Yangian and Applications

Mo-lin Ge
and

Cheng-Ming Bai, Kang Xue, Hong-Biao Zhang

(Nankai Institute of Mathematics, Tianjin
and

North-Eastern Normal University, Chang Chun)

The Yangian relations are tremendiously simplified for SU(2), SU(3), SO(5) and
SO(6) based on RTT relations that much benifits the realization of Yangian in Physics.

The Physical meaning and some applications of Yangian have been shown.



(I) Yangian and RTT Relations

The Yangian algebras Y (SL(n)) associated with SL(n) were given by Drinfeld
(1985). For a given Lie algebraic generators I, the new generators J, were introduced
to satisfy

(D[Ix, 1] = Crywly, A\ i,y =1,2,3, -+

where C’,\W structure constants.

2)[In, Ju) = Crpwdv, A v =1,2,3, -+ -,

and for n > 3:

(3) o e L)) = [ [y B1) = @y U 15, 1},

Adpvoafy = iC/\wOuﬁTprv

{71, 29,23} = > TiTjTp,.
ia ja k= 15 27 3
i#i#k
which is symmetric summation over x’s.

or, for n = 2:



(4) [ ) s J21) 4 [ oy s T = (@ass Corr + ruass Coo L Lo T 1 }

When C),, = iexw(A p,v = 1,2,3), Eq(3) is identically satisfied based on the
Jacobian identities. Besides the commutation relations there are co-products.

Further, the Yangian can be derived through RTT relations where R is rational
solution of Yang-Baxter eq (YBE). (Drinfeld, Faddeev and his school).

After lengthy calculations we found (Ge, Xue and Zhang), the independent relations
for Y(SU(2)), Y(SU(3)), (Y(SO(5)) and Y (SO(6)) by expanding the RTT relations
and also checked through (1) — (4) by substituting the structure constants. RTT
relation (Faddeev, Reshetikhin, Takhtajan — RFT) satisfies

Ru—v)(Tw) 1)1 Tw) =1 Tw)(T(uw) @ 1)R(u—v)

(DY (SU(2))
ng(u) = PRis(u) = uPs + 1. (P12 = Permutation)
(n) (n) 1 ((n) (n) (n)
> T e (T5" +137) T
a1 12 . 2Ho 3 ) i
T(U)=I+ZU l (n) (m]:HZu l (n) 1 ((n) (n)
n=1 Ty Ty n=1 -, (10" = T157)
Substituting 7'(u) into RTT relation it turns out that only
1
I =T I = 5 T}"



1
Jy =T, Jy = 17

are independent ones. The quantum determinant

detT(u) = Tn(u)ng(u — 1) — le('u,)T21 (U — 1) = C() + Z UinCn
n=1

gives

Co=1, C,=T5" =trT®
1
Co— 1 — 2T+ 1)

The independent commutation relations of Y (SU(2)) are:

Ix, 1) = iexwl, A\ p,v=1,2,3)
[I)\, (]#] = Z'GMWJI,

and (Ai = Al + ZAQ]
g, [, J ) = (J Ty — L J )
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that can be checked to generate all of relations of Eqs(1),(2) and (4).
The co-product is given through (RFT)

AT1ab = Z Toe @ T
The simplest realization of Y (SU(2) is

N
I=>1, (i:lattice indices)
i=1

N N

i=1 i<j
where
1 1<y
Wij=< 0 i=j (for any representation ofSU(2))
-1 1>
or
Wi = icot(j_]\]k)7T (only for spin ;, Haldane-Shastry model),

and p; arbitrary constants. Noting that u; plays important role for the representation

theory of Y (SU(2)) (Chari-Pressley, 1990, 1991).
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The big difference between representations of Lie algebra and Yangian is in that in
Yangian there appear free parameters p; dependent on models.

Another example for single particle is finite w-algebra (Sorba-Ragoucy 1997). De-
noting by L and B angular momentum and lorentz boost, respectively, as well as D
the dilitation operator, the set of L and J satisfies Y (SU(2)) where (Sorba-Ragoucy
1998, Ge, Xue 1999)

=L
J=IxB-i(D-1B

and

[a, Jo] = i€apy (21 — ¢ — 4T,
¢y casimir of SO(4,2).
The Hamiltonian commuting with Y (SU(2)):

e Two component NSE eq (Wadati, - - -)
e One-dimensional Hubbard model (Uglov,Korepin)



Essler and Korepin found the complete solutions (1991) and excitation spectrum
(1994) of 1-D Hubbard model.

e Haldane-Shastry model(Haldane) whose Hamiltonian is given by the quantum
determinant (Wang, Ge, Xue)

e Hydrogen atom (with and without monopole, Ge, Xue,Bai)

e Super YM(N = 4): Y(SO(6) (Dolan, Nappi, Witten)

