}, \qquad ds_{\theta}^{\prime 2} = \frac{ds_M^2}{[1 - \frac{1}{4R^{\prime 2}} (x \cdot x)]^2}.$$
 (61)

(2) The conformal map from dS to AdS. Generic transformation.

$$x^{\prime\mu} = R^{\prime} \frac{C^{\mu}_{\ \nu} x^{\nu} + C^{\mu}_{\ 4} R \pm C^{\mu}_{\ 5} R \sqrt{\sigma(x)}}{C^{4}_{\ \alpha} x^{\alpha} + C^{4}_{\ 4} R \pm C^{4}_{\ 5} R \sqrt{\sigma(x)}},(62)$$

$$\rho = \frac{\pm R^{\prime} \sqrt{\sigma(x)}}{C^{5}_{\ \alpha} x^{\alpha} + C^{5}_{\ 4} R \pm C^{5}_{\ 5} R \sqrt{\sigma(x)}},(63)$$

$$ds_{-}^{\prime 2} = \rho^2 \, ds_{+}^2. \tag{64}$$

A special example:

$$x^{\prime \mu} = \pm \frac{R^{\prime}}{R} \frac{x^{\mu}}{\sqrt{\sigma(x)}}, \quad \rho = \pm \frac{R^{\prime}}{R} \sqrt{\sigma(x)}. \tag{65}$$

The inverse map:

$$x^{\mu} = \pm \frac{R}{R'} \frac{x'^{\mu}}{\sqrt{\sigma'(x')}},\tag{66}$$

$$\rho' = \pm \frac{R}{R'} \sqrt{\sigma'(x')}.$$
(67)

$$\sigma'(x')\,\sigma(x) = 1,\tag{68}$$

 \heartsuit

$$\sigma'(x') = 1 + \frac{1}{R'^2} \eta_{\mu\nu} \, x'^{\mu} x'^{\nu}, \qquad (69)$$

$$\sigma(x) = 1 - \frac{1}{R^2} \eta_{\mu\nu} x^{\mu} x^{\nu}.$$
 (70)

0-25

Triality.

5 Null Geodesics, Massive Particles

 \diamondsuit Null geodesics are conformally transformed to each other.

Timelike or spacelike geodesics cannot be. Is there a clear picture?

♦ Momentum and angular momentum as conserved quantities in inertial motions. What if under conformal transformations/maps?

 $\diamondsuit \quad \text{For two linear independent } \boldsymbol{\zeta}_0, \boldsymbol{\zeta}_1 \in \mathcal{N},$

$$[{oldsymbol \zeta}_0]
eq [{oldsymbol \zeta}_1]. \quad \Rightarrow$$

A 2-dim linear supspace Σ spanned by ζ_0 and ζ_1 , or a projective straight line in $\mathcal{M}^{2,4} - \{0\}/\sim$. Is it in $[\mathcal{N}]$? $\zeta_0, \zeta_1 \in \mathcal{N} \Rightarrow \zeta_0 \cdot \zeta_0 = 0, \zeta_1 \cdot \zeta_1 = 0.$

 $\forall \boldsymbol{\zeta} \in \Sigma, \ \boldsymbol{\zeta} = x\boldsymbol{\zeta}_0 + y\boldsymbol{\zeta}_1. \text{ Since } \boldsymbol{\zeta} \cdot \boldsymbol{\zeta} = 2xy\,\boldsymbol{\zeta}_0 \cdot \boldsymbol{\zeta}_1,$

 $\Sigma \subset \mathcal{N} \quad \Leftrightarrow \quad \boldsymbol{\zeta}_0 \cdot \boldsymbol{\zeta}_1 = 0 \quad \Leftrightarrow$

 $\Sigma \cap \mathcal{P}$ is a straight line in $\mathcal{N} \cap \mathcal{P}$.

 $\diamondsuit \quad \text{The equation of } \Sigma \cap \mathcal{P}: \qquad \text{Assume } \boldsymbol{\zeta}_0, \, \boldsymbol{\zeta}_1 \in \mathcal{P},$

$$\boldsymbol{\zeta} = (1-t)\,\boldsymbol{\zeta}_0 + t\,\boldsymbol{\zeta}_1. \tag{71}$$

In terms of the Minkowski/Beltrami coordinates:

$$x^{\mu} = a^{\mu} + w(s) u^{\mu}, \qquad \frac{ds}{dw} = \frac{1}{\sigma(x)}.$$
 (72)

Conserved momentum and angular momentum along geodesics:

$$P^{\mu} := \frac{1}{\sigma(x)} \frac{dx^{\mu}}{ds}, \quad L^{\mu\nu} := x^{\mu} P^{\nu} - x^{\nu} P^{\mu}(.73)$$

For BdS,

$$\mathcal{L}^{\mu\nu} = L^{\mu\nu}, \qquad \mathcal{L}^{4\nu} = -\mathcal{L}^{\nu4} = RP^{\nu}. \tag{74}$$

 $\diamondsuit \quad \text{For } \Sigma, \text{ define } \mathcal{L} = \boldsymbol{\zeta}_0 \wedge \boldsymbol{\zeta}_1:$

$$\mathcal{L}^{\hat{A}\hat{B}} := \zeta_0^{\hat{A}} \zeta_1^{\hat{B}} - \zeta_0^{\hat{B}} \zeta_1^{\hat{A}}.$$
 (75)

When $\{\boldsymbol{\zeta}_0, \boldsymbol{\zeta}_1\} \to \{\boldsymbol{\zeta}_0', \boldsymbol{\zeta}_1'\}, \ \boldsymbol{\zeta}_i' = A^j_{\ i} \ \boldsymbol{\zeta}_j,$

$$\mathcal{L}' = (\det A) \mathcal{L}. \tag{76}$$

 Σ is specified by $\mathcal{L}^{\hat{A}\hat{B}}$ up to a nonzero scaling constant.

