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1) Cluster Monte Carlo

LLocal updates at criticality are slow.
Autocorrelation time 77 vs. system size L:

TLOCLZ

Computer time o« L%T% per independent configu-
ration in d dimensions. Typically, z ~ 2 for local
updates:

z = 2.1665(2) for 2-d Ising model (Metropolis)
However, see also

z = 3.75 for 2-d Ising model (Kawasaki dynamics)
and

z = 0 for the percolation problem.

In general, critical slowing down restricts simula-
tion to small L.



LLocal Ising update according to Metropolis:

i) select particle in state s;

if) propose new state s, = —s;

iii) calculate energy change AFE
iv) if AE <0, accept new state s;

if AFE > 0, accept new state with probability
o—AE/kgT

spin is flippable if AE <0, and
if AE > 0 it is flippable with probability e AE/ksT’

Cluster Monte Carlo:

Ferro Potts model: Swendsen-Wang algorithm.
Clusters: groups of spins connected by rigid bonds.
Bonds: not rigid if they connect unequal spins.
Equal spins: rigid with probability 1 — e It

with AE/kgT = £K. Similarity with local updates:

bond is flippable if AFE < O0;
if AE > 0, flippable with probability e AFE/ksT



2) Detailed Balance

Consider single-cluster version (WoIff):

Cluster C: all sites connected by rigid bonds.

Flip cluster C: configuration T — I’
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Probability of this cluster flip:

T(r,a I_) — Pinternal(ryc) Pboundary(rac)

Pinternal-

nected;

Ppoundary: that no site outside C is connected.

Thus

where Z"‘ AFE collects the energy changes of bonds

Ppoundary = exp[— Z—l_ AE/kgT]

whose energy increases when I — .

probability that all sites in C are con-




Next: probability of inverse flip "' — I:

T(r7 I_’) — Pinternal(r/aC)Pboundary(r,ac)

or

T(r,r" = Pinternal (I, C) exp[— Z +AE,/kBT]

where Z+ AFE' collects the energy changes of bonds
whose energy increases when I’ — I,
Thus

T(r,r')y = Pinternal(F,C) eXD[Z “AE/kT]

where > = AF collects the energy changes of bonds
whose energy decreases when I — I/,
Taking the ratio leads to

T(r',r
T, rh

exp[-(Y_TAE+Y ~AE)/kgT]
exp[—{E(") — E(")}/kgT]

This is the condition of detailed balance.



The role of symmetry

Conditions for the proof of detailed balance:

e Cluster ‘flips’ correspond with a global symme-
try, e.g. permutation symmetry in the case of
the Potts model. '"H must be invariant under
this symmetry.

e the symmetry operation must be self-inverse.

Another (implicit) condition is that there are only
pair interactions. Any model satisfying these con-
ditions can be simulated by a cluster Monte Carlo
method.



3) The geometric cluster Monte Carlo method

Consider a self-inverse geometric symmetry oper-
ation interchanging lattice sites 7 and ¢/, 5 and j/,
etc. These operations can be:

e translations over half the system size (in case
of pbc),

e rotations over m,
® MIrror inversions,

e and combinations of these.

In many cases the Hamiltonian of a model satisfies
such global symmetries, and a cluster Monte Carlo
algorithm can be formulated. See:

continuous space: Dress & Krauth,

J. Phys. A 28 L597 (1995)
lattice models: Heringa & BIlote,

Physica A 232 369 (1996)
2 lattice models: Redner et al.,

Phys. Rev. E 58 2749 (1998)



Cluster formation rule:

bond pair is flippable if AE < 0O;

if AE > 0, flippable with probability e A~E/ksT’
Examples:

e Ising and Potts models at nonzero magnetiza-
tion

e |attice gases with nearest-neighbor exclusion

e critical and tricritical Blume-Capel model (spin-
1 Ising model)

e Potts models with vacancies

e Baxter’'s hard-square and hard-hexagon lattice
gases



Example of cluster formation:

Formation of geometric cluster in hard-square LG

Critical slowing down? Yes, if only clusters

e Of size of order 1

e Of size of order L

Optimal efficiency if cluster formation occurs
on percolation threshold



Proof for 2-D ferro Ising model:

L R

One system (R) has AF seam (red lines).