(2) Y(SU(3))

Independent relations

[]/\v IM] = ifAuV]Vv []/\’ Ju] = ifAuVJV ()‘7 p,v=1,--- 78)

Define

3
W =14+il, UY =Is+il;, VY =1, Fils, \g_lél) = I

and the corresponding operator for If), Uf), Vf) and I §2), 13(2) that represent J,, after
lenthy calculation one finds there is only one additional relation for Y (SU(3))

17, 57 =

1
= P00, v} - (10,00, vy



where {---} stands for symmetric summation. The conclusion can be verified through
both the Drinfeld formula (C),, = ify,.) and RTT relations with the replacment of
P12 in SU(2) by

1 1
P12:7[+7Z)\,u)\,u
3724

where A, are the Gell-mann matries.

T(u) = i u "T(n)

Y+ + L1 T — iy T — i
T — " iy W -+ L T — i
T + 18" T + 7" L — 2

and the co-product, for example,
AP = Pe14+10 12
1
+ 2P 1P — 1P e 1M+ 5(VJS) o UV
vy v



and others.

An example of realization of Y (SU(3)) is the generalization of Haldane-Shastry:

IN:ZF’iM

J,U« = Z /’LZEH -+ )\fNAV sz]FlyF])‘
i i+

Where w;; satisfies the same relation as in HS model and F* the Gell-mann matrices.

(3) Y(SO(5))
For SO(N) it holds

[Lija Lkl] = Z.Cisﬁlest
Skt = Oik05s0i — 01050kt — 0jrisOre + 0j10isOne

The rational solutions of YBE for SO(N) were firstly given by Zamolodchikov’s
(1972), also rederived by taking the rational limit of the trigonometric R-Matrix:

R(u) = Fu)[u2P + (A — T — 213)5 + 2152]



where u stands for spectral parameter and £ the other free parameter (Cheng, Ge, Xue,

1991; Ge, Xue, 1992). The elements of R(u) are (a,b,c,d = —2,-1,0,1,2)

3

[R(U)]gs = ugdabébc + u(éa—béc—d - 5ac5bd - 5

3
5ad5bc)£ + 55a05bd€2

For SO(5) we introduce

(Bs—3% U,  Ey Vi 0 ]
U. F-3 F, 0 Vi
T™W=¢| E_ F_ -3 —F, —FE,
V. 0 —-F. -FB-3 -U

0 -V. —-E. -U. —E3-2]

E3=FEyp—F 3 3 I3=En—E 1., U =Ex—FE 9 Vi=F 1—FE
E,L=FEyy—Fo_2 I =FEog—FE_, U.=Ep—FE 2, V.=FE  o—FE,
E_ =Fkyp—FE 5, F.=FEy—FE

3

T = 5€E;  (ab=-2-1012)
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Substituting 7 (only n = 1,2 are needed to be considered) into RTT relation there
appears 35 relations for J, besides the Jocobi indentities. However , a leathy compu-

tation shows that besides
[]OM ]ﬁ] = 03517

(a = j)
[[Om [ﬁ] = Cgﬁ‘]’y

there is only one independent relation
1
B F) = (U By Fo} = {Us B Fu} = {Vi B P} 4+ Vo, By )
where again { } stands for the symmetric summation. A realization of Y (SO(5)):

() = S0 @) aste)  (a,b=~2,-1,0,1,2)
[0 (@), 0s() )+ = 0z — 9)dus

Iab = Z Lab<x>

Jap = Z €<37 - y)Iac(‘r)Iab(Z»
T,y
c# a;b
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satisfies the commuting relations for Y/ (SO(5)). The following Hamiltonian of ladder
model not only commutes with I, i.e. possesses SO(5) symmetry, but also commutes
with Jab-

H = 2t Y [ef(2)er(y) + df (2)d,(y) + H.C.)

<z, y>
Hy(x) = Ulneg — ;)(”ci - ; +(c—=d)+V(ne—1)(ng —1) + JS. - Sq
J 1 1
= Zg}jgb + (gJ + iU)(wg% —2)
Hi(x) = —2t3(ct(x)d,(z) + H.C.)

For SO(6) ~ SU(4) we introduce (15 generators)



and the R(u)-matrix reads

R(u) = f(u)[u*P + u&(A — 2P — I) + 2€*1

The RTT gives 4 + 4 + 441 + 315 + 225 more relations. After careful calculations

one find (Zhang, Ge, Xue) the independent relations for J,, themselves:

[If?, éi)] = i({fzs, L6, L} + {123, D15, Lus} + {114, Lo, I35} + {114, Lag, I36}
—{1L13, I, La6} — {113, I25, Lus} — {124, I15, I35} — {124, 16, I36})
[11(3), é?] = i({lls, Iy3, I36} + {115, Toa, Lus } + {126, 113, I35} + {126, [14, Lu5}
—{1ss, I3, 136} — {I25, I14, La6} — {116, 123, I35} — {116, Loa, 145 })

1 1 1

[
21
1
{158 1Y Iy — {15, 1) 1Y — {1 1) 1Y — {1 1) 1))
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II. Applications of Yangian

The first example was given by Belavin (1992)in deriving the spectrum of nonlinear o

model.

