Heavy Random Truncation *

Shuyuan He Dept of Prob. and Stat. Peking University, Beijing Grace L. Yang Department of Mathematics University of Maryland College Park, MD 20742

July 8, 2006

1 Introduction

Consider an infinite sequence of independent random vectors

$$(X_m, Y_m), m = 1, 2, \cdots,$$

where the X_m have a common distribution function F and the Y_m have a common distribution function G. The components X_m and Y_m are also independent for each m.

Suppose both X_m and Y_m are observable only when $X_m \ge Y_m$. The observable pairs thus form a subsequence $\{j\}$ of the original sequence $\{m\}$. It is denoted by $\{(U_j, V_j), j = 1, 2, \cdots\}$.

^{*}Research supported by National Natural Science Foundation of China(10231030)

¹

Here the subsequence is labeled consecutively for simplicity. The limitation in observation induces dependence and the constraint $U_j \ge V_j$ in each pair j.

The vectors (U_j, V_j) remain iid. In describing the distributional properties of any pair we shall use (X, Y) to refer to any pair (X_m, Y_m) , and (U, V) to (U_j, V_j) .

The random truncation model is defined by the joint distribution H(x, y) of (U, V). It is the conditional distribution of (X, Y) given $[X \ge Y]$,

$$(1) \quad H(x,y)=P[U\leq x,V\leq y]=P[X\leq x,Y\leq y|X\geq Y].$$

A problem of interest is to estimate the distribution function Fof X based on a randomly truncated sample of n iid observations $(U_j, V_j), j = 1, \dots, n.$

Truncated data occur in astronomy, economics, [e.g. Woodroofe (1985), Feigelson and Babu (1992)], epidemiology, biometry [e.g. Wang, et al. (1986), Tsai, et al. (1987), He & Yang (1994)], and possibly in other fields such as spike train data in neurophysiology.

The truncation event $[X \ge Y]$, among other things, affects the range of observation of the X. Only F_0 defined by

(2)
$$F_0(x) = P[X \le x | X \ge a_G]$$

is estimable from the truncated sample $(U_j, V_j), j = 1, \dots, n$, where

$$a_G = \inf\{y : G(y) > 0\}$$

is the lower boundary of Y. We shall denote the upper boundary of Y by

(3)
$$b_G = \sup\{y : G(y) < 1\}.$$

Similar symbols, a_F, b_F , will be used for the boundaries of X.

Obviously, if $a_G \leq a_F$, $F_0 = F$. Analogously, define $G_0(y) = P[Y \leq y | Y \leq b_F]$. Thus if $b_F \geq b_G$, $G_0 = G$. Let I[A] denote the indicator function of the event A. Let

(4)
$$F_n^*(s) = n^{-1} \sum_{i=1}^n I[U_i \le s],$$

(5)

$$G_n^*(s) = n^{-1} \sum_{i=1}^n I[V_i \le s],$$

(6)

(7)
$$R_n(s) = G_n^*(s) - F_n^*(s-)$$

(8)

$$= n^{-1} \sum_{i=1}^{n} I[V_i \le s \le U_i],$$

be the empirical processes of the data.

Here and in what follows, for any real function g, the left limit

 $\underset{y\uparrow s}{\lim}g(y)$ is denoted by g(s-) and the difference g(s)-g(s-) by the curly brackets $g\{s\}.$

The nonparametric maximum likelihood estimates of F_0 and G_0 are given respectively by

(9)
$$F_n(x) = 1 - \prod_{s \le x} \left[1 - \frac{F_n^*\{s\}}{R_n(s)} \right],$$

(10)

(11)
$$G_n(x) = \prod_{s>x} \left[1 - \frac{G_n^*\{s\}}{R_n(s)} \right],$$

where $x \in (-\infty, \infty)$ and an empty product is set equal to one.

