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In the last few decades, noninvasive imaging 
methods, such as Computed Tomography (CT) and 
magnetic Resonance Imaging (mRI), have been used 
for soil investigations. mRI allows complex insights 
into the processes occurring within the porous me-
dium. It has been used for tracing the water within 
the sample (votrubová et al. 2003), detecting the 
flow process during the infiltration-outflow experi-
ments (Sněhota & Císlerová 2005), estimating 
the temporal changes of the water content during 
the infiltration experiment within undisturbed 
heterogeneous soil samples in 1d or 2d mRI (amin 

et al. 1997; votrubová et al. 2003), investigating 
the transport processes with the use of various 
tracers (Herrmann et al. 2002a; Pohlmeier et al. 
2008), and many others. above that, 3d imaging 
can be done (Posadas et al. 1996; Herrmann et 
al. 2002a, b). In the study published by Baumann et 
al. (2002) the flow velocity in larger pores, diffusion 
of water, and preferential flow paths were directly 
measured in a packed column of seven distinct 
layers of natural sediments. a 3d rendering of the 
pore space was constructed to serve as an input 
data set for a numerical flow model.
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The main objective of the exploratory research 
presented is the evaluation and comparison of the 
vertical components of the velocity fields result-
ing from dripping irrigation. The measurements 
were done with two packed samples of different 
structures by means of 2d mRI. The flow of water 
and the propagation of a pulse of the ni(nO3)2 
tracer were monitored. also the effects of two 
consecutive tracer pulses were imaged with the 
aim of testing the potential influence of different 
solute concentrations on the signal intensity of 
the adsorption power.

MAteRIALs AnD MetHoDs

The measurements were done on 7 Tesla verti-
cal magnet system with a 40 mm Rf probe. flow 
experiments were monitored by the spin echo 
multi slice (SemS) sequence shown in figure 1. 
The mRI system employed is suitable for the use 
of Plexiglas cylinders of the outer diameter lim-
ited up to 40.0 mm. a set of tracer-infiltration 

experiments was performed on two 120 mm high 
Plexiglas cylinders of 30 mm inner diameter filled 
with packed homogeneous sand (fH31) and packed 
with the composite sand-soil (fH31, Cambisol) 
configuration, respectively.

frechen quartz sand (fH31) is a commercial prod-
uct with standardised values of its chemical and 
physical characteristics and with a high chemical 
purity. The SiO2 content is higher than 99% (www.
quarzwerke.com). a periodically manured loamy 
sand (Gleyic Cambisol) was sampled at Kalden-
kirchen, Germany. The soil samples taken from the 
ploughed topsoil horizon (ap) were sieved (2 mm) 
and air-dried. In figure 2, the grain-size analysis 
is shown using the dashed dark curve for the sand 
fH31 and the solid black line for the Cambisol soil 
(Kaldenkirchen). Just one vertical central slice of the 
sample is of interest (figure 3), the parameters being 
given in Table 1. The y-axis in all images denotes 
the vertical direction and the x-axis the position 
of a particular vertical within the sample.

The infiltration was provided through a dripping 
system consisting of HPLC pump, non-compressible 
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tubing, and the dripping head. The injection was 
arranged in such a way as to keep the HPLC pump 
system placed at a safe distance from the magnet. 
The dripping head was constructed as a one-point 
centric source unit, so the drops fell at the midpoint 
on the top of the sample. The uniform distribution 
of the infiltrating liquid was achieved by a thin 
highly permeable support plate placed on the top 
of the soil sample, thus the hydraulic contact was 
guaranteed. The tracer experiments were performed 
with a solution of nickel nitrate ni(nO3)2 in a con-
centration of 0.05 mol/l. Identically, the tracer was 
added to the dripping system outside the magnet, 
reaching the top of the sample in the form of drops. 
The tracer progression was monitored by its effect 
on the signal relaxation of 1H.