(1)Reduction of Y (SU(2))

The simplest realization of Y (SU(2)) is made for two-spin system with S; and Sa (any
dimensional reps of SU(2)):

1

J = J =
prvt ot

(MSI + VS2 + 2)\81 X Sz)

that contains the (antisymmetric)tensor interaction between S; and Sp. For Hydrogen
atom S; = L and Sy = K (Lung-Lenz vector).
For S; = Sy = 1/2, when

v = \?
we prove that after the similar transformation
Y = AT AT
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10 00

0 v A 0
A pum—

0 A v O

00 0 1

the Yangian reduces to SO(4):(p = v + i\ = V2 + \2e¥)

M, 0 110 »p 110 pt ]
1= ) Ml =5 ’ Ll = 5
0 I 21 p7t 0 2100
My 0 110 —ip 110 —ipt
2 = ) 2 = 3 ’ L2 = 5
0 Ly 21 ip7t 0 21p 0
%0’3 O 1
Y,?, = 5 M3 *0’3
0 %0'3 2
and
1.1 3
Yi=—(=+1)="<
2(2 +1) 4

Namely, under uv = A2, the Y reduces to SO(4). By My = M, +iM,y, M, = po,,
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M_ = p~to_. The scaled My and Mj still satisfy the SU(2) relation:

(M3, My] = £M,
(M, M_] = 2M;

and the similar relation’s for L.
It should be emphasized that here the new “spin” M (and L) is the consequence of

two spin(3) interaction. As usual in Lie algebra
2 ® 2 = 3(spin triplet) ® 1(singlet)
However, here we meet different decomposition:
2®2=2(M)®2(L)
The idea can be generalized to SU(3) fundamental rep:
Iy =ul} + I3 + Mo > FIFS;

1<j

[F'u,aFy] :if/“,)\F)\ ()\’ILL7U: 172’...’8)
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Under the condition

=

v+ I\

uv = \?

and

Y, =AJA  (u+v)

0 A 0 0 0 0
0 0 0

v

0
A

0

A 0 0

14

14

0
0

(P
0

v
0

A0 0 0

0 0

v

0 0 0 A

0
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The Yangian reduces to

o0 0 ol 0 0
Y(I.)= 0 plo 0 |, YUy)=] 0 ptl_ 0
0 0 I 0 0 I3
A3 00 A3 00
Y(Ig) = \f 0 X 0 | Y()=510 X 0
0 0 X3 0 0 As
U, 0 0 U0 0
YU =| 0 v, 0o |.YWU)=|0 ;w0
0 0 pluy 0 0 pU
p~tV_ 0 0 pV_ 0 0
Y(Vi)=| o v o |,Y(Vo)=] 0 Vv 0
0 0 pV_ 0 0 p v




and

8 1 & 1
Y? = J ==
;Zl A u+v;:1 3

It is easy to check that the rescaling factor p does not change the commutation relations
for SU(3) formed by I, Uy, V4, I3 and Is. In general, we guess for the fundamental
rep. of SU(n) we shall meet

n@n=n®n®n+---+n (ntimes)

The Yang-Mills gauge field for reduced Y (SU(2)).

For a tensor wave function (z = {x1, z2, x3,20})

V() = Yyl (7 =1,2,3,4)

An isospin transformation yields



where

J =uS, @1 +0v1®S, + 2 e 5" @ S°

or
[Ja]55 = (5" a5 + V(55500 + iEabe(:S”)ar (5) 55
Defining
D, = 0,4+ gA,
le.

[Dutblas = Outbap + gAL[Ya]55 s ()
A= A%,
The covariant derivative should preserve
(D) =0

1.e.

(—i0,0%(x) + géAg)[Ya];i? — ig0*(x) ALy, Jo)25 = 0
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When

uv = \?
and by rescaling
Yo=(utv)da
we have
0A} = eabcﬁb(x)AZ(x) + ;(9“9“(95)
and

1
Fuy = =[Dy, D] = F.Y,
g
a a a . b pc
Fi, = 0,A% — 0, A7, +igeanc A, AL,

Here the tensor isospace has been separated to two irrelevent spaces.i.e. ¥ =
[\Ill 0

0 1 where ¥, and W, are 2 x 2 wavefunction.
2

(2) IMustrative examples:NMR of Breit-Rabi Hamiltonian and Yangian
H=K -S+uB-S
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where S = 7 and B = B(t) is magnetic field.