 $\clubsuit \text{ When } \boldsymbol{\zeta}_0, \, \boldsymbol{\zeta}_1 \in \mathcal{P}, \, \boldsymbol{\Sigma} \cap \mathcal{P} \text{ is }$

$$\boldsymbol{\zeta}(t) = (1-t)\,\boldsymbol{\zeta}_0 + t\,\boldsymbol{\zeta}_1, \qquad \frac{d\boldsymbol{\zeta}}{dt} = \boldsymbol{\zeta}_1 - \boldsymbol{\zeta}_0.$$

${\cal L}$ is the conserved angular momentum:

$$\mathcal{L} = \boldsymbol{\zeta}(t) \wedge \frac{d\boldsymbol{\zeta}}{dt}.$$
(77)

 $If \mathcal{N} \cap \mathcal{P} is Minkowski, with \mathcal{P} being \zeta^{-} = R,$

$$x^{\mu}(t) = x_0^{\mu} + tv^{\mu}, \qquad v^{\mu} = x_1^{\mu} - x_0^{\mu}.$$
 (78)

Define

$$L^{\mu\nu} := x^{\mu}(t)v^{\nu} - x^{\nu}(t)v^{\mu}, \qquad P^{\mu} = v^{\mu}.$$
(79)

Then

$$\mathcal{L}^{\mu\nu} = L^{\mu\nu},\tag{80}$$

$$\mathcal{L}^{-\mu} = RP^{\mu},\tag{81}$$

$$\mathcal{L}^{+\mu} = -\frac{\eta_{\rho\sigma}}{2R} \left(x_0^{\rho} x_0^{\sigma} v^{\mu} - 2x_0^{\rho} v^{\sigma} x_0^{\mu} \right), \quad (82)$$

$$\mathcal{L}^{+-} = \eta_{\mu\nu} x_0^{\mu} v^{\nu}.$$
 (83)

$\clubsuit \text{ When } \mathcal{N} \cap \mathcal{P} \text{ is } dS/AdS,$ $x^{\mu}(t) = x_0^{\mu} + w(t)v^{\mu}, \quad v^{\mu} := x_1^{\mu} - x_0^{\mu},$ (84) $w(t) := \frac{t\xi_1^4}{\xi_0^4 + t(\xi_1^4 - \xi_0^4)}.$ (85) $P^{\mu} := \frac{1}{\sigma(x)} \frac{dx^{\mu}}{dt} = v^{\mu}, \qquad L^{\mu\nu} := x^{\mu} P^{\nu} - x^{\nu} P^{\mu}.$

(88)

$$\mathcal{L}^{\mu\nu} = \frac{L^{\mu\nu}}{\sqrt{\sigma(x_0)\,\sigma(x_1)}}, \quad \mathcal{L}^{5\nu} = \pm \left(\frac{x_1^{\nu}}{\sqrt{\sigma(x_1)}} - \frac{x_0^{\nu}}{\sqrt{\sigma(x_0)}}\right),$$
(87)
$$\mathcal{L}^{4\nu} = \frac{RP^{\nu}}{\sqrt{\sigma(x_0)\,\sigma(x_1)}}, \quad \mathcal{L}^{45} = \mp \left(\frac{R^2}{\sqrt{\sigma(x_1)}} - \frac{R^2}{\sqrt{\sigma(x_0)}}\right).$$
(88)

 \diamond Massive case.

(1) Δ : (1+2)-dim or (2+1)-dim.

(2) (2+1)-dim: timelike straight line $(n \in \Delta)$ or hyperbola.

(3) (1+2)-dim: spacelike straight line $(n \in \Delta)$ or conic curve.

6 AdS_5/CFT^3 Correspondence

- \diamond AdS_5 : a "projective" subspace
- $\diamondsuit \quad [\mathcal{N}] = \partial A dS_5$
- \diamond [\mathcal{N}]: the conformal Minkowski, dS- or AdS-space.
- \diamond Conformal maps, conformal triality.

 \diamondsuit CFT on Minkowski = CFT on dS = CFT on AdS.

 \diamond Three kinds of AdS_5/CFT correspondence.

 \diamond Can be generalized to AdS_{d+1}/CFT_d^3 correspondence.

7 Conclusion

 \diamondsuit Conformal Minkowski, dS- and AdS-spaces are the same thing.

 \diamondsuit They are three landscapes from different point of view.

 \diamond They can be linked mutually to each other and to themselves by conformal maps.

Minkowski coordinates and Beltrami coordinates are at the equal footing.

♦ Physical contents can be moved around from these spaces, provided they are conformally "covariant".

 \diamond Projective might be "dead" in mathematics, but it is finding a new life in physics.

Thanks!