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1 Introduction

Consider an infinite sequence of independent random vectors

(Xm, Ym), m = 1, 2, · · · ,

where the Xm have a common distribution function F and the Ym

have a common distribution function G. The components Xm and

Ym are also independent for each m.

Suppose both Xm and Ym are observable only when Xm ≥ Ym.

The observable pairs thus form a subsequence {j} of the original

sequence {m}. It is denoted by {(Uj, Vj), j = 1, 2, · · ·}.
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Here the subsequence is labeled consecutively for simplicity. The

limitation in observation induces dependence and the constraint Uj ≥
Vj in each pair j.

The vectors (Uj, Vj) remain iid. In describing the distributional

properties of any pair we shall use (X, Y ) to refer to any pair (Xm, Ym),

and (U, V ) to (Uj, Vj).

The random truncation model is defined by the joint distribution

H(x, y) of (U, V ). It is the conditional distribution of (X, Y ) given

[X ≥ Y ],

H(x, y) = P [U ≤ x, V ≤ y] = P [X ≤ x, Y ≤ y|X ≥ Y ].(1)

A problem of interest is to estimate the distribution function F

of X based on a randomly truncated sample of n iid observations

(Uj, Vj), j = 1, · · · , n.

Truncated data occur in astronomy, economics, [e.g. Woodroofe

(1985), Feigelson and Babu (1992)], epidemiology, biometry [e.g.

Wang, et al. (1986), Tsai, et al. (1987), He & Yang (1994)], and

possibly in other fields such as spike train data in neurophysiology.

The truncation event [X ≥ Y ], among other things, affects the

range of observation of the X . Only F0 defined by

F0(x) = P [X ≤ x|X ≥ aG](2)
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is estimable from the truncated sample (Uj, Vj), j = 1, · · · , n, where

aG = inf{y : G(y) > 0}

is the lower boundary of Y . We shall denote the upper boundary of

Y by

bG = sup{y : G(y) < 1}.(3)

Similar symbols, aF , bF , will be used for the boundaries of X .

Obviously, if aG ≤ aF , F0 = F . Analogously, define G0(y) =

P [Y ≤ y|Y ≤ bF ]. Thus if bF ≥ bG, G0 = G. Let I [A] denote the

indicator function of the event A. Let

F ∗
n (s) = n−1 ∑n

i=1 I [Ui ≤ s],(4)

(5)

G∗
n(s) = n−1 ∑n

i=1 I [Vi ≤ s],

(6)

Rn(s) = G∗
n(s) − F ∗

n (s−)(7)

(8)

= n−1 ∑n
i=1 I [Vi ≤ s ≤ Ui],

be the empirical processes of the data.

Here and in what follows, for any real function g, the left limit
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lim
y↑s

g(y) is denoted by g(s−) and the difference g(s) − g(s−) by the

curly brackets g{s}.

The nonparametric maximum likelihood estimates of F0 and G0

are given respectively by

Fn(x) = 1 − ∏

s≤x

[

1 − F ∗
n
{s}

Rn(s)

]

,(9)

(10)

Gn(x) =
∏

s>x

[

1 − G∗
n
{s}

Rn(s)

]

,(11)

where x ∈ (−∞,∞) and an empty product is set equal to one.

One of the results obtained by Woodroofe (1985) is that for any

continuous F and G,

sup
x

|Fn(x) − F0(x)| → 0 in probability as n → ∞.

If F and G are not continuous, the limit has to be modified. For

arbitrary F and G, there are two kinds of limit F0 and Fa where Fa

is defined by

Fa(x) = P [X ≤ x|X > aG].

If condition B1 : aF = aG, G{aG} = 0 and F{aF} > 0, holds,

then

sup
x

|Fn(x) − Fa(x)| → 0 a.s,

and √
n(Fn(x) − Fa(x))
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converges weakly to a function of Gaussian processes. Otherwise,

sup
x

|Fn(x) − F0(x)| → 0 a.s.

and √
n(Fn(x) − F0(x))

converges weakly to a function of Gaussian processes.