The Hamiltonian can easily be diagonalized for any background angular momentum

(or spin) K. The S stands for spin of electron and for simplicity K = S;(5; = 1/2)

is an average background spin contributed by other source,say, control spin. Denoting

by
H:H0+H1<t>, H():Oésl'SQ, Hl(t):,lLB(t)Sz

Let us work in the interaction picture:

H] — IU/B(t) . (eiOtSl'SzS2e—iasl~Sz)

= uB(t)-J

J= /Llsl + ,UQSz + 2)\(81 X Sz)

=31 —cosa).  pp=1L(1+cosa), A= Lsina

Obviously, here we have pape = A2 Tt is not surprising that the Y (SU(2))

reduces to SO(4) here because the transformation is fully Lie-algebraic operation.

22



For generalization we regard p; and ps as independent parameters,i.e.drop the re-

lation p19 = A% Looking at
1
J = 1181 + p2S2 — 5(#1 + 112)(S1 + S2) + 7(S1 4+ S2) +2AS1 x S,

When v = %,,uz —p1 = cosac and \ = %sz‘na it reduces to the form in the interacting
picture.Putting
Si1+S2=5

h
2\ (h not Plank constant)

T2

In accordance with the convention we have

2 h 1
J=75+)> Misi+§s1X32—§(N1+M2)S:”YS+Y
=1

Since J — &S + J still satisfies Yangian raltions,it is natural to appear the term

~vS.The interacting Hamiltonian then reads

Hi(t) = —B(t)-S—B()- Y

23



When p; = 0, h = 0 it is the usual NMR for spin 1/2. To solve the equation, we

use ou
i = Hi(t)U()
V)= 3wl

where {4, x3} is spin triplet and x, singlet.
Setting
By (t) = By(t) & iBy(t) and B3 = const
By(t) = ByeTiwot
and rescaling by
ax(t) = eFwotpy t)

then we get

db. (1)

220 - o fBlagu <wwl—83>bi<t>}izj§uBlao<t>

200 _ A CXUR ) B e
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dao(t)

1

dt
h
pae = (= pz £45)
ie.

b (t) wo —vB1 —731%

ag(t) _”}/BlL 0

|®(1)) = Hp = V2 .

b_(t) 0 —731@
i ao(t) | i ﬁNJrBl —%N+Bs

i = Hilo()

Noting that Hz is independent of time we get
(1)) = e |D(1)),
Then
det |Hf — E| =0
leads to
B (o = 7By + B+ g

25

_ _;‘”{\}531 (b_(t) — bo(£)]} + Bsas(?)

—731%

—(wo —vB1)

—2%/5#@31

(B} + B3)|E*+




1
Zu+u_[B§(w0 —vB3)? = 2yB3Bi(wo — vBs) +¥°By] = 0

There is transition between the spin singlet and triplet in the NMR process, i.e.
the Yangian transferes the quantum information through the evolution. The simplest

case is B; = 0 then eigenvalues are

h2

B
E=+(wy—vBs), E =+w = i;\/(m — p2)? + 1

It turns out that there is vabration between s=0 and s=1.

<s*>=0at t= QL (total spin=0)
w

s
<s*>=2at t=— (total spin=1)
w

Under adiabatic approximation it can be proved that it appears Berry’s phase, even

there is witness of spin singlet which takes part in the transition process.
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(3) Transition between S-wave and P-wave superconductivity

S: spin singlet, L =0

P: spin triplet, L=1

Balian-Werthamer (1963):

Ak) = —; %: V(k,K) 382)) tanh gE(k’)
E(k) = (€(k) + [A®K)P)?
B-W:
s = gD | VERE |
35 Yiok) VY1 (k) 3

~

1 5 . . 1 | k. —k,
Doo(k) = %{Yl,—l(k)Xn —Yio(k)x10+ Yia(k)x1-1} = ﬁ { i . ]
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where x11,x10 and xi_1 stand for spin triplet.

@0,0 = ‘IDJ:o,m:o

The wave function of SC is

0 Yo,0
Yoo O

P00 = 7

Introducing

Iy = Zsu(i)é (n=1,23)

ihv
J = ZA Suli) = e (1)7(2) — )(2)87(1))
and noting that J, — J, + fI, does not change the Yangian relations, we choose for

simplicity f = —3(A1 + A2). We obtain

. V3 hv
Gooo = k- (J+ fI)doo = 7()\ — A+ 5 —)®o,0,

G(I)070 - lA{ N (J + fI)(DO,O =

hv
Ao — A — — .
2\/5( 2 1 2 )¢0,0
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The transition direction depends on the parameters in Y (SU(2)). For instance,

SC — PC . G¢070 = ?@070 Zf )\1 — )\2 = —hQU

GCI)(LO =0

and

PC — SC: G¢op = 0
GPoy =

e if A==
We call the type of the transition “directional transition”. The controlled parameters
are in the Yangian operation.

