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The Yangian relations are tremendiously simplified for SU(2), SU(3), SO(5) and

SO(6) based on RTT relations that much benifits the realization of Yangian in Physics.

The Physical meaning and some applications of Yangian have been shown.
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(I) Yangian and RTT Relations

The Yangian algebras Y (SL(n)) associated with SL(n) were given by Drinfeld

(1985). For a given Lie algebraic generators Iµ the new generators Jν were introduced

to satisfy

(1)[Iλ, Iµ] = CλµνIν , λ, µ, ν = 1, 2, 3, · · · ,
where Cλµν structure constants.

(2)[Iλ, Jµ] = CλµνJν , λ, µ, ν = 1, 2, 3, · · · ,
and for n ≥ 3:

(3)[Jλ, [Jµ, Iν ]]− [Iλ, [Jµ, Jν ]] = aλµναβγ{Iα, Iβ, Iγ},
aλµναβγ = 1

4!
CλασCµβτCνγρ,

{x1, x2, x3} =
∑

i, j, k = 1, 2, 3

i 6= j 6= k

xixjxk.

which is symmetric summation over x′is.

or, for n = 2:
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(4) [[Jλ, Jµ], [Iσ, Jτ ]] + [[Jσ, Jτ ], [Iλ, Jµ]] = (aλµναβγCστν + aστναβγCλµν{Iα, Iβ, Jγ}
When Cλµν = iελµν(λ, µ, ν = 1, 2, 3), Eq(3) is identically satisfied based on the

Jacobian identities. Besides the commutation relations there are co-products.

Further, the Yangian can be derived through RTT relations where R is rational

solution of Yang-Baxter eq (YBE). (Drinfeld, Faddeev and his school).

After lengthy calculations we found (Ge, Xue and Zhang), the independent relations

for Y (SU(2)), Y (SU(3)), (Y (SO(5)) and Y (SO(6)) by expanding the RTT relations

and also checked through (1) — (4) by substituting the structure constants. RTT

relation (Faddeev, Reshetikhin, Takhtajan — RFT) satisfies

Ř(u− v)(T (u)⊗ 1)(1⊗ T (v)) = (1⊗ T (v))(T (u)⊗ 1)Ř(u− v)

(1)Y (SU(2))

Ř12(u) = PR12(u) = uP12 + I. (P12 = Permutation)

T (u) = I +
∞∑

n=1

u−n

[
T

(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

]
= I +

∞∑

n=1

u−n

[ 1
2
(T

(n)
0 + T

(n)
3 ), T

(n)
+

T
(n)
− , 1

2
(T

(n)
0 − T

(n)
3 )

]

Substituting T (u) into RTT relation it turns out that only

I± = T
(1)
± , I3 =

1

2
T

(1)
3
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J± = T
(2)
± , J3 =

1

2
T

(2)
3

are independent ones. The quantum determinant

detT (u) = T11(u)T22(u− 1)− T12(u)T21(u− 1) = C0 +
∞∑

n=1

u−nCn

gives

C0 = 1, C1 = T
(1)
0 = trT (1)

C2 = T
(2)
0 − I2 + T

(1)
0 (1 +

1

2
T

(1)
0 )

· · ·

The independent commutation relations of Y (SU(2)) are:

[Iλ, Iµ] = iελµνIν (λ, µ, ν = 1, 2, 3)

[Iλ, Jµ] = iελµνJν

and (A± = A1 ± iA2]

[J3, [J+, J−]] = (J−J+ − I−J+)I3
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that can be checked to generate all of relations of Eqs(1),(2) and (4).

The co-product is given through (RFT)

∆Tab =
∑

c

Tac ⊗ Tcb

The simplest realization of Y (SU(2) is

I =
N∑

i=1

Ii (i : lattice indices)

J =
N∑

i=1

µiIi +
N∑

i<j

wijIi × Ij

where

Wij =





1 i < j

0 i = j

−1 i > j

(for any representation ofSU(2))

or

Wjk = i cot
(j − k)π

N
(only for spin

1

2
, Haldane-Shastry model),

and µi arbitrary constants. Noting that µi plays important role for the representation

theory of Y (SU(2)) (Chari-Pressley, 1990, 1991).

5



The big difference between representations of Lie algebra and Yangian is in that in

Yangian there appear free parameters µi dependent on models.

Another example for single particle is finite w-algebra (Sorba-Ragoucy 1997). De-

noting by L and B angular momentum and lorentz boost, respectively, as well as D

the dilitation operator, the set of L and J satisfies Y (SU(2)) where (Sorba-Ragoucy

1998, Ge, Xue 1999)

I = L

J = I×B− i(D − 1)B

and

[Jα, Jβ] = iεαβγ(2I
2 − c′2 − 4)Iγ

c′2 casimir of SO(4, 2).

The Hamiltonian commuting with Y (SU(2)):

• Two component NSE eq (Wadati, · · ·)
• One-dimensional Hubbard model (Uglov,Korepin)
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Essler and Korepin found the complete solutions (1991) and excitation spectrum

(1994) of 1-D Hubbard model.

• Haldane-Shastry model(Haldane) whose Hamiltonian is given by the quantum

determinant (Wang, Ge, Xue)

• Hydrogen atom (with and without monopole, Ge, Xue,Bai)

• Super YM(N = 4): Y (SO(6) (Dolan, Nappi, Witten)

(2) Y (SU(3))

Independent relations

[Iλ, Iµ] = ifλµνIν , [Iλ, Jµ] = ifλµνJν (λ, µ, ν = 1, · · · , 8)

Define

I
(1)
± = I1 ± iI2, U

(1)
± = I6 ± iI7, V

(1)
± = I4 ∓ iI5,

√
3

2
I

(1)
8 = I8

and the corresponding operator for I
(2)
± , U

(2)
± , V

(2)
± and I

(2)
8 , I

(2)
3 that represent Jµ, after

lenthy calculation one finds there is only one additional relation for Y (SU(3))

[I
(2)
8 , I

(2)
3 ] =

1

3!
({I(1)

+ , U
(1)
+ , V

(1)
+ } − {I(1)

− , U
(1)
− , V

(1)
− })
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where {· · ·} stands for symmetric summation. The conclusion can be verified through

both the Drinfeld formula (Cλµν = ifλµν) and RTT relations with the replacment of

P12 in SU(2) by

P12 =
1

3
I +

1

2

∑
µ

λµλµ

where λµ are the Gell-mann matries.