For the truncation probability α = P [X ≥ Y ], a proper estimate

is not the sample proportion but αn =
∫

Gn(s)dFn(s) where Fn and

Gn are product limit estimates of the distribution functions F and

G of X and Y , respectively. Under some conditions , αn is strongly

consistent estimator of the truncation probability α = P [X ≥ Y ].

In this talk we will show if the truncation probability α changes

with the data, the limit distribution will be a function of Poisson

Processes.

For censoring case, similar work can be find in Wellner (1985).

2 Main Results

For each positive integer n, consider an infinite sequence of nonnega-

tive independent random vectors (Xn,j, Yn,j), j = 1, 2, · · ·, where the

Xn,j have a common right continuous distribution function Fn and

the Yn,j have a common right continuous distribution function Gn

with Gn(0) = 0. The components Xn,j and Yn,j are also independent

for each j.
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Suppose both Xn,j and Yn,j are observable only when Xn,j ≥
Yn,j and the observation is denoted by {(Un,i, Vn,i), i = 1, 2, · · · , }.
Here the subsequence is labeled consecutively for simplicity. The

observational limitation induces the dependence and the constraint

Un,i ≥ Vn,i in each pair i.

However, the vectors (Un,i, Vn,i) remain iid. Let N(n) ≤ N(n +

1) ≤ ... be an integer sequence such that N(n) → ∞ as n → ∞.

Where and in what follows we use I [A] or IA for the indicator function

of the event A.

A problem of interest is to estimate the distribution function Fn of

Xn,j based on the randomly truncated sample of m(n) iid observa-

tions (Un,i, Vn,i), i = 1, · · · , m(n) with mn =
∑N(n)

j=1 I [Xn,j ≥ Yn,j] .

In what follows we suppose all the random variables are defined

on probability space (Ω,A, P ). Let

Ĥn(s) =
m(n)
∑

i=1
I [Un,i ≤ s] ,

K̂n(s) =
m(n)
∑

i=1
I [Vn,i ≤ s] , 0 ≤ s < ∞,

R̂n(s) = K̂n(s) − Ĥn(s−), 0 ≤ s < ∞,

the empirical processes of the data. Then

Ĥn(s) =
N(n)
∑

i=1
I [Xn,i ≤ s, Xn,i ≥ Yn,i] ,
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K̂n(s) =
N(n)
∑

i=1
I [Yn,i ≤ s, Xn,i ≥ Yn,i] .

Here and in what follows, for any real function g, the left limit

lim
y↑s

g(y) is denoted by g(s−) and the difference g(s) − g(s−) by the

curly brackets g{s}.

The nonparametric maximum likelihood estimate of Fn is given

by

F̂n(x) = 1 − ∏

s≤x









1 − Ĥn {s}
R̂n(s)









,

where an empty product is set equal to one.

The cumulative hazard function (see Woodroofe (1985)) Λ̂n of F̂n

is defined by

Λ̂n(x) =
∫ x

0

dF̂n(s)

1 − F̂n(s−)
=

∫ x

0

dĤn(s)

R̂n(s)
.

Let L = {(x, y); x ≥ y} be the subset of R2
+ = [0,∞) × [0,∞)

and r the Euclidean metric. The following conditions will be used

throughout.

Condition 1. For any (x, y) ∈ L, the limit

a(x, y) = lim
n

N(n)Gn(y)(1 − Fn(x))
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exists and is continuous on L. a(x, y) → 0 as x → ∞.

Condition 2. For t ≥ 0, the limit

lim
n

∫ t

0
b(t) = N(n)(1 − Fn(s−))dGn(s)

exists and is continuous.

Let x ∧ y = min(x, y). For (x, y) ∈ R2
+ define

Wn(x, y) = N(n)
∫ x

0

(∫ y

0
ILdGn

)

dFn,

W (x, y) = b(x ∧ y) − a(x, x ∧ y)

respectively. Then W is continuous on R2
+. Let R2

+ be the Borel

σ-field of R2
+ and

µn(D) =
∫

D
dWn,

µ(D) =
∫

D
dW, D ∈ R2

+, n ≥ 1.

