Multiple randomizations

R. A. Bailey
2 Qó Queen Mary
University of London
r.a.bailey@qmul.ac.uk

joint work with C. J. Brien, University of South Australia

2006 International Conference on Design of Experiments and its
Applications,
9-13 July 2006, Tianjin, P. R. China

Designing a simple experiment: Fisher (1935), Cox (1958), Nelder (1965)
t treatments $\longrightarrow \quad b$ blocks of t plots each
systematic design AND randomization

Designing a simple experiment:
Fisher (1935), Cox (1958), Nelder (1965)
t treatments $\longrightarrow \quad b$ blocks of t plots each
systematic design AND randomization
What happens when we need to do 2 or more randomizations?

Designing a simple experiment:
Fisher (1935), Cox (1958), Nelder (1965)
t treatments $\longrightarrow \quad b$ blocks of t plots each
systematic design AND randomization
What happens when we need to do 2 or more randomizations?
For example,

- two-phase experiments,

Designing a simple experiment:
Fisher (1935), Cox (1958), Nelder (1965)
t treatments $\longrightarrow \quad b$ blocks of t plots each
systematic design AND randomization
What happens when we need to do 2 or more randomizations?
For example,

- two-phase experiments,
- multistage reprocessing experiments,

Designing a simple experiment:
Fisher (1935), Cox (1958), Nelder (1965)
t treatments $\longrightarrow \quad b$ blocks of t plots each
systematic design AND randomization
What happens when we need to do 2 or more randomizations?
For example,

- two-phase experiments,
- multistage reprocessing experiments,
- superimposed experiments,

Designing a simple experiment:
Fisher (1935), Cox (1958), Nelder (1965)
t treatments $\longrightarrow \quad b$ blocks of t plots each
systematic design AND randomization
What happens when we need to do 2 or more randomizations?
For example,

- two-phase experiments,
- multistage reprocessing experiments,
- superimposed experiments,
- ...

Plan of talk

1. Introduction $\sqrt{ }$

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations
3.3 Independent randomizations

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations
3.3 Independent randomizations
3.4 Double randomizations

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations
3.3 Independent randomizations
3.4 Double randomizations
4. Two randomizations where order matters

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations
3.3 Independent randomizations
3.4 Double randomizations
4. Two randomizations where order matters
4.1 Randomized-inclusive randomizations

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations
3.3 Independent randomizations
3.4 Double randomizations
4. Two randomizations where order matters
4.1 Randomized-inclusive randomizations
4.2 Unrandomized-inclusive randomizations

Plan of talk

1. Introduction $\sqrt{ }$
2. Concepts and terminology for a single randomization
3. Two randomizations independent of order
3.1 Composed randomizations
3.2 Coincident randomizations
3.3 Independent randomizations
3.4 Double randomizations
4. Two randomizations where order matters
4.1 Randomized-inclusive randomizations
4.2 Unrandomized-inclusive randomizations
5. Three or more randomizations

Concepts and terminology

A tier is a set of factors with the same status in randomization.

Concepts and terminology

A tier is a set of factors with the same status in randomization.
randomized
t treatments t Treatments

Concepts and terminology

A tier is a set of factors with the same status in randomization.

Concepts and terminology

A tier is a set of factors with the same status in randomization.
A panel shows a poset block structure: a list of factors, their numbers of levels, their nesting relationships.

Concepts and terminology

A tier is a set of factors with the same status in randomization.
A panel shows a poset block structure: a list of factors, their numbers of levels, their nesting relationships.
$B \wedge P=$ generalized factor whose levels are all combinations of the levels of B and P.

Concepts and terminology

A tier is a set of factors with the same status in randomization.
A panel shows a poset block structure: a list of factors, their numbers of levels, their nesting relationships.
$B \wedge P=$ generalized factor whose levels are all combinations of the levels of B and P.
" P is nested in B " means that $B \wedge P$ is a meaningful factor but P is not.
t treatments t Treatments

First phase of a sensory experiment
(Brien, 1983)

First phase of a sensory experiment

(Brien, 1983)

Systematic design: each treatment once per block

First phase of a sensory experiment

Systematic design: each treatment once per block
Randomization: randomize blocks
randomize plots in each block independently

First phase of a sensory experiment

Systematic design: each treatment once per block
Randomization: randomize blocks
randomize plots in each block independently
The arrow from the randomized tier to the unrandomized tier indicates both

- a systematic design (with extra explanation if necessary)

First phase of a sensory experiment

Systematic design: each treatment once per block
Randomization: randomize blocks
randomize plots in each block independently
The arrow from the randomized tier to the unrandomized tier indicates both

- a systematic design (with extra explanation if necessary)
- the randomization: permute the (names of the) objects in the unrandomized set by a permutation chosen at random from among all those that preserve the relevant structure.

