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1) Cluster Monte Carlo

Local updates at criticality are slow.

Autocorrelation time τL vs. system size L:

τL ∝ Lz

Computer time ∝ Ld+z per independent configu-

ration in d dimensions. Typically, z ≈ 2 for local

updates:

z = 2.1665(2) for 2-d Ising model (Metropolis)

However, see also

z = 3.75 for 2-d Ising model (Kawasaki dynamics)

and

z = 0 for the percolation problem.

In general, critical slowing down restricts simula-

tion to small L.



Local Ising update according to Metropolis:

i) select particle in state si

ii) propose new state s′i = −si

iii) calculate energy change ∆E

iv) if ∆E ≤ 0, accept new state s′i;

if ∆E > 0, accept new state with probability

e−∆E/kBT .

spin is flippable if ∆E ≤ 0, and

if ∆E > 0 it is flippable with probability e−∆E/kBT .

Cluster Monte Carlo:

Ferro Potts model: Swendsen-Wang algorithm.

Clusters: groups of spins connected by rigid bonds.

Bonds: not rigid if they connect unequal spins.

Equal spins: rigid with probability 1 − e−K

with ∆E/kBT = ±K. Similarity with local updates:

bond is flippable if ∆E ≤ 0;

if ∆E > 0, flippable with probability e−∆E/kBT .



2) Detailed Balance

Consider single-cluster version (Wolff):

Cluster C: all sites connected by rigid bonds.

Flip cluster C: configuration Γ → Γ′

L

C

Probability of this cluster flip:

T (Γ′,Γ) = Pinternal(Γ, C) Pboundary(Γ, C)

Pinternal: probability that all sites in C are con-

nected;

Pboundary: that no site outside C is connected.

Thus Pboundary = exp[−
∑+ ∆E/kBT ]

where
∑+ ∆E collects the energy changes of bonds

whose energy increases when Γ → Γ′.



Next: probability of inverse flip Γ′ → Γ:

T (Γ,Γ′) = Pinternal(Γ
′, C)Pboundary(Γ

′, C)

or

T (Γ,Γ′) = Pinternal(Γ, C) exp[−
∑

+∆E′/kBT ]

where
∑+ ∆E′ collects the energy changes of bonds

whose energy increases when Γ′ → Γ.

Thus

T (Γ,Γ′) = Pinternal(Γ, C) exp[
∑

−∆E/kBT ]

where
∑−∆E collects the energy changes of bonds

whose energy decreases when Γ → Γ′.

Taking the ratio leads to

T (Γ′,Γ)

T (Γ,Γ′)
= exp[−(

∑
+∆E +

∑
−∆E)/kBT ]

= exp[−{E(Γ′) − E(Γ)}/kBT ]

This is the condition of detailed balance.



The role of symmetry

Conditions for the proof of detailed balance:

• Cluster ‘flips’ correspond with a global symme-

try, e.g. permutation symmetry in the case of

the Potts model. H must be invariant under

this symmetry.

• the symmetry operation must be self-inverse.

Another (implicit) condition is that there are only

pair interactions. Any model satisfying these con-

ditions can be simulated by a cluster Monte Carlo

method.



3) The geometric cluster Monte Carlo method

Consider a self-inverse geometric symmetry oper-

ation interchanging lattice sites i and i′, j and j′,
etc. These operations can be:

• translations over half the system size (in case

of pbc),

• rotations over π,

• mirror inversions,

• and combinations of these.

In many cases the Hamiltonian of a model satisfies

such global symmetries, and a cluster Monte Carlo

algorithm can be formulated. See:

continuous space: Dress & Krauth,

J. Phys. A 28 L597 (1995)

lattice models: Heringa & Blöte,

Physica A 232 369 (1996)

2 lattice models: Redner et al.,

Phys. Rev. E 58 2749 (1998)



Cluster formation rule:

bond pair is flippable if ∆E ≤ 0;

if ∆E > 0, flippable with probability e−∆E/kBT .

Examples:

• Ising and Potts models at nonzero magnetiza-

tion

• lattice gases with nearest-neighbor exclusion

• critical and tricritical Blume-Capel model (spin-

1 Ising model)

• Potts models with vacancies

• Baxter’s hard-square and hard-hexagon lattice

gases



Example of cluster formation:
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Formation of geometric cluster in hard-square LG

Critical slowing down? Yes, if only clusters

• of size of order 1

• of size of order L

Optimal efficiency if cluster formation occurs

on percolation threshold



Proof for 2-D ferro Ising model:

L R

One system (R) has AF seam (red lines).

Fold lattices: → ++, +−, −+, and −− pairs.