T (u) =
∞∑

n=0

u−nT (n)

T (n) =




1
3
T

(n)
0 + T

(n)
3 + 1√

3
T

(n)
8 T

(n)
1 − iT

(n)
2 T

(n)
4 − iT

(n)
5

T
(n)
1 + iT

(n)
2

1
3
T

(n)
0 − T

(n)
3 + 1√

3
T

(n)
8 T

(n)
6 − iT

(n)
7

T
(n)
4 + iT

(n)
5 T

(n)
6 + iT

(n)
7

1
3
T

(n)
0 − 2√

3
T

(n)
8




and the co-product, for example,

∆I
(2)
± = I

(2)
± ⊗ 1 + 1⊗ I

(2)
±

± 2(I
(1)
3 ⊗ I

(1)
± − I

(1)
± ⊗ I

(1)
3 +

1

2
(V

(1)
∓ ⊗ U

(1)
∓

− U
(1)
∓ ⊗ V

(1)
∓
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and others.

An example of realization of Y (SU(3)) is the generalization of Haldane-Shastry:

Iµ =
∑

i

F µ
i

Jµ =
∑

i

µiF
µ
i + λfµλν

∑

i6=j

ωijF
ν
i F λ

j

Where ωij satisfies the same relation as in HS model and F µ the Gell-mann matrices.

(3) Y (SO(5))

For SO(N) it holds

[Lij, Lkl] = iCst
ij,klLst

Cst
ij,kl = δikδjsδlt − δilδjsδkt − δjkδisδlt + δjlδisδkt

The rational solutions of YBE for SO(N) were firstly given by Zamolodchikov’s

(1972), also rederived by taking the rational limit of the trigonometric R-Matrix:

R̆(u) = f(u)[u2P + u(A− I − 3

2
P )ξ +

3

2
Iξ2]
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where u stands for spectral parameter and ξ the other free parameter (Cheng, Ge, Xue,

1991; Ge, Xue, 1992). The elements of R̆(u) are (a, b, c, d = −2,−1, 0, 1, 2)

[R̆(u)]ab
cd = u2δabδbc + u(δa−bδc−d − δacδbd − 3

2
δadδbc)ξ +

3

2
δacδbdξ

2

For SO(5) we introduce

T (1) = ξ




E3 − 3
2

U+ E+ V+ 0

U− F3 − 3
2

F+ 0 −V+

E− F− −3
2

−F+ −E+

V− 0 −F− −F3 − 3
2

−U+

0 −V− −E− −U− −E3 − 3
2




E3 = E22 − E−2,−2, F3 = E11 − E−1−1, U+ = E21 − E−1−2, V+ = E2−1 − E1−2

E+ = E20 − E0,−2, F+ = E10 − E0−1, U− = E12 − E−2−1, V− = E−12 − E−2

E− = E02 − E−20, F− = E01 − E−10

T
(2)
ab =

3

2
ξ2E

(2)
ab (a, b = −2,−1, 0, 1, 2)

10



Substituting T (n) (only n = 1, 2 are needed to be considered) into RTT relation there

appears 35 relations for Jµ besides the Jocobi indentities. However , a leathy compu-

tation shows that besides

[Iα, Iβ] = Cγ
αβIγ

[Iα, Iβ] = Cγ
αβJγ

(α = ij)

there is only one independent relation

[E
(2)
3 , F

(2)
3 ] =

1

4!
({U−, E+, F−} − {U+, E−, F+} − {V+, E−, F−}+ {V−, E+, F+})

where again { } stands for the symmetric summation. A realization of Y (SO(5)):

Iab(x) =
1

2
ψ+

α (x)(Iab)αβψβ(x) (a, b = −2,−1, 0, 1, 2)

{ψ+
α (x), ψβ(y)}+ = δ(x− y)δαβ

Iab =
∑
x

Lab(x)

Jab =
∑

x, y

c 6= a; b

ε(x− y)Iac(x)Icb(y)
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satisfies the commuting relations for Y (SO(5)). The following Hamiltonian of ladder

model not only commutes with Iab, i.e. possesses SO(5) symmetry, but also commutes

with Jab.

H = H1 +
∑
x

H2(x) +
∑
x

H3(x)

H1 = 2t1
∑

<x,y>

[c+
σ (x)cσ(y) + d+

σ (x)dσ(y) + H.C.]

H2(x) = U(nc↑ − 1

2
)(nc↓ − 1

2
) + (c → d) + V (nc − 1)(nd − 1) + JSc · Sd

=
J

4

∑

a<b

I2
ab + (

1

8
J +

1

2
U)(ψ+

α ψα − 2)

H3(x) = −2t3(c
+
σ (x)dσ(x) + H.C.)

For SO(6) ' SU(4) we introduce (15 generators)

T
(1)
ab = Iab

T
(2)
ab = I

(2)
ab

(a, b = 1, 2, . . . , 6.)
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and the Ř(u)-matrix reads

Ř(u) = f(u)[u2P + uξ(A− 2P − I) + 2ξ2I]

The RTT gives 4 + 4 + 441 + 315 + 225 more relations. After careful calculations

one find (Zhang, Ge, Xue) the independent relations for Jab themselves:

[I
(2)
12 , I

(2)
34 ] =

i

24
({I23, I16, I46}+ {I23, I15, I45}+ {I14, I25, I35}+ {I14, I26, I36}

−{I13, I26, I46} − {I13, I25, I45} − {I24, I15, I35} − {I24, I16, I36})
[I

(2)
12 , I

(2)
56 ] =

i

24
({I15, I23, I36}+ {I15, I24, I46}+ {I26, I13, I35}+ {I26, I14, I45}

−{I25, I13, I36} − {I25, I14, I46} − {I16, I23, I35} − {I16, I24, I45})
[I

(2)
34 , I

(2)
56 ] =

i

24
({I(1)

45 , I
(1)
13 , I

(1)
16 }+ {I(1)

45 , I
(1)
23 , I

(1)
26 }+ {I(1)

36 , I
(1)
14 , I

(1)
16 }+ {I(1)

36 , I
(1)
24 , I

(1)
26 }

−{I(1)
35 , I

(1)
14 , I

(1)
16 } − {I(1)

35 , I
(1)
24 , I

(1)
26 } − {I(1)

46 , I
(1)
13 , I

(1)
16 } − {I(1)

46 , I
(1)
23 , I

(1)
26 })
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II. Applications of Yangian

The first example was given by Belavin (1992)in deriving the spectrum of nonlinear σ

model.