Two different experiments were designed and 
performed. The first one mapped the tracer trans-
port within a homogeneous system (experiment 1), 
the second one the transport within a composite 
sand-soil system (experiment 2). One minute 
scanning time step was chosen in both cases.

experiment 1

In experiment 1 the sand fH31 was packed care-
fully into the Plexiglas cylinder to the height of 
73 mm (figure 3). Table 1 shows the mR-settings 
for experiment 1. Initially, the sample was fully 
saturated. The dripping irrigation started right 
after the setting of a sample into the magnet. The 
HPLC pump was set to produce a flow rate of 
0.5 ml/min. for infiltration, deionized (dI) water 
of pH = 3.5 was used. When the steady state condi-
tion was achieved, one ml of 0.05 mol/l ni(nO3)2 
solution of pH = 3.8 was injected into the pump 
tubing system as a tracer pulse without interrupt-
ing the infiltration run. Six minutes after the pulse 
application the tracer front appeared in the area 
of interest defined by the dimensions of the pre-
selected field of view (fOv) (details in Table 1). 

The tracer drained away approximately 22 min 
after the pulse application.

experiment 2

In experiment 2, the column was filled to the 
heigt of 94.4 mm. The porous media was formed 
as a composite of the sand fH31 and Cambisol. 
for Cambisol, a bowl of u-shape was chosen to 
create a basin inside the sand body, see figure 3. 
The u-shape was assumed to act as a funnel to 
concentrate the flow into the Cambisol part of 
the composite sample. The design was tested in 
a series of previous experiments not discussed 
here. Table 1 summarises the main mR-settings 
for experiment 2. Similarly to experiment 1, the 
sample was fully saturated in advance. The HPLC 
pump for experiment 2 was set to produce a flow 
rate of 0.5ml/min. for infiltration, deionized (dI) 
water of pH = 3.5 was used. Two tracer pulses of 
the solution were added during the continuous 
infiltration. The first pulse with pH = 3.8 and the 
second one with pH = 6.0 were injected under the 
steady state conditions with a 30 min interval. af-
ter 30 min from the injection, the first pulse was 
assumed to be completely washed out from the 
column. The continuous infiltration was stopped 
70 min after the mR-acquisition had started. The 
start of mR-acquisition did not correspond to 
the start of the infiltration; to cover the steady 
state infiltration stage, it was delayed for about 
20 min.

for the data analyses, an IdL-Routine for the 
velocity field calculation was adapted after Herr- 
mann et al. (2002a). The signal distribution of 
the tracer along a particular vertical is supposed 
to be Gaussian. The smoothed raw data for each 
time step and each vertical were thus fitted with 
the Gauss function, as shown in figure 4. The 
vertical component of the flow velocity at each 
time interval was calculated as a distance between 

Table 1. The basic mR-settings for experiment 1 and experiment 2

TR  
(ms)

Te  
(ms)

data  
matrix 

Pixel size 
(mm)

fOv  
(mm)

Slice  
thickness (mm)

aT  
(s)

experiment 1 100 1.23 64 × 64 0.55 35 × 35 5 51

experiment 2 100 1.34 64 × 64 0.63 40 × 40 5 51

TR – repetition time; Te – time to echo; fOv – field of view for 2d vertical slices; aT – acquisition time
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the two consequent positions of the Gauss peak 
along the vertical divided by the corresponding 
imaging pace, see eq. (1).

     ∆y
vy = ––– ; ∆y = yT(i) – yT(i + 1); ∆t = T(i + 1) – T(i) (1)
        ∆t

where:
∆y –  vertical distance between the peaks positions 

(mm)
∆t –  time between the consequent image acquisitions 

(min), in this case the pace is regular, equal to one 
minute

In figure 5 the graphical explanation is given. 
The described calculation results in a field of 
vertical components of local flow velocities. The 
results are shown in figure 11.

ResULts AnD DIsCUssIon

Before the start of the tracer application a back-
ground (BG) image was taken to illustrate the 
steady state flow structure within the particular soil 
sample. for experiment 1, a schematic diagram of 
ni(nO3)2 progress is shown in figure 6. The points 
in the sample (pixels) where the tracer propagation 
started to be disturbed are marked in the zoomed 
pictures. It is evident that the measured signal was 
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weaker and, compared to the undisturbed locations, 
the propagation front became irregular (details in 
figure 7). The shape of the tracer plume can be 
interpreted as a result of the centric, one-point 
dripping system. In this case uniform distribution 
of the infiltrating liquid was not achieved. The 
shape of the tracer plume cannot be explained 
by the faster solute progress in the middle part 
of the sample, which is clearer, compared to the 
map of local velocities in figure 8. The darker 
coloured points (blue) in  figure 8 represent the 
locations with a faster solute progress. The basic 
statistics for the velocity field in experiment 1, 
namely the mean value (1.7 mm/min), the variance 
(0.52 mm/min), and the mean absolute deviation 
(0.45 mm/min), are summarised in Table 2.

experiment 2 was intended to assess the changes 
of the signal response, the result of the impact of 
a real soil body placed inside the sand sample. 
The results of the conservative transport given 
in figure 9 demonstrate the tracer propagation 
(pH = 3.8) within the composite sample. The left 
slice labelled BG illustrates the background signal 
coming from the composite sample. The higher 
signal intensity values originate from the Cam-
bisol body, especially from the parts apparently 
disturbed during the sample preparation. The 
disturbed domains create preferential pathways 
for the flowing solute.