One of the results obtained by Woodroofe (1985) is that for any continuous F and G,

$$\sup_{x} |F_n(x) - F_0(x)| \to 0 \quad in \quad probability \quad as \quad n \to \infty.$$

If F and G are not continuous, the limit has to be modified. For arbitrary F and G, there are two kinds of limit F_0 and F_a where F_a is defined by

$$F_a(x) = P[X \le x | X > a_G].$$

If condition B1: $a_F = a_G$, $G\{a_G\} = 0$ and $F\{a_F\} > 0$, holds, then

$$\sup_{x} |F_n(x) - F_a(x)| \to 0 \quad a.s,$$

and

$$\sqrt{n}(F_n(x) - F_a(x))$$

converges weakly to a function of Gaussian processes. Otherwise,

$$\sup_{x} |F_n(x) - F_0(x)| \to 0 \quad a.s.$$

and

$$\sqrt{n}(F_n(x) - F_0(x))$$

converges weakly to a function of Gaussian processes.

For the truncation probability $\alpha = P[X \ge Y]$, a proper estimate is not the sample proportion but $\alpha_n = \int G_n(s) dF_n(s)$ where F_n and G_n are product limit estimates of the distribution functions F and G of X and Y, respectively. Under some conditions, α_n is strongly consistent estimator of the truncation probability $\alpha = P[X \ge Y]$.

In this talk we will show if the truncation probability α changes with the data, the limit distribution will be a function of Poisson Processes.

For censoring case, similar work can be find in Wellner (1985).

2 Main Results

For each positive integer n, consider an infinite sequence of nonnegative independent random vectors $(X_{n,j}, Y_{n,j}), j = 1, 2, \cdots$, where the $X_{n,j}$ have a common right continuous distribution function F_n and the $Y_{n,j}$ have a common right continuous distribution function G_n with $G_n(0) = 0$. The components $X_{n,j}$ and $Y_{n,j}$ are also independent for each j.

Suppose both $X_{n,j}$ and $Y_{n,j}$ are observable only when $X_{n,j} \ge Y_{n,j}$ and the observation is denoted by $\{(U_{n,i}, V_{n,i}), i = 1, 2, \dots, \}$. Here the subsequence is labeled consecutively for simplicity. The observational limitation induces the dependence and the constraint $U_{n,i} \ge V_{n,i}$ in each pair *i*.

However, the vectors $(U_{n,i}, V_{n,i})$ remain iid. Let $N(n) \leq N(n + 1) \leq \dots$ be an integer sequence such that $N(n) \to \infty$ as $n \to \infty$. Where and in what follows we use I[A] or I_A for the indicator function of the event A.

A problem of interest is to estimate the distribution function F_n of $X_{n,j}$ based on the randomly truncated sample of m(n) iid observations $(U_{n,i}, V_{n,i}), i = 1, \dots, m(n)$ with $m_n = \sum_{j=1}^{N(n)} I[X_{n,j} \ge Y_{n,j}]$.

In what follows we suppose all the random variables are defined on probability space (Ω, \mathcal{A}, P) . Let

$$\hat{H}_{n}(s) = \sum_{i=1}^{m(n)} I \left[U_{n,i} \le s \right],$$
$$\hat{K}_{n}(s) = \sum_{i=1}^{m(n)} I \left[V_{n,i} \le s \right], \ 0 \le s < \infty,$$
$$\hat{R}_{n}(s) = \hat{K}_{n}(s) - \hat{H}_{n}(s-), \ 0 \le s < \infty,$$

the empirical processes of the data. Then

$$\hat{H}_n(s) = \sum_{i=1}^{N(n)} I \left[X_{n,i} \le s, X_{n,i} \ge Y_{n,i} \right],$$

$$\hat{K}_n(s) = \sum_{i=1}^{N(n)} I \left[Y_{n,i} \le s, X_{n,i} \ge Y_{n,i} \right].$$

Here and in what follows, for any real function g, the left limit $\lim_{y\uparrow s} g(y)$ is denoted by g(s-) and the difference g(s) - g(s-) by the curly brackets $g\{s\}$.