(1)Reduction of Y (SU(2))

The simplest realization of Y (SU(2)) is made for two-spin system with S1 and S2 (any

dimensional reps of SU(2)):

J′ =
1

µ + ν
J =

1

µ + ν
(µS1 + νS2 + 2λS1 × S2)

that contains the (antisymmetric)tensor interaction between S1 and S2. For Hydrogen

atom S1 = L and S2 = K (Lung-Lenz vector).

For S1 = S2 = 1/2, when

µν = λ2

we prove that after the similar transformation

Y = AJ′A−1
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A =




1 0 0 0

0 ν iλ 0

0 iλ ν 0

0 0 0 1




the Yangian reduces to SO(4):(ρ = ν + iλ =
√

ν2 + λ2eiθ)

Y1 =




M1 0

0 L1


 , M1 =

1

2




0 ρ

ρ−1 0


 , L1 =

1

2




0 ρ−1

ρ 0




Y2 =




M2 0

0 L2


 , M2 =

1

2




0 −iρ

iρ−1 0


 , L2 =

1

2




0 −iρ−1

iρ 0




Y3 =




1
2
σ3 0

0 1
2
σ3


 , M3 =

1

2
σ3

and

Y2 =
1

2
(
1

2
+ 1) =

3

4

Namely, under µν = λ2, the Y reduces to SO(4). By M± = M1 ± iM2, M+ = ρσ+,
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M− = ρ−1σ−. The scaled M± and M3 still satisfy the SU(2) relation:

[M3,M±] = ±M±

[M+,M−] = 2M3

and the similar relation’s for L.

It should be emphasized that here the new “spin” M (and L) is the consequence of

two spin(1
2
) interaction. As usual in Lie algebra

2⊗ 2 = 3(spin triplet)⊕ 1(singlet)

However, here we meet different decomposition:

2⊗ 2 = 2(M)⊕ 2(L)

The idea can be generalized to SU(3) fundamental rep:

Jλ = uIλ
1 + vIλ

2 + λfλµν

∑

i<j

F µ
1iF

ν
2j

[Fµ, Fν ] = ifµνλFλ (λ, µ, ν = 1, 2, · · · , 8)
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Under the condition

uv = λ2 v + iλ = ρ

and

Yµ = AJµA
−1/(u + v)

A =




1 0 0 0 0 0 0 0 0

0 ν 0 iλ 0 0 0 0 0

0 0 ν 0 0 0 iλ 0 0

0 iλ 0 ν 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 ν 0 iλ 0

0 0 iλ 0 0 0 ν 0 0

0 0 0 0 0 iλ 0 ν 0

0 0 0 0 0 0 0 0 1



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The Yangian reduces to

Y (I−) =




ρ−1I− 0 0

0 ρI− 0

0 0 I−




, Y (I+) =




ρI+ 0 0

0 ρ−1I− 0

0 0 I3




Y (I8) =

√
3

3




λ3 0 0

0 λ3 0

0 0 λ3




, Y (I3) =
1

2




λ3 0 0

0 λ3 0

0 0 λ3




Y (U+) =




U+ 0 0

0 ρU+ 0

0 0 ρ−1U+




, Y (U−) =




U− 0 0

0 ρ−1U− 0

0 0 ρU−




Y (V+) =




ρ−1V− 0 0

0 V− 0

0 0 ρV−




, Y (V−) =




ρV− 0 0

0 V− 0

0 0 ρ−1V−




The usual decomposition of 3⊗ 3 = 6⊕ 1 for SU(3), however, here we have

3⊗ 3 = 3⊕ 3⊕ 3

18



and

8∑

λ=1

Y 2
λ =

1

u + v

∞∑

λ=1

J2
λ =

1

3

It is easy to check that the rescaling factor ρ does not change the commutation relations

for SU(3) formed by I±, U±, V±, I3 and I8. In general, we guess for the fundamental

rep. of SU(n) we shall meet

n⊗ n = n⊕ n⊕ n + · · ·+ n (n times)

The Yang-Mills gauge field for reduced Y (SU(2)).

For a tensor wave function (x ≡ {x1, x2, x3, x0})

Ψ(x) = ‖ψij(x)‖ (i, j = 1, 2, 3, 4)

An isospin transformation yields

Ψ′(x) = U(x)Ψ(x)

U(x) = 1− iθaJa
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where

Ja = uSa ⊗ 1 + v1⊗ Sa + 2λεabcS
b ⊗ Sc

or

[Ja]
αβ
γδ = u(Sa)αγδβδ + v(Sa)βδδαγ + iαεabc(S

b)αγ(S
c)βδ

Defining

Dµ = ∂µ + gAµ

i.e.

[Dµψ]αβ = ∂µψαβ + gAa
µ[Ya]

αβ
γδ ψγδ(x)

Aµ = Aa
µJa

The covariant derivative should preserve

δ(Dµψ) = 0

i.e.

(−i∂µθ
a(x) + gδAa

µ)[Ya]
αβ
γδ − igθa(x)Ab

µ[Jb, Ja]
αβ
γδ = 0
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When

uv = λ2

and by rescaling

Ya = (u + v)Ja

we have

δAa
µ = εabcθ

b(x)Ac
µ(x) +

i

g
∂µθ

a(x)

and

Fµν =
1

g
[Dµ, Dν ] = F a

µνYa

F a
µν = ∂µA

a
γ − ∂νA

a
µ + igεabcA

b
µA

c
γ

Here the tensor isospace has been separated to two irrelevent spaces.i.e. Ψ =[
Ψ1 0

0 Ψ2

]
where Ψ1 and Ψ2 are 2× 2 wavefunction.

