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1 Introduction

Consider an infinite sequence of independent random vectors
(Xmaym)am - 1727° "

where the X, have a common distribution function F' and the Y,,
have a common distribution function G. The components X, and
Y,, are also independent for each m.

Suppose both X, and Y,, are observable only when X,, > Y,,.
The observable pairs thus form a subsequence {j} of the original
sequence {m}. It is denoted by {(U;,V;),j =1,2,---}.
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Here the subsequence is labeled consecutively for simplicity. The
limitation in observation induces dependence and the constraint U; >
V; in each pair j.

The vectors (Uj, V;) remain iid. In describing the distributional

properties of any pair we shall use (X, Y) to refer to any pair (X, Y;,),
and (U, V) to (U, V)).

The random truncation model is defined by the joint distribution
H(x,y) of (U, V). It is the conditional distribution of (X,Y") given
X =Y,

(1) H(zx,y)=PlU<z,V<yl=PX<zVY<yX>Y]

A problem of interest is to estimate the distribution function F
of X based on a randomly truncated sample of n iid observations

(U]7V7)7] — 17‘”7”'

Truncated data occur in astronomy, economics, [e.g. Woodroofe
(1985), Feigelson and Babu (1992)], epidemiology, biometry [e.g.

Wang, et al. (1986), Tsai, et al. (1987), He & Yang (1994)], and
possibly in other fields such as spike train data in neurophysiology:.

The truncation event [X > Y|, among other things, affects the
range of observation of the X. Only F{ defined by

(2) Fy(x) = P[X < z|X > ag]
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is estimable from the truncated sample (U;,V;),j =1,---,n, where

ac = inf{y : G(y) > 0}

is the lower boundary of Y. We shall denote the upper boundary of
Y by

(3) be = sup{y : G(y) < 1}.

Similar symbols, ag, bp, will be used for the boundaries of X.

Obviously, if ag < ap, Fy = F. Analogously, define Gy(y) =
PlY < y|Y <bp]. Thus if bp > bg, Gy = G. Let I|A] denote the
indicator function of the event A. Let

(4) F(s) =n"' S I[U; < 8],

—~
(@x
N2

Gi(s) =n"' i I[Vi < o],

—~
-~ O
—_

Ry(s) = Gii(s) — F(s—)

—~
0.0
Nl

=n~'o IV < s < U,
be the empirical processes of the data.

Here and in what follows, for any real function g, the left limit
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thrng(y) is denoted by g(s—) and the difference g(s) — g(s—) by the
yTs
curly brackets g{s}.

The nonparametric maximum likelihood estimates of Fjy and Gy
are given respectively by

_ Fi{s}
(9) Fo(z) = 1= eer |1 — 3],
(10)

_ Gis)
(11) G() = T |1 — G4

where z € (—o00, 00) and an empty product is set equal to one.

One of the results obtained by Woodroofe (1985) is that for any
continuous £ and G,

sup | F(x) — Fo(z)| — 0 in probability as n — oo.

If FF and G are not continuous, the limit has to be modified. For
arbitrary F' and (G, there are two kinds of limit Fy and F), where F},
is defined by

F,(x) = P X <z|X > ag.

If condition Bl : ap = ag, G{ag} =0 and F{ar} > 0, holds,
then
sup | 1 (z) — Fa(z)] — 0 as,

and
Vn(Fa(x) — Fu(z))
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converges weakly to a function of Gaussian processes. Otherwise,
sup | F(z) — Fo(z)| = 0 a.s.
X

and
Vn(Fu(z) — Fy(z))

converges weakly to a function of Gaussian processes.

For the truncation probability « = P[X > Y|, a proper estimate
is not the sample proportion but a,, = f G, (s)dF,(s) where F;, and
(,, are product limit estimates of the distribution functions F' and
G of X and Y, respectively. Under some conditions , a;, is strongly
consistent estimator of the truncation probability a = P[X > Y.

In this talk we will show if the truncation probability a changes
with the data, the limit distribution will be a function of Poisson
Processes.

For censoring case, similar work can be find in Wellner (1985).

2 Main Results

For each positive integer n, consider an infinite sequence of nonnega-
tive independent random vectors (X, ;, Y5 ), = 1,2, - -, where the
X, ; have a common right continuous distribution function £, and
the Y, ; have a common right continuous distribution function G,
with G,,(0) = 0. The components X, ; and Y, ; are also independent
for each 7.



Suppose both X, ; and Y, ; are observable only when X, ; >
Y, ; and the observation is denoted by {(U,;, Vni),i=1,2,---, }.
Here the subsequence is labeled consecutively for simplicity. The
observational limitation induces the dependence and the constraint
Uni > V,.i in each pair <.

However, the vectors (U, ;, V,,;) remain iid. Let N(n) < N(n +
1) < ... be an integer sequence such that N(n) — oo as n — oc.

Where and in what follows we use I[A] or I 4 for the indicator function
of the event A.