The nonparametric maximum likelihood estimate of F_n is given by

$$\hat{F}_n(x) = 1 - \prod_{s \le x} \left[1 - \frac{\hat{H}_n\{s\}}{\hat{R}_n(s)} \right],$$

where an empty product is set equal to one.

The cumulative hazard function (see Woodroofe (1985)) $\hat{\Lambda}_n$ of \hat{F}_n is defined by

$$\hat{\Lambda}_n(x) = \int_0^x \frac{d\hat{F}_n(s)}{1 - \hat{F}_n(s-)} = \int_0^x \frac{d\hat{H}_n(s)}{\hat{R}_n(s)}.$$

Let $L = \{(x, y); x \ge y\}$ be the subset of $R^2_+ = [0, \infty) \times [0, \infty)$ and r the Euclidean metric. The following conditions will be used throughout.

Condition 1. For any $(x, y) \in L$, the limit

$$a(x,y) = \lim_{n} N(n)G_n(y)(1 - F_n(x))$$

exists and is continuous on L. $a(x, y) \to 0$ as $x \to \infty$.

Condition 2. For $t \ge 0$, the limit

$$\lim_{n} \int_{0}^{t} b(t) = N(n)(1 - F_{n}(s-))dG_{n}(s)$$

exists and is continuous.

Let
$$x \wedge y = \min(x, y)$$
. For $(x, y) \in \mathbb{R}^2_+$ define

$$W_n(x,y) = N(n) \int_0^x \left(\int_0^y I_L dG_n \right) dF_n,$$

$$W(x,y) = b(x \land y) - a(x, x \land y)$$

respectively. Then W is continuous on R^2_+ . Let \mathcal{R}^2_+ be the Borel σ -field of R^2_+ and

$$\mu_n(D) = \int_D dW_n,$$

$$\mu(D) = \int_D dW, \quad D \in \mathcal{R}^2_+, \quad n \ge 1.$$

We have

$$\lim_{n \to \infty} W_n(x, y)$$

= $\lim_n N(n) \int_0^{x \wedge y} (F_n(x) - F_n(s-)) dG_n(s)$
= $W(x, y).$

Hence for any continuous functions $f: R^2_+ \to R_+ = [0, \infty)$ with compact support, we get

(12)
$$\lim_{n} \int f d\mu_n = \int f d\mu.$$

Let \mathcal{M} be the set of all locally finite measures on R^2_+ and ρ the metric of \mathcal{M} which induces the topology. Then $\mu_n, \mu \in \mathcal{M}$. For any metric space (S, d), let C(S) denote the class of all bounded continuous function $S \to R_+$, and $C_1(S)$ the subclass of all functions in C(S) with compact support. Let μ_n and μ be locally finite measures on S.

According to Kallenberg(1976), for finite μ_n and μ , $\mu_n \to \mu$ weakly if condition (12) is true for all $f \in C(S)$. For random elements ξ_n and ξ in $(S, d), \xi_n \to \xi$ weakly if $Ef(\xi_n) \to Ef(\xi)$ for all $f \in C_1(S)$ and $\xi_n \to \xi$ weakly if $Ef(\xi_n) \to Ef(\xi)$ for all $f \in C(S)$. It is clear that $\xi_n \to \xi$ weakly if and only if $P^{-1}\xi_n \to P^{-1}\xi$ weakly.

Lemma 2.1 Let μ_n and μ be defined by (1). If $\mu_n(L) \to \mu(L) < \infty$, then $\mu_n \to \mu$ weakly.

Lemma 2.2 Let ξ_n and ξ be defined above.

a). If $\mu_n(L) \to \mu(L) < \infty$, then as random elments in (\mathcal{M}, ρ) , $\xi_n \to \xi$ weakly.

b). For any $T \in (0, \infty)$, as random elements in \mathcal{M}_T , $\xi_n \to \xi$ weakly.