(2) Illustrative examples:NMR of Breit-Rabi Hamiltonian and Yangian

H = K · S + µB · S
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where S = 1
2

and B = B(t) is magnetic field.

The Hamiltonian can easily be diagonalized for any background angular momentum

(or spin) K. The S stands for spin of electron and for simplicity K = S1(S1 = 1/2)

is an average background spin contributed by other source,say, control spin. Denoting

by

H = H0 + H1(t), H0 = αS1 · S2, H1(t) = µB(t) · S2

Let us work in the interaction picture:

HI = µB(t) · (eiαS1·S2S2e
−iαS1·S2)

= µB(t) · J

J = µ1S1 + µ2S2 + 2λ(S1 × S2)

µ1 = 1
2
(1− cosα), µ2 = 1

2
(1 + cosα), λ = 1

2
sinα

Obviously, here we have µ1µ2 = λ2. It is not surprising that the Y (SU(2))

reduces to SO(4) here because the transformation is fully Lie-algebraic operation.
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For generalization we regard µ1 and µ2 as independent parameters,i.e.drop the re-

lation µ1µ2 = λ2.Looking at

J = µ1S1 + µ2S2 − 1

2
(µ1 + µ2)(S1 + S2) + γ(S1 + S2) + 2λS1 × S2

When γ = 1
2
,µ2−µ1 = cosα and λ = 1

2
sinα it reduces to the form in the interacting

picture.Putting

S1 + S2 = S

2λ = −h

2
(h not Plank constant)

In accordance with the convention we have

J = γS +
2∑

i=1

µiSi +
h

2
S1 × S2 − 1

2
(µ1 + µ2)S = γS + Y

Since J → ξS + J still satisfies Yangian raltions,it is natural to appear the term

γS.The interacting Hamiltonian then reads

HI(t) = −γB(t) · S−B(t) ·Y
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When µi = 0, h = 0 it is the usual NMR for spin 1/2. To solve the equation, we

use

i
∂Ψ(t)

∂t
= HI(t)Ψ(t)

|Ψ(t)〉 =
∑

α=±,3;0

aα(t)|χα〉

where {χ±, χ3} is spin triplet and χ0 singlet.

Setting

B±(t) = B1(t)± iB2(t) and B3 = const

B±(t) = B1e
∓iω0t

and rescaling by

a±(t) = e±iω0tb±(t)

then we get

i
db±(t)

dt
= −γ{ 1√

2
B1a3(t)∓ (ω0γ

−1 −B3)b±(t)} ± 1

2
√

2
µ−B1a0(t)

i
da3(t)

dt
= −γB1√

2
{b+(t) + b−(t)} − 1

2
µ−B3a0(t)
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i
da0(t)

dt
= −1

2
µ+{ 1√

2
B1[b−(t)− b+(t)]}+ B3a3(t)

µ± = (µ1 − µ2 ± i
h

2
)

i.e.

|Φ(t)〉 =




b1(t)

a3(t)

b−(t)

a0(t)




,HI =




ω0 − γB1 −γB1
1√
2

0 1
2
√

2
µ−B1

−γB1
1√
2

0 −γB1
1√
2

−1
2
µ−B3

0 −γB1
1√
2
−(ω0 − γB1) − 1

2
√

2
µ−B1

1
2
√

2
µ+B1 −1

2
µ+B3 − 1

2
√

2
µ+B1 0




id|Φ(t)〉
dt

= HI |Φ(t)〉
Noting that HI is independent of time we get

|Φ(t)〉 = e−iEt|Φ(t)〉,

Then

det |HI − E| = 0

leads to

E4 − [(ω1 − γB3)
2 + γ2B2

1 +
1

4
µ+µ−(B2

1 + B2
3)]E

2+
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1

4
µ+µ−[B2

3(ω0 − γB3)
2 − 2γB3B

2
1(ω0 − γB3) + γ2B4

1 ] = 0

There is transition between the spin singlet and triplet in the NMR process, i.e.

the Yangian transferes the quantum information through the evolution. The simplest

case is B1 = 0 then eigenvalues are

E = ±(ω0 − γB3), E = ±ω = ±B3

2

√
(µ1 − µ2)2 +

h2

4

It turns out that there is vabration between s=0 and s=1.

< s2 >= 0 at t =
π

2ω
(total spin=0)

< s2 >= 2 at t =
π

ω
(total spin=1)

Under adiabatic approximation it can be proved that it appears Berry’s phase, even

there is witness of spin singlet which takes part in the transition process.
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(3) Transition between S-wave and P-wave superconductivity

S : spin singlet, L = 0

P : spin triplet, L = 1

Balian-Werthamer (1963):

4(k) = −1

2

∑

k′
V (k,k′)

4(k′)
E(k′)

tanh
β

2
E(k′)

E(k) = (ε2(k) + |4(k)|2) 1
2

B-W:

4(k) = 4(k)(
4π

3
)

1
2



√

2Y1,1(k̂) Y1,0(K̂)

Y1,0(k̂)
√

2Y1,−1(k̂)



∗

= (−
√

6)4(k)(
4π

3
)

1
2 Φ0,0(k̂)

Φ0,0(k̂) =
1√
3
{Y1,−1(k̂)χ11 − Y1,0(k̂)χ10 + Y1,1(k̂)χ1−1} =

1√
8




k̂− −k̂z

−k̂z −k̂+



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where χ11,χ10 and χ1−1 stand for spin triplet.

Φ0,0 ≡ ΦJ=0,m=0

The wave function of SC is

φ0,0 =
1√
2




0 Y0,0

−Y0,0 0




Introducing

Iµ =
2∑

i=1

Sµ(i); (µ = 1, 2, 3)

Jµ =
2∑

i=1

λiSµ(i)− ihv

4
εµλν(S

λ(1)Sν(2)− Sλ(2)Sν(1))

and noting that Jµ → Jµ + fIµ does not change the Yangian relations, we choose for

simplicity f = −1
2
(λ1 + λ2). We obtain

Gφ0,0 = k̂ · (J + fI)φ0,0 =

√
3

2
(λ2 − λ1 +

hv

2
)Φ0,0,

GΦ0,0 = k̂ · (J + fI)Φ0,0 =
1

2
√

3
(λ2 − λ1 − hv

2
)φ0,0.
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The transition direction depends on the parameters in Y (SU(2)). For instance,

SC → PC : Gφ0,0 =

√
3

2
Φ0,0 if λ1 − λ2 = −hv

2

GΦ0,0 = 0

and

PC → SC : Gφ0,0 = 0

GΦ0,0 = − hv

2
√

3
φ0,0 if λ1 − λ2 =

hv

2

We call the type of the transition “directional transition”. The controlled parameters

are in the Yangian operation.