A poultry-feeding experiment

A poultry-feeding experiment

How do we read this diagram?

A poultry-feeding experiment

How do we read this diagram?

- There are 8 treatments:
all combinations of 4 quantities and 2 sources of protein.

A poultry-feeding experiment

How do we read this diagram?

- There are 8 treatments:
all combinations of 4 quantities and 2 sources of protein.
- - denotes the generalized factor $\mathrm{Q} \wedge \mathrm{S}$ with 8 levels.

A poultry-feeding experiment

How do we read this diagram?

- There are 8 treatments: all combinations of 4 quantities and 2 sources of protein.
- - denotes the generalized factor $\mathrm{Q} \wedge \mathrm{S}$ with 8 levels.
- There are 4 rooms; each room contains 8 cages of chickens.

A poultry-feeding experiment

How do we read this diagram?

- There are 8 treatments:
all combinations of 4 quantities and 2 sources of protein.
- - denotes the generalized factor $\mathrm{Q} \wedge \mathrm{S}$ with 8 levels.
- There are 4 rooms; each room contains 8 cages of chickens.
- The systematic design allocates each level of $Q \wedge S$ to one cage in each room.

A poultry-feeding experiment

How do we read this diagram?

- There are 8 treatments:
all combinations of 4 quantities and 2 sources of protein.
- - denotes the generalized factor $\mathrm{Q} \wedge \mathrm{S}$ with 8 levels.
- There are 4 rooms; each room contains 8 cages of chickens.
- The systematic design allocates each level of $Q \wedge S$ to one cage in each room.
- (Rooms are randomized); and cages are randomized within rooms.

A clinical trial (R. F. White, 1975)

A clinical trial (R. F. White, 1975)

60 patients
How do we read this diagram?

A clinical trial (R. F. White, 1975)

60 patients
How do we read this diagram?

- There are 2 therapies.

A clinical trial (R. F. White, 1975)

How do we read this diagram?

- There are 2 therapies.
- There are 10 doctors; each doctor has 6 patients.

A clinical trial (R. F. White, 1975)

How do we read this diagram?

- There are 2 therapies.
- There are 10 doctors; each doctor has 6 patients.
- The systematic design allocates each therapy to 5 doctors.

A clinical trial (R. F. White, 1975)

How do we read this diagram?

- There are 2 therapies.
- There are 10 doctors; each doctor has 6 patients.
- The systematic design allocates each therapy to 5 doctors.
- Doctors are randomized; (and patients are randomized within doctors).

A greenhouse split-split plot experiment (R. Mead, 1988)

Two arrows but a single randomization

A greenhouse split-split plot experiment

 (R. Mead, 1988)

Two arrows but a single randomization

- There are 4 blocks; each block contains 2 compartments; each compartment contains 2 troughs, each split into 2 halves.

A greenhouse split-split plot experiment

 (R. Mead, 1988)

4 treatments
32 experimental units

Two arrows but a single randomization

- There are 4 blocks; each block contains 2 compartments; each compartment contains 2 troughs, each split into 2 halves.
- Each air temperature is allocated to one compartment in each block, and each soil temperature to one half of each trough.

A greenhouse split-split plot experiment (R. Mead, 1988)

4 treatments
32 experimental units

Two arrows but a single randomization

- There are 4 blocks; each block contains 2 compartments; each compartment contains 2 troughs, each split into 2 halves.
- Each air temperature is allocated to one compartment in each block, and each soil temperature to one half of each trough.
- Blocks are randomized; compartments are randomized within blocks; troughs are randomized within compartments; and halves are randomized within troughs.

A micorarray experiment

A micorarray experiment

- There is 1 'control' treatment (labelled 0) and 4 other treatments.

A micorarray experiment

- There is 1 'control' treatment (labelled 0) and 4 other treatments.
- O shows that we need to know a specific (non-orthogonal) design for the allocation of the treatments to the dye-slide combinations, such as

Composed randomizations: Order does not matter

randomized \qquad
randomized

A two-phase sensory experiment

(T. B. Bailey, 2003)

2 Rosemary 3 Irradiation	3 Blocks $\rightarrow 6$ Meatloaves in B	. 3 Replicates -12 Panellists in R - 6 Time-orders in R
6 treatments	18 meatloaves	216 tastings

A two-phase sensory experiment

(T. B. Bailey, 2003)

2 Rosemary 3 Irradiation	3 Blocks $\rightarrow 6$ Meatloaves in B	. 3 Replicates - 12 Panellists in R 6 Time-orders in R
6 treatments	18 meatloaves	216 tastings

The first phase uses a complete-block design

A two-phase sensory experiment

(T. B. Bailey, 2003)

The first phase uses a complete-block design

The second phase uses an orthogonal design, indicated by \oplus : two 6×6 Latin squares in each replicate

A two-phase sensory experiment

(T. B. Bailey, 2003)

The first phase uses a complete-block design

The second phase uses an orthogonal design, indicated by \oplus : two 6×6 Latin squares in each replicate

No knowledge of the outcome of the first randomization is needed in order to perform the second.