We have got used to apply electromagnetic field A, to make transitions between
[ and [ £ 1. Now there is Yangian formed by two spins that plays the role changing

angular momentum states.
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(4) Y(SU(3))-directional transitions

1 .
F# = 5)\#, [F)\’FH] :Zf)\uVFl/
Iy = ZFZV
J,u = Z /J,ZF;M — ihfu,,)\ Z wijFiVFj)\, (w” = —'UJJZ)
i i#]
[Fi)\7 FJH] = i fauw0ii FY
where F), are fundamental rep. of SU(3) and (4,7, k =1,2,...,8).

Dk = Wijwjk + WikWyi + Wrwi; = —1

(no summation over repeated indices, i # j # k)

The reason that such a condition works only for 3-dimensional representation of
SU(3) is similar to Haldane’s (long-ranged) realization of Y (SU(2)). In SU(2) long-
ranged form the property of Pauli matrices leads to (6%)% = 0. Instead, for SU(3) the

30



conditions of J,, satisfying Y (SU(3)) read
;(1 —w)(FVIUF = Ur Vi + LVUS UV + VU U7 ViL) =0
and

Z(I;FV;FU;L ~U7 VL7 )=0

K3
that are satisfied for Gell-Mann matrices.

The simplest realization of Y (SU(3)) is then

1 i>j
Wi;=2 0 i=j  (Wiy=-W)
1 i<

Recalling(Is = Y3Y)

010 00 0 000
I =1]loo0o0|,U'=l0o01|,V=|00 0],
00 0 000 100



1 0 0 10 0
P =10 -10|,Y=-l01 0
0 0 0 00 —2

We find

J,u, = {[_ia Ui: Vi? ]T37 TS}

) 1
L = Yl F2hY Wy(LFL - SUTVT)
i i1

U = SUF NS Wl (0} = 5%) + 17V
i i#j

Ve = SV RS W )+ U
i i#j

b= Sl WL U7 V)
i i#j

Iy = zi:mY;ﬂLh;Wij(Uij__Vjﬂ/j_)

where u; and h(not Planck constant) are arbitrary parameters

When i = 1,2 Y(SU(2)) makes transition between spin singlet and triplet. Now
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Y (SU(3)) transits SU(3) singlet and Octet. For instance for

B U 0 —L utt) — |dd
() = ldu), |m) = 5 (ut) = |dd))
[K™) = Idﬂ> [K°) = |ds)

[7’) = (—|u) —|dd) +2]s5))

\[6
\KB)(WW

dd) + |s5))

_ 1 1 /
I_|nt >= fG(Ml — p2)|n° > +\/§(M1 + po)|m’ > —ﬁ(ﬂl — p2 + 3h)|n" >

. 1 1 ,
UK >= —=(mu + 2p2)[1° > +\/—u1|7ro > =gl = et 3h)|n" >

_ 1 1 ,
U-|K° >= —=(2pu1 + p2) |1 > +\/§u2!ﬂ° >+l = +3h) " >

_ 1 1 ,
VKT >= —(2um + p2)In° > ——zpa|m® > + | — pig + 3R) " >

G NG Neka
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_ 1 1 1 ,
V_ K >=——<(u; +2 O 4+ — |7 > +—= (1 — po + 30) 0% >
| \/g(ul p2)|n \/E,Ul’ \/g(,ul 14 )In

_ 1 1 '
I|n° >= —ﬁ(m — pa)ln” > +%(M1 — o+ 3h)|n" >

_ 1 V2 ,
Isln® >= —g(ﬂl — pi2)|n° > —?(Nl — g+ 30) " >
Special interest is the following. When

1
p1— pe = —=3h, f= —5(,“1 — M)

we obtain

(Te + fIL)n” >= £2V3h|x* >, (U; + fUL)In" >=—2v3h|K° >
(U_ + fU Y >= 230K’ >, (Vi+ fVi)In" >= —2V3h|KF >

(I + fI)|n" >= —V6h|n® >, (Ts+ fIs)|n" >=2v2h|n° >

34



and

Tu+ fLln™ >= i@w o (Tt JUIRS 5= LB > i )
T+ fUK 5= ﬁih(@w@ )
(Vs + FV)|iE >— —ﬁih(ﬁw o >)

_ 3 _
(I3 + fIs)|n" >= \gh\ﬁo >, (Is + fI8)|n” >= V3h|n" >

If

1
p — p2 = 3h, f= —5(,“1 + fi2)