We have got used to apply electromagnetic field Aµ to make transitions between

l and l ± 1. Now there is Yangian formed by two spins that plays the role changing

angular momentum states.
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(4) Y (SU(3))-directional transitions

Fµ =
1

2
λµ, [Fλ, Fµ] = ifλµνFν

Iµ =
∑

i

F ν
i

Jµ =
∑

i

µiF
µ
i − ihfµνλ

∑

i6=j

wijF
ν
i F λ

j , (wij = −wji)

[F λ
i , F µ

j ] = ifλµνδijF
ν
i ,

where Fµ are fundamental rep. of SU(3) and (i, j, k = 1, 2, ..., 8).

4ijk = wijwjk + wjkwki + wkiwij = −1

(no summation over repeated indices, i 6= j 6= k)

The reason that such a condition works only for 3-dimensional representation of

SU(3) is similar to Haldane’s (long-ranged) realization of Y (SU(2)). In SU(2) long-

ranged form the property of Pauli matrices leads to (σ±)2 = 0. Instead, for SU(3) the
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conditions of Jµ satisfying Y (SU(3)) read

∑

i6=j

(1− w2
ij)(I

+
j V +

i U+
i − U−

i V −
i I−j + I+

i V +
j U+

i − U−
i V −

j I−i + I+
j V +

j U+
i − U−

i V −
j I−j ) = 0

and

∑

i

(I+
i V +

i U+
i − U−

i V −
i I−i ) = 0

that are satisfied for Gell-Mann matrices.

The simplest realization of Y (SU(3)) is then

Wij =





1 i > j

0 i = j

−1 i < j

(Wij = −Wji)

Recalling(I8 =
√

3
2

Y )

I+ =




0 1 0

0 0 0

0 0 0




, U+ =




0 0 0

0 0 1

0 0 0




, V + =




0 0 0

0 0 0

1 0 0




,

31



I3 =




1 0 0

0 −1 0

0 0 0




, Y =
1

3




1 0 0

0 1 0

0 0 −2




We find

Jµ = {Ī±, Ū±, V̄±, Ī3, Ī8}
Ī± =

∑

i

µiI
±
i ∓ 2h

∑

i6=j

Wij(I
±
i I3

j −
1

2
U∓

i V ∓
j )

Ū± =
∑

i

µiU
±
i ± h

∑

i6=j

Wij[U
±
i (I3

j −
3

2
Yj) + I∓i V ∓

j ]

V̄± =
∑

i

µiV
±
i ± h

∑

i6=j

Wij[V
±
i (I3

j +
3

2
Yj) + U∓

i I∓j ]

Ī3 =
∑

i

µiI
3
i + h

∑

i6=j

Wij[I
+
i I−j −

1

2
(U+

i U−
j + V +

i V −
j )]

Ī8 =
∑

i

µiYi + h
∑

i6=j

Wij(U
+
i U−

j − V +
j V −

j )

where µi and h(not Planck constant) are arbitrary parameters

When i = 1, 2 Y (SU(2)) makes transition between spin singlet and triplet. Now
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Y (SU(3)) transits SU(3) singlet and Octet. For instance for

| π−〉 = |dū〉, |π0〉 =
1√
2
(|uū〉 − |dd̄〉)

|K−〉 = |dū〉, |K0〉 = |ds̄〉
| η0〉 =

1√
(6)

(−|uū〉 − |dd̄〉+ 2|ss̄〉)

| η0′〉 =
1√
(3)

(|uū〉+ |dd̄〉+ |ss̄〉)

I−|π+ >=
1√
6
(µ1 − µ2)|η0 > +

1√
2
(µ1 + µ2)|π0 > − 1√

3
(µ1 − µ2 + 3h)|η0′ >

U+|K0
>=

1√
6
(µ1 + 2µ2)|η0 > +

1√
2
µ1|π0 > − 1√

3
(µ1 − µ2 + 3h)|η0′ >

U−|K0 >=
1√
6
(2µ1 + µ2)|η0 > +

1√
2
µ2|π0 > +

1√
3
(µ1 − µ2 + 3h)|η0′ >

V +|K+ >=
1√
6
(2µ1 + µ2)|η0 > − 1√

2
µ2|π0 > +

1√
3
(µ1 − µ2 + 3h)|η0′ >
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V −|K− >= − 1√
6
(µ1 + 2µ2)|η0 > +

1√
2
µ1|π0 > +

1√
3
(µ1 − µ2 + 3h)|η0′ >

I3|π0 >= − 1

2
√

3
(µ1 − µ2)|η0 > +

1√
6
(µ1 − µ2 + 3h)|η0′ >

I8|η0 >= −1

3
(µ1 − µ2)|η0 > −

√
2

3
(µ1 − µ2 + 3h)|η0′ >

Special interest is the following. When

µ1 − µ2 = −3h, f = −1

2
(µ1 − µ2)

we obtain

(I± + fI±)|η0′ >= ±2
√

3h|π± >, (U+ + fU+)|η0′ >= −2
√

3h|K0 >

(U− + fU−)|η0′ >= 2
√

3h|K0
>, (V ± + fV±)|η0′ >= −2

√
3h|K∓ >

(I3 + fI3)|η0′ >= −
√

6h|π0 >, (I8 + fI8)|η0′ >= 2
√

2h|η0 >
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and

(I± + fI±)|π∓ >= ±
√

3

2
h|η0 >, (U+ + fU+)|K0 >= −

√
3

2
√

2
h(
√

3|π0 > −|η0 >)

(U− + fU−)|K0 >=

√
3

2
√

2
h(
√

3|π0 > −|η0 >),

(V ± + fV±)|K± >= −
√

3

2
√

2
h(
√

3|π0 > +|η0 >)