A problem of interest is to estimate the distribution function F;, of
X,.; based on the randomly truncated sample of m(n) iid observa-

tions (Upi, Vai), @ = 1,---,m(n) with m,, = Zj'v:(?) I'Xn; 2 Yoyl

In what follows we suppose all the random variables are defined
on probability space (£2,.4, P). Let

Rn(s) — Kn(S) o I:]n(s_)a 0<s< o0,
the empirical processes of the data. Then

A

N(n)
Hn(s) — Z:l I [Xn,z < SaXn,i > Yn,z} )
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Here and in what follows, for any real function g, the left limit
thrng(y) is denoted by g(s—) and the difference g(s) — g(s—) by the
yTs

curly brackets g{s}.

The nonparametric maximum likelihood estimate of Fj, is given

by A
Fn — 1 - 1 - ~ 9
(37) sl;lx Rn(S) ]

where an empty product is set equal to one.

A A

The cumulative hazard function (see Woodroofe (1985)) A, of F,
is defined by

A T an S x dﬁn S
R Fj(z—) = Rn(i))'

Let L = {(z,y);x > y} be the subset of R% = [0,00) x [0, c0)
and r the Euclidean metric. The following conditions will be used
throughout.

Condition 1. For any (z,y) € L, the limit
a(z,y) =lm N(n)G,(y)(1 = Fu(z))
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exists and is continuous on L. a(z,y) — 0 as x — 0.
Condition 2. For ¢ > 0, the limit

hm/o (1 — F,(s—))dG,(s)
exists and i1s continuous.

Let x Ay = min(z,y). For (z,y) € R define

W, (x (n) [ ([ I.dG,) dF

Wi(x,y) =blzx ANy) —a(x,z Ay)

respectively. Then W is continuous on R%. Let R% be the Borel
o-field of Ri and

palD) = [, AV,
= [, dW, DeR:, n>1.

We have

lim W,(z,y)
=lim N(n) [

0 (F(x) — Fu(s—))dG(s)
=Wi(z,y).



Hence for any continuous functions f: R — R, = [0, 00) with
compact support, we get

(12) lim [ fdp, = [ fdp.

Let M be the set of all locally finite measures on R? and p the
metric of M which induces the topology. Then u,, u € M . For
any metric space (5, d), let C'(S) denote the class of all bounded con-
tinuous function S — R, and C1(S) the subclass of all functions in
C'(.S) with compact support. Let u, and p be locally finite measures

on .S.

According to Kallenberg(1976), for finite p,, and i, g, — p weakly
if condition (12) is true for all f € C(5). For random elements &,
and & in (S,d), & — & weakly if Ef(&,) — Ef(&) forall f € Cy(S)
and &, — & weakly if Ef(&,) — Ef(§) for all f € C(S). It is clear
that &, — & weakly if and only if P71, — P~'¢ weakly.

Lemma 2.1 Let p, and p be defined by (1). If (L) — p(L) <
oo, then w, — u weakly.

Lemma 2.2 Let &, and £ be defined above.

a). If u,(L) — p(L) < oo, then as random elments in (M, p),
&, — & weakly.

b). For any T € (0,00), as random elements in Mrp, &, — &
weakly.



For 0 < T < oo and j =1 or 2, let D;[0,T) be the space of
right continuous function f: [0,7) — R’ with left limits. Let d be
the metric that induces the Skorohod topology on D,[0,T). Then
(D,[0,T),d) is separable and complete.

Define a measurable mapping My — D5[0,T):
(13) 9(8) = (91(8), 32(8)), B € Mr.
with

q(B)(t) = B[B(1)],
g(0)(t) = :

We have, for any ¢t € [0,T)

g(&), g(&,), n = 1,2, ... are random elements in (Ds
and K are Poisson processes with intensity function ~q(
and o(t) = p(D(t)), respectively.

0,7),d). H
t) = p(B(1))
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Lemma 2.3 a). LetT € (0,00). As random elements in (D5[0,T),d)
(14) (H,, K,) — (H, K) weakly, as n — co.
b). If u,(L) — p(L) < 0o, a) is true for T = oo.

Theorem 2.4 a). Let T € (0,00). As random elements in
D1[07T)

dHu(s) dH(s)
U T s R e

weakly.
b). If po(L) — u(L) < oo, a) is true for T = oo.
c). As random elements in My, A\, — X\ weakly.

Theorem 2.5 a). Let T € (0,00). As random elements in

D10, 7)
Fyt)=1— |- fg’ g}] S F)=1- I —A{s)]
weakly.

b). If po(L) — u(L) < oo, a) is true for T = oo.
c). As random elements in My, F,, — F weakly.
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Remark: Since H and K are Poisson processes, with probability
1 the orbit of the limit processes A and F' are step functions. The
condition p,(L) — p(L) < oo implies that H(co) = &(L) < o0
a.s., hence with probability 1 the limit processes A and F have only
finite jumps.
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