We have

lim
n→∞Wn(x, y)

= lim
n

N(n)
∫ x∧y

0
(Fn(x) − Fn(s−))dGn(s)

=W (x, y).
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Hence for any continuous functions f : R2
+ → R+ = [0,∞) with

compact support, we get

lim
n

∫

fdµn =
∫

fdµ.(12)

Let M be the set of all locally finite measures on R2
+ and ρ the

metric of M which induces the topology. Then µn, µ ∈ M . For

any metric space (S, d), let C(S) denote the class of all bounded con-

tinuous function S → R+, and C1(S) the subclass of all functions in

C(S) with compact support. Let µn and µ be locally finite measures

on S.

According to Kallenberg(1976), for finite µn and µ, µn → µ weakly

if condition (12) is true for all f ∈ C(S). For random elements ξn

and ξ in (S, d), ξn → ξ weakly if Ef(ξn) → Ef(ξ) for all f ∈ C1(S)

and ξn → ξ weakly if Ef(ξn) → Ef(ξ) for all f ∈ C(S). It is clear

that ξn → ξ weakly if and only if P−1ξn → P−1ξ weakly.

Lemma 2.1 Let µn and µ be defined by (1). If µn(L) → µ(L) <

∞, then µn → µ weakly.

Lemma 2.2 Let ξn and ξ be defined above.

a). If µn(L) → µ(L) < ∞, then as random elments in (M, ρ),

ξn → ξ weakly.

b). For any T ∈ (0,∞), as random elements in MT , ξn → ξ

weakly.
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For 0 < T ≤ ∞ and j = 1 or 2, let Dj[0, T ) be the space of

right continuous function f : [0, T ) → Rj with left limits. Let d be

the metric that induces the Skorohod topology on Dj[0, T ). Then

(Dj[0, T ), d) is separable and complete.

Define a measurable mapping MT → D2[0, T ):

g(β) = (g1(β), g2(β)), β ∈ MT .(13)

with

g1(β)(t) = β [B(t)] ,

g2(β)(t) = β [D(t)] .

We have, for any t ∈ [0, T )

g(ξn)(t) = (Ĥn(t), K̂n(t))

=







N(n)
∑

j=1
IB(t)(Xn,j, Yn,j),

N(n)
∑

j=1
ID(t)(Xn,j, Yn,j)





 ,

g(ξ)(t) = (H(t), K(t)) = (ξ [B(t)] , ξ [D(t)]).

g(ξ), g(ξn), n = 1, 2, ... are random elements in (D2[0, T ), d). H

and K are Poisson processes with intensity function γ1(t) = µ(B(t))

and γ2(t) = µ(D(t)), respectively.
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Lemma 2.3 a). Let T ∈ (0,∞). As random elements in (D2[0, T ), d)

(Ĥn, K̂n) → (H, K) weakly, as n → ∞.(14)

b). If µn(L) → µ(L) < ∞, a) is true for T = ∞.

Theorem 2.4 a). Let T ∈ (0,∞). As random elements in

D1[0, T )

Λ̂n(t) =
∫ t

0

dĤn(s)

K̂n(s) − Ĥn(s−)
→ Λ(t) =

∫ t

0

dH(s)

K(s) − H(s−)

weakly.

b). If µn(L) → µ(L) < ∞, a) is true for T = ∞.

c). As random elements in M1, λ̂n → λ weakly.

Theorem 2.5 a). Let T ∈ (0,∞). As random elements in

D1[0, T )

F̂n(t) = 1 − ∏

s≤t









1 − Ĥn {s}
R̂n(s)









→ F̃ (t) ≡ 1 − ∏

s≤t
[1 − Λ {s}]

weakly.

b). If µn(L) → µ(L) < ∞, a) is true for T = ∞.

c). As random elements in M1, F̂n → F̃ weakly.
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Remark: Since H and K are Poisson processes, with probability

1 the orbit of the limit processes Λ and F̃ are step functions. The

condition µn(L) → µ(L) < ∞ implies that H(∞) = ξ(L) < ∞
a.s., hence with probability 1 the limit processes Λ and F̃ have only

finite jumps.
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