(I3 + fI3)|π0 >=

√
3

2
h|η0 >, (I8 + fI8)|η0 >=

√
3h|η0 >

If

µ1 − µ2 = 3h, f = −1

2
(µ1 + µ2)

(A
(2)

+ fA(1))|η0′ >= 0, A = Iα, (α = ±, 3, 8), U±, V±

and

(I± + fI±)|π∓ > = ∓
√

3

2
h|η0 > ±2

√
3h|η0′ >,
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(U+ + fU+)|K0
> =

√
3

2
√

2
h(
√

3|π0 > −|η0 >)− 2
√

3h|η0′ >,

(U− + fU−)|K0 > = −
√

3

2
√

2
h(
√

3|π0 > −|η0 >) + 2
√

3h|η0′ >,

(V ± + fV±)|K± > =

√
3

2
√

2
h(
√

3|π0 > +|η0 >) + 2
√

3h|η0′ >,

(I3 + fI3)|π0 > = −
√

3

2
h|η0 > +

√
6h|η0′ >,

(I8 + fI8)|η0 > = h|η0 > −2
√

2h|η0′ >
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Figure 1: representation of SU(3)

37



(5) J2 as a new quantum number

Because [I2,J2] = 0, [I2, Iz] = 0, [J2, Iz] = 0, but [J2, Jz] 6= 0, we can take {I2, Iz,J
2}

as a conserved set.

Example. S1
⊗

S2
⊗

S3 (S1 = S2 = S3 = 1
2
)

We shall show that instead of 6-j coefficients and Young diagrams, J2 can be viewed

as a “collective” quantum number that describes the “history” besides S(S = S1+S2+

S3) and Sz

(1
2

⊗ 1
2
)
⊗ 1

2
= (1

⊕
0)

⊗ 1
2

= 3
2

⊕ 1
2

⊕ 1
2

′

Noting that |1
2
〉 and |1

2

′〉 are degenerate regarding the total spin 1
2
. The usual Lie

algebraic base can be easily written as

φ 3
2
, 3
2

= | ↑↑↑〉
φ 3

2
, 1
2

= 1√
3
(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉)

φ 3
2
,− 1

2
= 1√

3
(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉)

φ 3
2
,− 3

2
= | ↓↓↓〉

and the two degeneracy states to S2 and Sz:
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φ′1
2
, 1
2

= 1√
6
(| ↓↑↑〉+ | ↑↓↑〉 − 2| ↑↑↓〉)

φ′1
2
,− 1

2

= 1√
6
(| ↑↓↓〉+ | ↓↑↓〉 − 2| ↓↓↑〉)

φ 1
2
, 1
2

= 1√
2
(| ↓↑↑〉− ↑↓↑〉)

φ 1
2
,− 1

2
= 1√

2
(| ↑↓↓〉 − | ↓↑↓〉)

To distinguish φ′ from φ we introduce J:

J =
3∑

i=1
uiSi + ih

3∑
i<j

(Si × Sj)

and calculate J2. It turns out that

J2φ 3
2
,m = [3

4
(u2

1 + u2
2 + u2

3) + 1
2
(u1u2 + u2u3 + u1u3)− h2]Φ 3

2
,m

J2φ′1
2
,m

= [3
4
(u2

1 + u2
2 + u2

3) + 1
2
u1u2 − u2u3 − u1u3 − 7

4
h2]Φ′

1
2
,m

−
√

3
2

(u1 − u2 + h)(u3 + h)Φ 1
2
,m

J2φ 1
2
,m = −

√
3

2
(u1 − u2 − h)(u3 − h)Φ′

1
2
,m

+ [3
4
(u1 − u2)

2 + 3
4
u2

3 − 3
4
h2]Φ 1

2
,m

In order to make the matrix of J2 symmetric, one should put

u2 = u1 + u3
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The eigenvalues of J2 are given by

λ 3
2

= 2u2
1 + 2u2

3 + 3u1u3 − h2

λ±1
2

= u2
1 + u2

3 − 5
4
h2 ± 1

2
[(2u2

1 − u2
3 − h2)2 + 3(u2

3 − h2)2]
1
2

The eigenstates of J2 are the rotation of φ′1
2
,m

and Φ 1
2
,m:




α+
1
2
,m

α−1
2
,m


 =




cos ϕ
2
− sin ϕ

2

sin ϕ
2

cos ϕ
2







φ′1
2
,m

φ 1
2
,m


 , J2α±1

2

= λ±1
2

α±1
2
,m

sin ϕ =
√

3(u2
3 − h2)/ω

ω2 = (2u2
1 − u2

3 − h2)2 + 3(u2
3 − h2)2

It is worth noting that the conclusion is independent of the order, say, (1
2

⊗ 1
2
)
⊗ 1

2
,

1
2

⊗
(1

2

⊗ 1
2
) and the other way. The difference is only in the value of ϕ.

The above example can be generalized to S1
⊗

S2
⊗

l where S1 = S2 = 1
2
.

(
1

2

⊗ 1

2
)
⊗

l = (1
⊕

0)
⊗

l = l + 1 l l − 1

l
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There are no degeneracy for l± 1, but two l states can be distinguished in terms of

J2.

J2Φl+1,m = {3

4
(u2

1 + u2
2) + l(l + 1)u2

3 +
1

2
u1u2 + l(u2u3 + u1u3)

−h2[l(l + 1) +
1

4
]}Φl+1,m

J2Φl−1,m = {3

4
(u2

1 + u2
2) + l(l + 1)u2

3 +
1

2
u1u2 − (l + 1)u1u3 − (l + 1)u2u3

−h2[l(l + 1) +
1

4
]}Φl−1,m

J2Φ1
l,m = {3

4
(u2

1 + u2
2) + l(l + 1)u2

3 +
1

2
u1u2 − u2u3 − u1u3 − 2h2[l(l + 1)

1

8
]Φ1

l,m

−
√

l(l + 1)(u1 − u2 + h)(u3 + h)Φ2
l,m

J2Φ2
l,m = −

√
l(l + 1)(u1 − u2 − h)(u3 − h)Φ1

l,m + [
3

4
(u1 − u2)