In figure 9, the neighbouring slices at the times, 
labelled t7 and t10, indicate the locations in-
fluenced by the tracer at specific times, 7 and 
10 min, after the pulse appearance in the fOv. 
despite a favourable bowl shape, the flow largely 
bypassed the Cambisol body due to the contrasting 
hydraulic characteristics of the two soil materials 
used. The detailed image analysis revealed pixels 
within the Cambisol body that were marked by 
the passing tracer. The affected pixels from the 
Cambisol part formed a breakthrough path for 
the infiltrating solute, the tracer flowing preferen-
tially through the large voids. It may be possible 
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figure 6. experiment 1 – the illustration of the progress of the pulse motion within the sand fH31; in the background 
image (BG), enlarged on the left, two selected zones of disturbed structure are marked; the BG image was taken before 
the pulse application, when quasi-steady state flow had been reached; the impact of the disturbed structure on the 
pulse movement is apparent in the zoomed image t6; the row of images below describe the pulse motion during times 
t1–t15 (time gap at time t10 is due to the software problems)

Table 2. The statistics of the velocity fields in experiment 1 
and in experiment 2 (mm/min)

mean variance
mean 

absolute  
deviation

experiment 1 1.7 0.52 0.45

experiment 2 1.4 0.82 0.7
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pixels of equal depth (≈ layer 
37) are shown; two pixels of 
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that such voids were formed during the manual 
sample filling.

The plot on the left hand side of figure 10 de-
picts the temporal changes of the signal intensity 
along the vertical line x-dim = 13 which passes 
through the sand fH31 only and does not cross the 
Cambisol zone. The plot on the right hand side of 
figure 10 represents the temporal signal intensity 
changes along the vertical line x-dim = 29, which 
lies in the central part of the sample and crosses 
the bottom of the u-shape of the Cambisol body. 
In this vertical, the Cambisol material did not 
produce any signal at all. evidently, the solute 
found some preferential pathways through this 
zone diverting this vertical (note figure 9).

The vertical flow velocity field for experiment 2 
(pH = 3.8) was calculated. The velocities are de-
picted in figure 11. The flow was slower at the 
interface between the two soil materials. It can be 
assumed that at this boundary, the vertical com-
ponent of the flow lost its predominance and the 
horizontal component took over. This phenom-
enon can be explained by significantly different 
hydraulic characteristics. The material with a 
lower conductivity acts as a flow barrier.

In comparison with experiment 1, the velocity 
field in experiment 2 appears to be more het-
erogeneous, which is explicable considering the 
sample material arrangement. See the statistics for 
experiment 2, the mean value (1.4 mm/min), the 
variance (0.82 mm/min) and the mean absolute 
deviation (0.7 mm/min), and compare these with 
the statistics of experiment 1 in Table 2. 

as mentioned in the previous chapter, in ex-
periment 2, with the aim of testing the potential 
influence of the different tracer pHs on the mR 
signal intensity, two consecutive tracer pulses 
were done in addition. according to some papers 
(Harter 1983; altin et al. 1999), the acidity of a 

solute may have an impact on the tracer reactivity 
in the dependence on a certain pH threshold. The 
solutes with pH lower than this threshold are con-
servative, while a higher acidity leads to sorption. 
The temporal changes in the signal intensities at 
each point of the central vertical plane were thus 
studied consequently for two solutes of different 
pH values. for the lower pH value (pH < 5, in our 
case pH = 3.8), the transport may be considered 
as conservative, for the higher values as reactive 
(in our case pH = 6.0) (Harter 1983; altin et 
al. 1999).