(AP £ fAN >=0, A=1I,, (a==+,3,8), Uy, Vi
and

— 3 /
(I + flo)|nT > = :F\/;h]no > 4+2v3hn" >,

35



Uy + fU+)|FO >
(U_+ fU)|K° >
(Vi+ fVL)|KE >

(Is + fI3)|m" >

(Is + fIs)|n® >

2\5‘ (V37" > —[n° >) — 2v/3h|n" >,
_ffh(fhr > —|n° >) +2V3hln" >,
\/_
2/2
—\gh!no > +V6h[n" >,

hln® > —2v2hn" >

h(V3IT0 > +[n° >) + 2v/3h|n” >,
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N,

\

g

Figure 1: representation of SU(3)
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(5) J? as a new quantum number

Because [I%,J?] =0, [I?,1,] = 0,[J% I.] = 0, but [J? J,] # 0, we can take {I?, I,,J?}
as a conserved set.
Example. S; ®S2®S;  (S1 =5, =955 = %)
We shall show that instead of 6-j coefficients and Young diagrams, J? can be viewed
as a “collective” quantum number that describes the “history” besides S(S = S;+Ss+
S3) and S,

®3)®;=(100)®; =353
Noting that |3) and |%,> are degenerate regarding the total spin 3. The usual Lie

algebraic base can be easily written as

¢z3 =[117)

B3y = (1 11+ 1 11+ 111)
¢s 1= (I T+ 1T+ 1)
653 =1 111

and the two degeneracy states to S? and S.:
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¢ = (LD + 1T =2 111)

)

|
NI

@y = (111D +1 110 =2/ 111)
613 = 25 L= 111))
633 = (1 TL) =1 111))

To distinguish ¢’ from ¢ we introduce J:

3 3
=1 j

1<J
and calculate J2. Tt turns out that

J2¢%,m = [ (u% + U% —f- u%) + %(Ul’(tg —f- UgU3 —f- U1U3) — h2]q)%,m

3

4

2 4/ 3
J gb%,m 4

[ (U% + U% + U%) + %UJ1U2 — UgU3 — U U3 — %hQ]q)/l .
27
_§(u1 —ug + h)(us + h)Q)%’m
JQ(b%,m = —?(m —uy — h)(uz — h)cb’%,m + [%(Ul _ u2)2 + %u% _ %h2](1)%,m

In order to make the matrix of J? symmetric, one should put
Uy = U + U3
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The eigenvalues of J? are given by

2u3 + 2u3 + 3ugug — h?

A
ui +uj — 2h* + 1[(2uf — uj — h?)? + 3(uj — hz)Q]%

A

Wl H- vlw

The eigenstates of J? are the rotation of ¢/ ,, and (IJ% m
3 )

+ . /
o cos? —sin? o

3, — 2 2 5,m 7 J2Oz:1t _ )\:1t04:1tm

_ ) %) 3 3 9
a sinf  cos% gb;m

sinp = V3(u? — h?)/w
w? = (2uf — u3 — h?)* + 3(u3 — h?)?
1

It is worth noting that the conclusion is independent of the order, say, (% X %) ® 5,

1 ®(3 ® 1) and the other way. The difference is only in the value of .
The above example can be generalized to S;1 @ Ss ®1 where 57 = 55 = %

G®H®-1BORI=1+1 | 1-1

2
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There are no degeneracy for [ £ 1, but two [ states can be distinguished in terms of

J2.

2
J (I)l+l,m

J2q)lfl,m

Jo

J2o7,

3 1
{Z(u% +ud) 11+ Dl + guuz + l(ugus + uyug)
1
—R*[I(1+1) + 1]}@z+1,m

3 1
{Z(u% +ud) + 10+ Du3 + Utz = (I + Duqus — (I 4 1)ugus

—R*[(1+1) + i]}q)l—l,m

3 1 1
{Z(uf +ud) + 10+ Dl + Stz = Upliy — Urllz — 2h2[1(1 + 1)§]<I>llm

_\/M(ul — U9 + h) (US + h)q)lg,m

3
— U+ 1) (ur — ug — h)(uz — h)®;,, + [1<U1 —up)? + (1 + Dk —

3

212
n

Im

Again in order to guarantee the symmetric form of the matrix we put

Uy = U + Usg
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then the eigenvalues and eigenstates of J? are given by

1 1, 1
Moo=l +[I(1+1) + Z]u§ —R*I(1+1) + 5} + 5\/13
1
w? =P =[2u} —ui—hrQ2l1+1) - 5)]2 + 411+ 1) (ul — h?)?