A continuous grazing experiment (Brien and Demétrio, 1998)

A single-phase experiment with two randomizations

Cotton fibres (D. R. Cox, 1958)

5 Treatments
5 treatments
:---:
5 Plots in B
3 Blocks

The first phase uses a complete-block design.

Cotton fibres (D. R. Cox, 1958)

	2 Fibres in B, P 5 3 Plots in B 3 Blocks $\mathrm{F}_{1}-2$ Operatives	
5 Treatments		
5 treatments	30 fibres	30 tests

The first phase uses a complete-block design.
In the second phase, 2 fibres of cotton are sampled from each plot, and each operative tests one fibre per plot.

Cotton fibres (D. R. Cox, 1958)

	2 Fibres in B, P 5 Plots in B 3 Blocks$+\bullet \mathrm{F}_{1} \longrightarrow 2$ Operatives	
Treatments		
5 treatments	30 fibres	30 tests

The first phase uses a complete-block design.
In the second phase, 2 fibres of cotton are sampled from each plot, and each operative tests one fibre per plot.
F_{1} is a pseudofactor-no inherent meaning
-shown outside the panel
-levels randomized independently in each plot

Cotton fibres (D. R. Cox, 1958)

5 Treatments
5 treatments
:---:
5 Plots in B
3 Blocks

The first phase uses a complete-block design.
In the second phase, 2 fibres of cotton are sampled from each plot, and each operative tests one fibre per plot.
F_{1} is a pseudofactor-no inherent meaning
-shown outside the panel
-levels randomized independently in each plot
Randomization is not consonant: Fibres are nested in Blocks \wedge Plots Tests are nested in Operatives

Coincident randomizations: Order does not matter

Levels of some
factors from the two randomized tiers are associated by randomization.

Some effect from one randomized tier is confounded with some effect from the other randomized tier.

A plant experiment

12 seedlings of each of 5 varieties are put into individual pots; these 60 pots are randomly assigned to 6 benches in such a way that there are 2 seedlings of each variety on each bench.

$S_{1} \wedge S_{2}=$ Seedlings

A plant experiment

12 seedlings of each of 5 varieties are put into individual pots; these 60 pots are randomly assigned to 6 benches in such a way that there are 2 seedlings of each variety on each bench.
2 spray regimes are randomly assigned to the benches so that each is applied to the pots on 3 benches.

$S_{1} \wedge S_{2}=$ Seedlings

A plant experiment

12 seedlings of each of 5 varieties are put into individual pots; these 60 pots are randomly assigned to 6 benches in such a way that there are 2 seedlings of each variety on each bench.
2 spray regimes are randomly assigned to the benches so that each is applied to the pots on 3 benches.

$S_{1} \wedge S_{2}=$ Seedlings
1 df for Seedlings in Varieties is confounded with Regimes.

Independent randomizations: Order does not matter

All combinations
of levels of the factors from the two randomized tiers occur.

There is no confounding of effects from the two randomized tiers.

Superimposed experiment using split plots

A randomized complete block experiment with b blocks is set up to investigate the yield differences between r rootstocks for orange trees, each plot containing t trees.

Superimposed experiment using split plots

A randomized complete block experiment with b blocks is set up to investigate the yield differences between r rootstocks for orange trees, each plot containing t trees.
After several years of running this initial experiment, it is decided to incorporate t fertilizer treatments by randomizing them to the t trees in each plot.

Double randomizations: Order does not matter

One unrandomized set has the same size as the doubly randomized set; the other contains the observational units.

Degenerate case of randomizedinclusive randomization.

An improperly replicated rotational grazing experiment

Combinations of 3 levels of availability and 4 rotations are applied completely at random to 12 paddocks.

An improperly replicated rotational grazing experiment

Combinations of 3 levels of availability and 4 rotations are applied completely at random to 12 paddocks. Also, the levels of availability are assigned completely at random to 15 animals so that each level of availability is assigned to 5 animals.