The influence of the varying pH values of the 
applied tracer on the mR-signal intensity reflecting 
the flow of the solute is discussed below. The left 
plot in figure 12 shows the signal intensity along 
the vertical line x-dim = 13, which is the bound-
ary part of the sample where the flow goes just 
through the sand fH31. The dark solid line with 
symbols represents the first tracer pulse of pH 
= 3.8, the second lighter dashed line depicts the 
second tracer pulse of pH = 6.0. The plot on the 
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figure 11. The velocity field in experiment 2 (pH = 3.8)



46 

Soil & Water Res., 5, 2010 (2): 39–48

right in figure 12 shows the signal intensity along 
the vertical line x-dim = 22, which intersects both 
materials, the sand and the Cambisol. Both plots 
correspond to the time t7 (compare with figure 9). 
despite the manual performance of the experiment 
(hand-operated screening and pulse application), 
we obtained two well corresponding data sets. The 
courses of the shape and volume of both curves 
are in a good agreement. In some other verticals, 
the shape of the curve, i.e. the result of the second 
pulse, resembles the shape of the curve from the 
first tracer pulse, but the volume (integral) differs 
slightly (the left plot in figure 12). Changing the 
structure of the porous media or some effects of 
the air dissolution could be a possible reason. In 
the studied case, the range of the varying pH value 
of the tracer seems to have no significant effect on 
the signal intensity within the sand fH31.

By assessing the variation in maximum dif-
ferences of the signal intensities at each point 

(pixel) during the two tracer pulses experiments, 
we obtained the maps of the domains which were 
more or less affected by the passing tracer/flow 
(figure 13a, b). Subsequently, the two consecu-
tive tracer pulses experiments were compared by 
simple subtraction (a) – (b) (figure 13c). for each 
point in figure 13a, the value was calculated as a 
difference between the background signal intensity 
and maximum signal intensity reached following 
the first tracer application breakthrough at this 
point. The background signal intensity value is 
the value that corresponds to the signal intensity 
during the steady state infiltration experiment 
as measured before the tracer application. an 
analogous calculation was done for the second 
application of the tracer, figure 13b. The diffe-
rence between 13a–13b is shown in figure 13c 
in which the green colour represents the pixels 
with no change in signal intensity between the two 
tracer runs. On the other hand, the red and blue 
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colours depict the pixels with a marked difference 
between the two tracer applications.

ConCLUsIons

The flow velocity field was evaluated in the 
tracer-infiltration experiments performed on a 
sand column sample and on a system of sand-
Cambisol composition. Small disturbances in the 
tracer front propagation were observed during 
the breakthrough in both cases. Only the vertical 
component was calculated for the velocity field. 
This simplification suits better the homogeneous 
sample, where the variation of the velocity value 
was lower than in the case of the composite system. 
These small disturbances can be related to the 
way of the sample packing resulting in the pref-
erential flow phenomena possibly in combination 
with air bubble entrapment. With the composite 
system, the flow was not predominantly vertical 
on the interface between the soils layers but the 
horizontal component significantly influenced 
the velocity field (note the velocity field in fig-
ure 11). The u-shape body of Cambisol acted as 
a flow barrier. Infiltrating solute tried to pass by 
this barrier and found preferential pathways along 
the layer interfaces and disturbances within the 
Cambisol body.

The influence of the varying pH value of the 
ni(nO3)2 tracer was investigated in the case of 
the composite sample. no remarkable changes 
occurred with the sand fH31 in the signal inten-
sity coming from the first pulse of pH = 3.8 in 
comparison to the signal intensity resulting from 
the second pulse of pH = 6. This finding is in a 
good agreement with the adsorption isotherm 
measurement, where no adsorption was moni-
tored for the sand fH31. In the case of Cambisol, 
a weak adsorption was measured at higher pHs 
(adsorption isotherms were performed in the fZ 
Jülich). for the selected range of pH in both cases 
studied, the tracer acidity did not influence the 
measured mR signal intensity.

The presented project was designed as a pre-
liminary work for future research. The small scale 
investigation used in this study was limited by the 
technical abilities of the research centre Jülich at 
the time. further investigation has been done with 
respect to the findings by Sněhota et al. (2008) 
focused on the assessment of the entrapped air. 
The study performed on large undisturbed sam-

ples implies the linear relationship between the 
quasi steady state flow rate and the entrapped 
air content.

The mRI technique serves as a good tool to study 
the flow and transport processes in soil. However, 
the need to improve the devices and investigatory 
methods is still enormous, especially as concerns 
undisturbed natural soils. 
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