For $0 < T \leq \infty$ and j = 1 or 2, let $D_j[0,T)$ be the space of right continuous function $f: [0,T) \to R^j$ with left limits. Let d be the metric that induces the Skorohod topology on $D_j[0,T)$. Then $(D_j[0,T), d)$ is separable and complete.

Define a measurable mapping $\mathcal{M}_T \to D_2[0,T)$:

(13)
$$g(\beta) = (g_1(\beta), g_2(\beta)), \ \beta \in \mathcal{M}_T.$$

with

$$g_1(\beta)(t) = \beta [B(t)],$$

$$g_2(\beta)(t) = \beta [D(t)].$$

We have, for any $t \in [0, T)$

$$g(\xi_n)(t) = (\hat{H}_n(t), \hat{K}_n(t))$$

= $\left(\sum_{j=1}^{N(n)} I_{B(t)}(X_{n,j}, Y_{n,j}), \sum_{j=1}^{N(n)} I_{D(t)}(X_{n,j}, Y_{n,j})\right),$
 $g(\xi)(t) = (H(t), K(t)) = (\xi [B(t)], \xi [D(t)]).$

 $g(\xi), g(\xi_n), n = 1, 2, ...$ are random elements in $(D_2[0, T), d)$. Hand K are Poisson processes with intensity function $\gamma_1(t) = \mu(B(t))$ and $\gamma_2(t) = \mu(D(t))$, respectively.

Lemma 2.3 a). Let $T \in (0, \infty)$. As random elements in $(D_2[0, T), d)$ (14) $(\hat{H}_n, \hat{K}_n) \to (H, K)$ weakly, as $n \to \infty$. b). If $\mu_n(L) \to \mu(L) < \infty$, a) is true for $T = \infty$.

Theorem 2.4 a). Let $T \in (0, \infty)$. As random elements in $D_1[0,T)$

$$\hat{\Lambda}_n(t) = \int_0^t \frac{d\hat{H}_n(s)}{\hat{K}_n(s) - \hat{H}_n(s-)} \to \Lambda(t) = \int_0^t \frac{dH(s)}{K(s) - H(s-)}$$

weakly.

b). If
$$\mu_n(L) \to \mu(L) < \infty$$
, a) is true for $T = \infty$.
c). As random elements in \mathcal{M}_1 , $\hat{\lambda}_n \to \lambda$ weakly.

Theorem 2.5 a). Let $T \in (0, \infty)$. As random elements in $D_1[0, T)$

$$\hat{F}_n(t) = 1 - \prod_{s \le t} \left[1 - \frac{\hat{H}_n\{s\}}{\hat{R}_n(s)} \right] \to \tilde{F}(t) \equiv 1 - \prod_{s \le t} \left[1 - \Lambda\{s\} \right]$$

weakly.

b). If
$$\mu_n(L) \to \mu(L) < \infty$$
, a) is true for $T = \infty$.
c). As random elements in \mathcal{M}_1 , $\hat{F}_n \to \tilde{F}$ weakly.

Remark: Since H and K are Poisson processes, with probability 1 the orbit of the limit processes Λ and \tilde{F} are step functions. The condition $\mu_n(L) \to \mu(L) < \infty$ implies that $H(\infty) = \xi(L) < \infty$ a.s., hence with probability 1 the limit processes Λ and \tilde{F} have only finite jumps.

REFERENCES

Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley & Sons, New York.

Kallenberg, O. (1976). Random Measures. Academic Press, London.

- Prohorov, Yu. V. (1965). Convergence of random processes and limit theorems in probability theorem. Theor. Probab. Appl. 1 157-241.
- Wellner, J. A. (1985). A heavy censoring limit theorem for the product limit estimator. Ann. Statist. **13** 150-162.
- Woodroofe, M. (1985). Estimating a distribution function with truncated data, Ann. Statist. 13, 163-1177.