An improperly replicated rotational grazing experiment

Combinations of 3 levels of availability and 4 rotations are applied completely at random to 12 paddocks. Also, the levels of availability are assigned completely at random to 15 animals so that each level of availability is assigned to 5 animals. The 5 animals are then grazed together in sequence on the 4 paddocks assigned to that level of availability; the sequence of 4 paddocks is determined by the rotations assigned to them.

Two randomizations where order matters

- Now order matters (previously it did not).

Two randomizations where order matters

- Now order matters (previously it did not).
- We cannot ignore either tier from the first randomization when doing the second randomization.

Two randomizations where order matters

- Now order matters (previously it did not).
- We cannot ignore either tier from the first randomization when doing the second randomization.
- The two tiers from the first randomization form a pseudotier for the second randomization.

Two randomizations where order matters

- Now order matters (previously it did not).
- We cannot ignore either tier from the first randomization when doing the second randomization.
- The two tiers from the first randomization form a pseudotier for the second randomization.
- Two types:

Two randomizations where order matters

- Now order matters (previously it did not).
- We cannot ignore either tier from the first randomization when doing the second randomization.
- The two tiers from the first randomization form a pseudotier for the second randomization.
- Two types:
- randomized-inclusive: both tiers from the first randomization form the randomized pseudotier for the second randomization;

Two randomizations where order matters

- Now order matters (previously it did not).
- We cannot ignore either tier from the first randomization when doing the second randomization.
- The two tiers from the first randomization form a pseudotier for the second randomization.
- Two types:
- randomized-inclusive: both tiers from the first randomization form the randomized pseudotier for the second randomization;
- unrandomized-inclusive: both tiers from the first randomization form the unrandomized pseudotier for the second randomization.

Randomized-inclusive randomizations: Order does matter

randomized
\rightarrow unrandomized
randomized
\longrightarrow unrandomized

Randomized-inclusive randomizations: Order does matter

> randomized
\rightarrow unrandomized

The dashed box shows the pseudotier.

A Two-Phase Wheat Variety Trial

(Haskard)

A Two-Phase Wheat Variety Trial

(Haskard)

- There are two randomizations:

A Two-Phase Wheat Variety Trial
 (Haskard)

- There are two randomizations:
- Field phase: 49 lines of wheat in 4 complete blocks.

A Two-Phase Wheat Variety Trial (Haskard)

- There are two randomizations:
- Field phase: 49 lines of wheat in 4 complete blocks.
- Laboratory phase: one sample from each plot is analysed in a gas chromatograph which processes 7 samples per run.

A Two-Phase Wheat Variety Trial (Haskard)

- There are two randomizations:
- Field phase: 49 lines of wheat in 4 complete blocks.
- Laboratory phase: one sample from each plot is analysed in a gas chromatograph which processes 7 samples per run.
- Randomized-inclusive randomization needed because

A Two-Phase Wheat Variety Trial (Haskard)

- There are two randomizations:
- Field phase: 49 lines of wheat in 4 complete blocks.
- Laboratory phase: one sample from each plot is analysed in a gas chromatograph which processes 7 samples per run.
- Randomized-inclusive randomization needed because
- Lines are randomized to Plots in Blocks;

A Two-Phase Wheat Variety Trial (Haskard)

- There are two randomizations:
- Field phase: 49 lines of wheat in 4 complete blocks.
- Laboratory phase: one sample from each plot is analysed in a gas chromatograph which processes 7 samples per run.
- Randomized-inclusive randomization needed because
- Lines are randomized to Plots in Blocks;
- Plots in Blocks are randomized to more than one factor ...

A Two-Phase Wheat Variety Trial (Haskard)

- There are two randomizations:
- Field phase: 49 lines of wheat in 4 complete blocks.
- Laboratory phase: one sample from each plot is analysed in a gas chromatograph which processes 7 samples per run.
- Randomized-inclusive randomization needed because
- Lines are randomized to Plots in Blocks;
- Plots in Blocks are randomized to more than one factor ...
- ... and are not balanced with respect to them.

A Two-Phase Wheat Variety Trial

(Haskard)

A Two-Phase Wheat Variety Trial
 (Haskard)

- In each block, represent 49 Plots by 2 pseudofactors P_{1} and P_{2} with 7 levels; confound P_{1} with Runs and P_{2} with Times.

A Two-Phase Wheat Variety Trial

- In each block, represent 49 Plots by 2 pseudofactors P_{1} and P_{2} with 7 levels; confound P_{1} with Runs and P_{2} with Times.
- Lines will be hopelessly confounded unless we take account of them when creating P_{1} and P_{2}.