2400 +1
sinp = ¥(u§—h2)
w

+ Y an @ 1
<a17m> (cos 5 sin £ ) (q)hm)
_ - s %) 2
A sinf  cos¥ Q7
Example: Spin structure of rare gas

H:—al-Sl—bsl-Sg ()\:*)

It describes the interaction of spin S; of an electron exited from [-shell and the left
hole Ss.
1

1
Hq)H,Lm - —§<al + 2

b)q)l+1,m
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Hou o, — ;[(z +1)a— ;b]cbll,m
o]l

The eigenstates of H

+ L an @ 1
<a17m> (cos 5 sin % ) (q)l,m)
— - s %) 2
Ao, sing  cos¥ Q7

where
l(l+1 1 b
sin g = (w),uﬂ = (G- U+, A =~
The eighenvalues are
1 b 1 b
)\l+1 = —§(la+§>, )\171 = 5[([4—1)&— 5]
1 1

)\:I:

LT 1(“+ b) + ;[l(l + 1)a* + (% — b)?]2

The rotation comes from the fact
[H,J%] =0
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that is satisfied for the matrix of J? being symmetric, i.e.
L {2u? — 2011+ 1) + 1)}
(u3 — h?)
= 2(1-X)

Therefore, the parameter v in Y (SU(2)) determines the rotation angle ¢. It is reason-
able to think that the appearence of "rotation” of degenerate states is closely related
to the ”quantum number” of J?. Transition between a;,, and oy, (I = 1) can be made
by J;. Because there are two independent parameters u; and ugz in J, one can choose

a suitable relation between us and A = g such that
Jsaf ~a”

i.e. the transition between two degenerate states in Lie-algebra is made trough J3

operator. This is because of
(32, J3] # 0

(6) Happer degeneracy
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In the experiment for 87 R, molecular there appears new degeneracy (Happer etal.
2002) at the special £By (magnetic field), i.e. the Zeeman effect disappears at +B.

The model Hamiltonian reads
1
H:K-S+w(k+§)5z

where K is angular momentum and K? = K(K + 1). The spin s = 1 and x is scaled

magnetic field. It turns out that when

1
= =1 E=——.
T , 5

The conserved set is {K? G, = K,+S,}. For G = K+S we have G = k+1,k. The
eighenstates are specified in terms of three families: T, B and D. Only D-set possesses

the degeneracy.

Happer gives, for emple,the eigenstates for z = +1:
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and shows that

M=

apm = [2(K + ;)(K+m+ ;)]—é{_[(K—”H 1)2(K+m+ Dita,
(K—m)(K+m)]
2

N

as}

N

+(K+m)(K+m+1)]2ay + |

Bom = [2(K + ;)(K —m+ ;)]—%{[(K - m)Q(KﬂLm)};al

HE = m)(K —m 4 1)}y — [ EDEER T

N

where a1 = €1 ® e1, o = €9 R €, and a3 = e_1 ® €.
Question: what is the transition operator between apy and Gpy 7
The answer is Yangian.

Introducing

Ji = GS+ +bK_ £ (SiKz — SzKi)

we find

k+1
by choosing a = —;, b=0  fBpm -, A (Mm)apma1

and QDm KR Xo(Mm)Bpm-1
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. J_
by choosing a=—=,b=0  Bpn — N (m)apm,_1

J
apm — Xo(m)Bpm+1

The Yangian introduced here is only for S = 1, because for S = 1 there are two
independent coefficients in the combination of ay,as and a3 and there are two free
parameters in J. Hence the number of equations are equal to those of free parameters
(a and b), so we have solution. The numerical computaion shows that only s = 1 gives

rise to the new degeneracy that prefers the Yangian operation.

(7) New degeneracy of extended Breit-Rabi Hamiltonian
As was shown in the Happer’s model (H = K-S+ z(k + 3)S3) there appeared new
degeneracy for S = 1. It has been pointed out that the Zeeman effect cannot appear

for spin=3. Actually, in this case it yields for § = %

1
E: _Z —me3

where
wr, = [(1+2%)(k+ ;) + 2xm)](k + ;).
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Therefore the Happer’s type of degeneracy can only occur at w,, = 0 that means

m m?2 1
=" g 1- (k=K + -
= i) pz (k= K45)

i.e. the magnetic field should be complex.
However, the situation will be completely different, if a third spin is involved. For

simplicity we assume Sy = S, = S3 = 3 in the Hamiltonian:

H = —(aSy +bS3) - Sy + 2VabS? A = b/a

then besides two non-degenerate states, there appears the degenerate family:

Hozai% = —(aib)ofgié, for x = +1,
where
o 1 = V2N 111> £V 1T+ £ VA 111>
o1 = =V2A LI> FVALLTL A F V) TH>

The expaction value of ST are

<af lSflaf Ly >~ VA (z=1)
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< agvi%\Sﬂaai% >~ =V (= —1)
namely, at the special magnetic field (z = +1) the observed < S7 > still opposite to
each other for x = 41, but without Zeeman split.
The reason of the appearance of the new degeneracy is obvious. The two spins S,

and S3 here play the role of S =1 in comparison with Happer model.