Fold lattices: — ++4, +—, —4, and —— pairs.
Critical susceptibility of L? system:

X(L) = N"Y(Nyy — N__)?) oc L2¥n—¢

for both systems L and R. Add indices:

N~H(Nyt — N_))r
N=H(N4— = N_ )L

XR(L)

Form S-W style geometric clusters on L
using mirror inversion (green line)



There are 2 sorts of clusters:

e 2-spin clusters: ++4 or —— pairs;

e Oothers: 4 spins in one sheet, — spins in other.

Let there be n. ‘other’ clusters. Since +— and —+
are equally probable, one has

N Y (Ny_—N_)2)=nN"1ome

(Y Y O k) = N ng)
k

Since probability to select cluster k is ny /N,
this is the average geometric cluster size
for the single-cluster method.

Recall:

X X L2Yn—d

— percolation threshold.
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Cluster size distribution for critical simple-cubic lat-
tice gas with nn exclusion. System sizes are L3 with
L=8, 16 and 32.
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Autocorrelation times 7 of energy of tricritical 3D
Blume-Capel model (Ising with vacancies)

circles: single-spin updates

squares: geometric clusters

Result z = 0.21 seems to violate Li-Sokal limit
(Phys. Rev. Lett. 63, 827 (1989)) which says
z>al/v=1 (a=v=1/2)

for tricritical 3D Ising model.

Way out: calculate a under constraint. o = —1.



4) Fisher Renormalization

Constraint: scaling properties modified.
Example: Blume-Capel model (s = 1 Ising):

H=-K Z SiS;j —I-DZsk

<1j>

with s; = £1 or 0. Grand canonical partition sum:

Zg= ) _ exp(—H)
{si}

Canonical partition sum for N, vacancies:

Ze(No) = 3 05 2y, &xP(=H)
{s:}

explores the constant vacancy density ensemble.



Theory for thermodynamic limit:
M.E. Fisher, Phys. Rev. 176, 257 (1968).
If one knows

Fyg(K,D) = —kT In Zq(K, D)

one can calculate

FC(K7 p) = —kT'In ZC(Ka p)

because system describes path D(K) determined

dlog Z(K, D)
2 ;
E — _ =N —N
<k 8k> oD Y
so that
olog Z(K,D
- 14 g Z( )

oD




p(K,D) — D(K,p)

Path of constrained system in (K, D) plane:

I/K

exp D/K

Substitute in Fg:

Fg(K,D) — Fg(K,D(K, P))

Thermodynamic limit: OK
Finite-size-scaling: mostly unexplored.



Constrained specific heat (Fisher renormalized):

C(L) = Coo + aL%2Y if d—2y; <O

For Ising case d — 2y = O:

C(L)=Co+a/INL+--

However...
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Hard-hexagon model: y; = 6/5.
Fixed density: Fisher renormalization expected

O(L) = Coo + aL%2Y% = Coy + oL =2/5

However...
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Constrained specific heat of critical hard-hexagon
model vs. L



Amplitude ratio @ of dilute ¢ = 3 Potts model with
constrained vacancy density

behaves, according to scaling, as

Q:QOO‘FCLL’%» yi:_4/5

However...
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Critical amplitude ratio @ vs. L.



Explanation behavior Q);
Assume renormalization in grand ensemble

f(t, h,u, L) = —kT In Zg

= fu+ L™ 4F (LY, LYh, LYiu, 1)

exponents y; etc. known in principle
Scaling behavior of observables follows:

Qg = Qoo,g +al¥, y;=—4/5

(Qc behaves near criticality as:

Qc = Q' ooc +a LV + 3 ap(Ap)rLre
k

where y1 unknown;

Ap = deviation w.r.t. critical density
Yyp =d—y if 2y —d >0

yp =y If 2y —d < 0.



Grand canonical expectation value:

XNy 2{o} 0N, 3, 0, @{0}) exp[—H] y

Qg (,ua T) — Zc
7
22 ::t/dchU%T)POup)

insert expression for (Qc with
((Ap)) = 0 at criticality and
((Ap)?) = roL =+ ry L2v—2d
Leading order of Ap:

Qg = Qoo,g +a'L¥1 + wl~2v—d 4+ ...

However, we already know

Qg = Qoo,g + bLYi + - ..

Since y; = —2|y; — d| in general, one must have

Y1 = —|2yt — d

as indeed found numerically.



5) Conclusion

e Cluster simulation of new models

e Investigation of constrained systems

e EXploration ‘new’ physics

e Renormalization not OK in canonical ensemble