Critical susceptibility of Ld system:

χ(L) = N−1〈(N++ − N−−)2〉 ∝ L2yh−d

for both systems L and R. Add indices:

χR(L) = N−1〈(N++ − N−−)2〉R

= N−1〈(N+− − N−+)2〉L

Form S-W style geometric clusters on L

using mirror inversion (green line)



There are 2 sorts of clusters:

• 2-spin clusters: ++ or −− pairs;

• others: + spins in one sheet, − spins in other.

Let there be nc ‘other’ clusters. Since +− and −+

are equally probable, one has

N−1〈(N+− − N−+)2〉 = N−1 2−nc

〈
∑

p1=±1

· · ·
∑

pnc=±1

(
∑
k

nkpk)
2〉 = N−1〈

∑
k

n2
k〉

Since probability to select cluster k is nk/N ,

this is the average geometric cluster size

for the single-cluster method.

Recall:

χ ∝ L2yh−d

→ percolation threshold.
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Autocorrelation times τ of energy of tricritical 3D

Blume-Capel model (Ising with vacancies)

circles: single-spin updates

squares: geometric clusters

Result z ≈ 0.21 seems to violate Li-Sokal limit

(Phys. Rev. Lett. 63, 827 (1989)) which says

z ≥ α/ν = 1 (α = ν = 1/2)

for tricritical 3D Ising model.

Way out: calculate α under constraint: α = −1.



4) Fisher Renormalization

Constraint: scaling properties modified.

Example: Blume-Capel model (s = 1 Ising):

H = −K
∑

<ij>

sisj + D
∑
k

s2k

with sl = ±1 or 0. Grand canonical partition sum:

Zg =
∑
{si}

exp(−H)

Canonical partition sum for Nv vacancies:

Zc(Nv) =
∑
{si}

δ∑
k s2k,N−Nv

exp(−H)

explores the constant vacancy density ensemble.



Theory for thermodynamic limit:

M.E. Fisher, Phys. Rev. 176, 257 (1968).

If one knows

Fg(K, D) = −kT lnZg(K, D)

one can calculate

Fc(K, ρ) = −kT lnZc(K, ρ)

because system describes path D(K) determined

by

〈
∑
k

s2k〉 = −
∂ logZ(K, D)

∂D
= N − Nv

so that

ρg = 1 +
∂ logZ(K, D)

∂D



ρ(K, D) → D(K, ρ)

Path of constrained system in (K, D) plane:

1/
K

exp D/K

Substitute in Fg:

Fg(K, D) = Fg(K, D(K, ρ))

Thermodynamic limit: OK

Finite-size-scaling: mostly unexplored.



Constrained specific heat (Fisher renormalized):

C(L) = C∞ + aLd−2yt if d − 2yt < 0

For Ising case d − 2yt = 0:

C(L) = C∞ + a/ lnL + · · ·

However...
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Hard-hexagon model: yt = 6/5.

Fixed density: Fisher renormalization expected

C(L) = C∞ + aLd−2yt = C∞ + aL−2/5

However...

0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C

L-4/5

Constrained specific heat of critical hard-hexagon

model vs. L



Amplitude ratio Q of dilute q = 3 Potts model with
constrained vacancy density

Q ≡ 〈m2〉2/〈m4〉

behaves, according to scaling, as

Q = Q∞ + aLyi , yi = −4/5

However...
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Explanation behavior Q;

Assume renormalization in grand ensemble

f(t, h, u, L) = −kT lnZg

= fa + L−df(Lytt, Lyhh, Lyiu,1)

exponents yt etc. known in principle

Scaling behavior of observables follows:

Qg = Q∞,g + aLyi , yi = −4/5

Qc behaves near criticality as:

Qc = Q′
∞,c + a′Ly1 +

∑
k

ak(∆ρ)kLkyρ

where y1 unknown;

∆ρ = deviation w.r.t. critical density

yρ = d − yt if 2yt − d ≥ 0

yρ = yt if 2yt − d < 0.



Grand canonical expectation value:

Qg(µ, T ) =

∑
Np

∑
{σ} δNp,

∑
k σk

Q({σ}) exp[−H]

Zc
×

Zc

Zg
=

∫
dρQc(ρ, T )P (µ, ρ)

insert expression for Qc with

〈(∆ρ)〉 = 0 at criticality and

〈(∆ρ)2〉 = r0L−d + r1L2yt−2d

Leading order of ∆ρ:

Qg = Q∞,g + a′Ly1 + wL−|2yt−d| + · · ·

However, we already know

Qg = Q∞,g + bLyi + · · ·

Since yi 6= −2|yt − d| in general, one must have

y1 = −|2yt − d|

as indeed found numerically.



5) Conclusion

• Cluster simulation of new models

• Investigation of constrained systems

• Exploration ‘new’ physics

• Renormalization not OK in canonical ensemble