(8) Super Y M (n = 4)-Lipatov model and Y (SO(6)).

Beisert et al(2002), Dolan-Nappi-Witten, (DNW) - - - proposed to take the quantum
correction of the delitation operator D (D € SO(4,2) as Hamiltonian for supper
YM(N = 4):

H = Z Hanrl

«

- R
Haa—i—l = 2Zh(])Po]za+17 h(]) = Z %7 h(O) =1
j k=1

where P7 is projector for the weight j of SU(2) and « stands for ”lattice” index. DNW
showed that

[H,Y(S0(6))] =0
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It turns out that the Hamiltonian H is nothing but Lipatov model (1994) which was
related to the Yang-Baxter form by Lipatov (1995), Faddeev and Korchemsky (1995).
Based on Tarasov, Takhtajan and Faddeev(1983) the R-matrix reads

() = F(u—s)I'(u+2s+1)
C Du—J)T(u+J+1)

where u is spectrum parameter and s the spin (arbitrary). The trigonometric Yang-

Baxterization (Jimbo) gives
R(u) =3 ps(0)Pla) (o =e")
=0

where Pj(q) is the ¢-deformed prodector with weight j. Taking the rational limit
(Cheng, Ge, Xue) we have

D(w)D(u + 1)

] :> . B P
Pi F(u—7)T(u+j+1)

Pi(q) = P;
The Hamiltonian for the lattices v and o + 1

d - y
H@H:hxbxmx@4xaﬁwm4mw*xhwxm
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is then

H= Z Hoza—i—l

where

. . 1
Hoot1 = {=¥(—Jaat+1) = ¥(Jaas1 +1) + (1 +2s) + (1 — 2s) — %HSZO
. . N S
= ()~ 0+ 1)+ 26(0) ~ T )Pl
J
It describes the QCD correction to the parton model. The diagonalization of Lipatov

model has been achieved by Lipatov and de Vega (2003). Noting that the j indicates
the block in the reducible block-diagonal form.

Using
Y +1) = 6(z) +
Bt =vE + Y
o(1) = ¢

o1



and hence

v +1) =91) + = ¢(1) + h(j)

Mu.
x|
|

e
Il
—

Y(—7) = ¥(1) + h(j) — lim 1

z—0

We obtain
Hoz,oa—l—l = (_2) Z h(j)PiaJrl
J
Separating the finite part from the infinity and normalizing to be unit H is nothing but
the 0D derived in super Y M (N = 4) with approximation. Therefore, DNW’s result
shows that the Lipatov’s model possesses Y (SO(6)) symmetry.

To obtain Y (SO(6)) in terms of RTT relation we start from the rational solution
of R-matrix whose general form for O(N) was firstly by Zamolodchikov and Zamolod-
chikov (1972) and extended through rational limit of trigonometric Yang-Baxteization
(Cheng, Ge, Xue, 1991):

042

R = ufu— ;(N —2)a]P 4+ auAy + [—ua + ?(N —2)|1
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where u is stpectrum parameter and « a free parameter allowed by YBE.

Here we adopt the convention of Jimbo:

Pa = 530!

(Aw)aa = 00 a

a,b,c,c=[—( 5

N =2n+1 for B, and N = 2n for C,,, D,,.
The R-matrix is given by

R = RP = u(u —2a)I +u(2u — a)P + 2uaAy

that is coinside with Zamolodchikov’s S-matrix (up to an over all factor considering
the CDD poles) with v = 1 and u = &.
Actually, Z’s s-matrix is universal, i.e. model independent.

S(0) = R(u) = Q*(wulu—2)[I+ 2P+ 1Ay

02 02
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1 2

= QF(u)u(u—2)[I — EP + mAN]
A 0 (L ;8
Qi(u) — F(i%r)\ 27r')9F(2 »277)

2

where \ = N—_2°

0 = iAu. Although the spectrum parameter u is one dimensional, but

u can be taken to be the cut-off in QFT, for example
u ~ In A?

where A? is Lorentz invariant, i.e. scalar. This is the reason why asymptotic behavior
of QFT model may be related to YB system.
For given ]Ei(u) one can easily obtain Hamiltonian by

OR(u)

S ()]s

H=|

for O(N).
However, the essential connection between Lipatov model and SO(6)-RTT formu-
lation is still missing.

Conclusion Remark
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There are still two open questions:
(1) How can the Yangian representations help to solve physical models.

(2) Direct evidences of Yangian in the real physics.
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