A Two-Phase Wheat Variety Trial (Haskard)

- In each block, represent 49 Plots by 2 pseudofactors P_{1} and P_{2} with 7 levels; confound P_{1} with Runs and P_{2} with Times.
- Lines will be hopelessly confounded unless we take account of them when creating P_{1} and P_{2}.
- Construct a balanced lattice square on the 49 Lines using pseudofactors L_{1} for the rows and L_{2} for the columns in the first replicate, \ldots

A Two-Phase Wheat Variety Trial
 (Haskard)

- In each block, represent 49 Plots by 2 pseudofactors P_{1} and P_{2} with 7 levels; confound P_{1} with Runs and P_{2} with Times.
- Lines will be hopelessly confounded unless we take account of them when creating P_{1} and P_{2}.
- Construct a balanced lattice square on the 49 Lines using pseudofactors L_{1} for the rows and L_{2} for the columns in the first replicate, \ldots
- shows that P_{1} is defined by L_{1} in the first block, \ldots

Unrandomized-inclusive randomizations:
 Order does matter

Unrandomized-inclusive randomizations:
 Order does matter

The dashed box shows the pseudotier.

Superimposed Experiment in a Row-Column Design

 (Freeman, 1959)

Superimposed Experiment in a Row-Column Design

 (Freeman, 1959)

- Originally, 10 rootstocks were tested in 3 complete blocks, for 20 years.

Superimposed Experiment in a Row-Column Design

 (Freeman, 1959)

- Originally, 10 rootstocks were tested in 3 complete blocks, for 20 years.
- Now assign 5 virus treatments to block-rootstock combinations.

Superimposed Experiment in a Row-Column Design (Freeman, 1959)

- Originally, 10 rootstocks were tested in 3 complete blocks, for 20 years.
- Now assign 5 virus treatments to block-rootstock combinations.
- In the superimposed experiment, both the systematic design and the method of randomization are constrained by the outcome of the first randomization.

Superimposed Experiment in a Row-Column Design

 (Freeman, 1959)

Superimposed Experiment in a Row-Column Design (Freeman, 1959)

$-\square$ shows that we need to know a specific (non-orthogonal) design for the allocation of the virus treatments to the block-rootstock combinations (from different tiers), such as

		Rootstocks									
		1	2	3	4	5	6	7	8	9	10
Blocks	I	A	B	A	C	D	C	B	E	E	D
	II	D	E	B	D	E	A	C	C	A	B
	III	E	A	C	E	B	D	D	B	C	A

Superimposed Experiment in a Row-Column Design (Freeman, 1959)

$-\square$ shows that we need to know a specific (non-orthogonal) design for the allocation of the virus treatments to the block-rootstock combinations (from different tiers), such as

		Rootstocks									
		1	2	3	4	5	6	7	8	9	10
	I	A	B	A	C	D	C	B	E	E	D
Blocks	II	D	E	B	D	E	A	C	C	A	B
	III	E	A	C	E	B	D	D	B	C	A

- Randomize this design by randomizing blocks and randomizing rootstocks independently.

Three or more randomizations

All these ideas extend to three or more randomizations (four or more tiers) in a straightforward way.

Testing new telephone systems
(Lewis and Russell, 1998)

Testing new telephone systems

(Lewis and Russell, 1998)

- 16 people are divided into 8 pairs.

Testing new telephone systems

(Lewis and Russell, 1998)

- 16 people are divided into 8 pairs.
- Each pair attends for 1 session, ...

Testing new telephone systems

(Lewis and Russell, 1998)

- 16 people are divided into 8 pairs.
- Each pair attends for 1 session, ...
- ... during which they test 4 new telephone systems, by ...

Testing new telephone systems

 (Lewis and Russell, 1998)

- 16 people are divided into 8 pairs.
- Each pair attends for 1 session, ...
- ... during which they test 4 new telephone systems, by ...
- ... one person looking at a picture and describing it to the other.

Testing new telephone systems

 (Lewis and Russell, 1998)

- 16 people are divided into 8 pairs.
- Each pair attends for 1 session, ...
- ... during which they test 4 new telephone systems, by ...
- ... one person looking at a picture and describing it to the other.
- Pictures are randomized to times.

Testing new telephone systems

 (Lewis and Russell, 1998)

- 16 people are divided into 8 pairs.
- Each pair attends for 1 session, ...
- ... during which they test 4 new telephone systems, by ...
- ... one person looking at a picture and describing it to the other.
- Pictures are randomized to times.
- \oplus indicates two 4×4 Latin squares.

Read all about it!

Multiple randomizations
(with discussion)
C. J. Brien and R. A. Bailey
Journal of the Royal Statistical Society, Series B 68 (2006)
pages 571-609.