2 + l(l + 1)u2
3 −

3

4
]Φ2

l,m

Again in order to guarantee the symmetric form of the matrix we put

u2 = u1 + u3
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then the eigenvalues and eigenstates of J2 are given by

λ±l = u2
1 + [l(l + 1) +

1

4
]u2

3 − h2[l(l + 1) +
1

2
]± 1

2

√
P

ω2 = P = [2u2
1 − u2

3 − h2(2l(l + 1)− 1

2
)]2 + 4l(l + 1)(u2

3 − h2)2

sin ϕ =
2
√

l(l + 1)

ω
(u2

3 − h2)

(
α+

l,m

α−l,m

)
=

(
cos ϕ

2
− sin ϕ

2

sin ϕ
2

cos ϕ
2

)(
Φ1

l,m

Φ2
l,m

)

Example: Spin structure of rare gas

H = −al · S1 − bS1 · S2 (λ =
b

a
)

It describes the interaction of spin S1 of an electron exited from l-shell and the left

hole S2.

HΦl+1,m = −1

2
(al +

1

2
b)Φl+1,m
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HΦl−1,m =
1

2
[(l + 1)a− 1

2
b]Φl−1,m

H

[
Φ±

l,m

Φ2
l,m

]
=

1

2

[
(a− 1

2
b) a

√
l(l + 1)

a
√

l(l + 1) 3
2
b

][
Φ1

l,m

Φ2
l,m

]

The eigenstates of H

(
α+

l,m

α−l,m

)
=

(
cos ϕ

2
− sin ϕ

2

sin ϕ
2

cos ϕ
2

)(
Φ1

l,m

Φ2
l,m

)

where

sin ϕ =

√
l(l + 1)

ω
, ω2 = (

1

2
− λ)2 + l(l + 1), λ =

b

a
.

The eighenvalues are

λl+1 = −1

2
(la +

b

2
), λl−1 =

1

2
[(l + 1)a− b

2
]

λ±l =
1

4
(a + b)± 1

2
[l(l + 1)a2 + (

a

2
− b)2]

1
2

The rotation comes from the fact

[H,J2] = 0
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that is satisfied for the matrix of J2 being symmetric, i.e.

γ =
{2u2

1 − 2h2[l(l + 1) + 1
4
]}

(u2
3 − h2)

= 2(1− λ)

Therefore, the parameter γ in Y (SU(2)) determines the rotation angle ϕ. It is reason-

able to think that the appearence of ”rotation” of degenerate states is closely related

to the ”quantum number” of J2. Transition between α+
l,m and α−l,m (l = 1) can be made

by J3. Because there are two independent parameters u1 and u3 in J, one can choose

a suitable relation between u3 and λ = b
a

such that

J3α
+
1 ∼ α−

i.e. the transition between two degenerate states in Lie-algebra is made trough J3

operator. This is because of

[J2, J3] 6= 0

(6) Happer degeneracy
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In the experiment for 87Rb molecular there appears new degeneracy (Happer etal.

2002) at the special ±B0 (magnetic field), i.e. the Zeeman effect disappears at ±B0.

The model Hamiltonian reads

H = K · S + x(k +
1

2
)Sz

where K is angular momentum and K2 = K(K + 1). The spin s = 1 and x is scaled

magnetic field. It turns out that when

x = ±1, E = −1

2
.

The conserved set is {K2, Gz = Kz +Sz}. For G = K+S we have G = k±1, k. The

eighenstates are specified in terms of three families: T, B and D. Only D-set possesses

the degeneracy.

Happer gives, for emple,the eigenstates for x = ±1:

x = +1 HαDM = (−1
2
)αDM

x = −1 HβDM = (−1
2
)βDm
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and shows that

αDm = [2(K +
1

2
)(K + m +

1

2
)]−

1
2{−[

(K −m + 1)(K + m + 1)

2
]
1
2 α1

+[(K + m)(K + m + 1)]
1
2 α2 + [

(K −m)(K + m)

2
]
1
2 α3}

βDm = [2(K +
1

2
)(K −m +

1

2
)]−

1
2{[ (K −m)(K + m)

2
]
1
2 α1

+[(K −m)(K −m + 1)]
1
2 α2 − [

(K −m + 1)(K + m + 1)

2
]
1
2 α3}

where α1 = e1 ⊗ em−1, α2 = e0 ⊗ em and α3 = e−1 ⊗ em+1.

Question: what is the transition operator between αDM and βDM ?

The answer is Yangian.

Introducing

J± = aS+ + bK− ± (s±Kz − szK±)

we find

by choosing a = −k + 1

2
, b = 0 βDm

J+−→ λ1(m)αDm+1

and αDm
J−−→ λ2(m)βDm−1
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by choosing a =
k

2
, b = 0 βDm

J−−→ λ′1(m)αDm−1

αDm
J+−→ λ′2(m)βDm+1

The Yangian introduced here is only for S = 1, because for S = 1 there are two

independent coefficients in the combination of α1, α2 and α3 and there are two free

parameters in J. Hence the number of equations are equal to those of free parameters

(a and b), so we have solution. The numerical computaion shows that only s = 1 gives

rise to the new degeneracy that prefers the Yangian operation.

(7) New degeneracy of extended Breit-Rabi Hamiltonian

As was shown in the Happer’s model (H = K ·S+ x(k + 1
2
)S3) there appeared new

degeneracy for S = 1. It has been pointed out that the Zeeman effect cannot appear

for spin=1
2
. Actually, in this case it yields for S = 1

2

E = −1

4
− ωmS3

where

ω2
m = [(1 + x2)(k +

1

2
) + 2xm](k +

1

2
).
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Therefore the Happer’s type of degeneracy can only occur at ωm = 0 that means

x0 = − m

K + 1/2
)± i

√
1− m2

k2
(k = K +

1

2
)

i.e. the magnetic field should be complex.

However, the situation will be completely different, if a third spin is involved. For

simplicity we assume S1 = S2 = S3 = 1
2

in the Hamiltonian:

H = −(aS2 + bS3) · S1 + x
√

abSz
1 , λ = b/a

then besides two non-degenerate states, there appears the degenerate family:

Hα±
D,± 1

2

= −(
a + b

4
)α±

D,± 1
2

, for x = ±1,

where

α±
D,+ 1

2

= −
√

2λ| ↑↑↓> ±
√

λ| ↑↓↑ +(1±
√

λ)| ↓↑↑>;

α±
D,− 1

2

= −
√

2λ| ↓↓↑> ∓
√

λ| ↓↑↓ +(1∓
√

λ)| ↑↓↓> .

The expaction value of Sz
1 are

< α+
D,± 1

2

|Sz
1 |α+

D,± 1
2

>∼
√

λ (x = 1)
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< α−
D,± 1

2

|Sz
1 |α−D,± 1

2

>∼ −
√

λ (x = −1)

namely, at the special magnetic field (x = ±1) the observed < Sz
1 > still opposite to

each other for x = ±1, but without Zeeman split.

The reason of the appearance of the new degeneracy is obvious. The two spins S2

and S3 here play the role of S = 1 in comparison with Happer model.

(8) Super Y M(n = 4)-Lipatov model and Y (SO(6)).

Beisert et al(2002), Dolan-Nappi-Witten, (DNW) · · · proposed to take the quantum

correction of the delitation operator δD (D ∈ SO(4, 2) as Hamiltonian for supper

Y M(N = 4):

H =
∑
α

Hαα+1

Hαα+1 = 2
∑

j

h(j)P j
αα+1, h(j) =

j∑

k=1

1

k
, h(0) = 1.

where P j is projector for the weight j of SU(2) and α stands for ”lattice” index. DNW

showed that

[H, Y (SO(6))] = 0
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It turns out that the Hamiltonian H is nothing but Lipatov model (1994) which was

related to the Yang-Baxter form by Lipatov (1995), Faddeev and Korchemsky (1995).

Based on Tarasov, Takhtajan and Faddeev(1983) the R̆-matrix reads

R̆(u) =
Γ(u− s)Γ(u + 2s + 1)

Γ(u− Ĵ)Γ(u + Ĵ + 1)

where u is spectrum parameter and s the spin (arbitrary). The trigonometric Yang-

Baxterization (Jimbo) gives

R̆(u) =
∑

j=0

ρj(x)Pj(q) (x = eiu)

where Pj(q) is the q-deformed prodector with weight j. Taking the rational limit

(Cheng, Ge, Xue) we have

ρj ⇒ Γ(u)Γ(u + 1)

Γ(u− j)Γ(u + j + 1)
, Pj(q) ⇒ Pj

The Hamiltonian for the lattices α and α + 1

Hαα+1 = I1 × I2 × · · · × Iα−1 × d

du
R̆(u)|u=0[R̆(0)]−1 × Iα+2 × · · ·
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is then

H =
∑
α

Hαα+1

where

Hαα+1 = {−ψ(−Ĵαα+1)− ψ(Ĵαα+1 + 1) + ψ(1 + 2s) + ψ(1− 2s)− 1

2s
}|s=0

=
∑

j

{−ψ(−j)− ψ(j + 1) + 2ψ(1)− lim
x→0

1

x
}P j

αα+1

It describes the QCD correction to the parton model. The diagonalization of Lipatov

model has been achieved by Lipatov and de Vega (2003). Noting that the j indicates

the block in the reducible block-diagonal form.

Using

ψ(x + 1) = ψ(x) +
1

x

ψ(x + n) = ψ(x) +
n−1∑

k=0

1

x + k

ψ(1) = −c
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and hence

ψ(j + 1) = ψ(1) +
j∑

k=1

1

k
= ψ(1) + h(j)

ψ(−j) = ψ(1) + h(j)− lim
x→0

1

x

We obtain

Hα,α+1 = (−2)
∑

j

h(j)P j
αα+1

Separating the finite part from the infinity and normalizing to be unit H is nothing but

the δD derived in super Y M(N = 4) with approximation. Therefore, DNW’s result

shows that the Lipatov’s model possesses Y (SO(6)) symmetry.

To obtain Y (SO(6)) in terms of RTT relation we start from the rational solution

of R̆-matrix whose general form for O(N) was firstly by Zamolodchikov and Zamolod-

chikov (1972) and extended through rational limit of trigonometric Yang-Baxteization

(Cheng, Ge, Xue, 1991):

R̆ = u[u− 1

2
(N − 2)a]P + αuAN + [−uα +

α2

2
(N − 2)]I
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where u is stpectrum parameter and α a free parameter allowed by YBE.

Here we adopt the convention of Jimbo:

P ab
cd = δa

dδ
b
c

(AN)ab
cd = δa,−bδc,−d

a, b, c, c = [−(
N − 1

2
),−(

N − 1

2
) + 1, · · · , (N − 1

2
)]

N = 2n + 1 for Bn and N = 2n for Cn, Dn.

The R-matrix is given by

R = R̆P = u(u− 2α)I + u(2u− α)P + 2uαAN

that is coinside with Zamolodchikov’s S-matrix (up to an over all factor considering

the CDD poles) with α = 1 and u = θ
iλ

.

Actually, Z’s s-matrix is universal, i.e. model independent.

S(θ) = R(u) = Q±(u)u(u− 2)[I +
σ3

σ2

P +
σ1

σ2

AN ]
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= Q±(u)u(u− 2)[I − 1

u
P +

2

u− 2
AN ]

Q±(u) =
Γ(± λ

2π
− i θ

2π
)Γ(1

2
− i θ

2π
)

Γ(1
2
± λ

2π
− i θ

2π
)Γ(−i θ

2π
)

where λ = 2π
N−2

, θ = iλu. Although the spectrum parameter u is one dimensional, but

u can be taken to be the cut-off in QFT, for example

u ∼ ln Λ2

where Λ2 is Lorentz invariant, i.e. scalar. This is the reason why asymptotic behavior

of QFT model may be related to YB system.

For given R̆(u) one can easily obtain Hamiltonian by

H = [
∂R̆(u)

∂u
R̆(u)]|u=0

for O(N).

However, the essential connection between Lipatov model and SO(6)-RTT formu-

lation is still missing.

Conclusion Remark
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There are still two open questions:

(1) How can the Yangian representations help to solve physical models.

(2) Direct evidences of Yangian in the real physics.
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