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Introduction

Model:

y (j , x) = αTe (j) + βT f (x) + ε, (1)

where j ∈ χJ and x = (x1, x2)
T ∈ R2, and

χJ = {1, · · · , J}: levels of the qualitative factor

e (j) = (0, · · · , 1, · · · , 0)T : corresponding to the covariate of the jth
qualitative level;

f (x) =
(
x1, x2, x1x2, x

2
1 , x2

2

)T
: real function vector;

α = (α1, · · · , αJ)
T and β = (β1, β2, β12, β11, β22)

T : unknown
parameters for qualitative and quantitative factors,respectively;

ε: a random variable with mean 0 and variance σ2.
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Assume there is no interactive effect between quantitative and
qualitative factors;

The design region for quantitative factors at each qualitative
level is χ =

{
x ∈ R2 : xTx ≤ 1

}
;

Model with only one qualitative level, i.e. J = 1 , can be
reduced as

E (y) = α + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 , (2)

it is the same as the second order response surface model with
only quantitative factors.
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An approximate design ζ:
a probability measure with finite supports on χJ × χ;

An exact design ζN :
N × ζN (j , x) is an integer ∀ (j , x) ∈ χJ × χ;

The information matrix of a design ζ on design space χJ × χ:

M (ζ) =

∫
χJ×χ

(
e (j) eT (j) e (j) f T (x)
f (x) eT (j) f (x) f T (x)

)
dζ (j , x) ;

The D-optimal design ζ∗:

ζ∗ = arg max
ζ
|M (ζ)| ;
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Approximate D-optimal design:
-without qualitative factor, circular design region

Kiefer (1960), Galil and Kiefer (1977),

Exact D-optimal designs:
-without qualitative factor, interval design region

Gaffke and Krafft (1982), Gaffke (1987), Huang (1987), Chen
and Huang (2000)

-with qualitative factor, square design region

Atkinson and Donev (1989)

-without qualitative factor, circular design region

Chang and Chen (2004)
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Models with Quantitative Factors

Approximate D-optimal designs within a circular design region:
Kiefer (1960): a design ξ∗ is D-optimal iff

ξ∗ is rotatable,
supported on the origin with weight 1

6 ,
supported on the unit circle uniformly with weight 5

6 ;

If N is a multiple of 6, i.e. N = 6p, p ≥ 1,
an exact design consists of the origin and the vertices of a
pentagon with p trials at each support is exact D-optimal;

pentagon − 1 0 1

−
1

0
1

●

●

●

●

●

●●

N=6
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N is not a multiple of 6,
based on a kind of equiradial rotatable designs, symbolized by
ξN,n0 , with n0 central runs and a regular n-sided polygon on
the unit circle, where n0 + n = N, and 5 ≤ n ≤ N − 1 i.e.

ξN,n0 (x) ≡ n0

N
ξ0 (x) +

n

N
Pn (x) , (3)

where

ξ0 (x) =

{
1, if x = 0
0, otherwise

, Pn (x) =

{
1
n , if x ∈ Vn

0, otherwise
, (4)

Vn =

{(
cos

(
2πv

n

)
, sin

(
2πv

n

))T

, v = 0, . . . , n − 1

}
.
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When N is not a multiple of 6,

let N = 6p + t, p ∈ {1, 2, · · · } and t ∈ {1, · · · , 5};
two candidate designs for each N among
ΞN = {ξN,n0 , 1 ≤ n0 ≤ N − 5} are ξN,p and ξN,p+1

Lemma (1)

|M (ξN,p)| > |M (ξN,p+1)| , for t ∈ {1, 2} ,

and
|M (ξN,p)| < |M (ξN,p+1)| , for t ∈ {3, 4, 5} .
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Gaffke and Krafft (1982):
The arithmetic-geometric Inequality for matrices:

|M (ξN)|∣∣∣M (
ξ̂N

)∣∣∣ ≤
(

1

k
tr

(
M (ξN) M−1

(
ξ̂N

)))k

=

(
1

k

1

N

∑N

i=1
d

(
xi , ξ̂N

))k

ξN : a given design with design points {xi , i = 1, · · · ,N};

ξ̂N : a candidate exact design;

k: the number of the model coefficients;

d
(
xi , ξ̂N

)
: dispersion function of ξ̂N ;

If 1
N

∑N
i=1 d

(
xi , ξ̂N

)
≤ k, then |M (ξN)| ≤

∣∣∣M (
ξ̂N

)∣∣∣.
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Lemma (2)

If N is not a multiple of 6, then the following inequality holds for
any exact design ξN on χ,

min
{
tr

(
M (ξN) M−1 (ξN,p)

)
, tr

(
M (ξN) M−1 (ξN,p+1)

)}
≤ 6.

The above inequality implies that

|M (ξN)| ≤ max {|M (ξN,p)| , |M (ξN,p+1)|}
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Theorem

Let N = 6p + t, where p ∈ {1, 2, · · · } and t ∈ {1, · · · , 5}, the
exact D-optimal designs are ξN,p for t ∈ {1, 2} and ξN,p+1 for
t ∈ {3, 4, 5}.
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Table 1. Exact D-optimal designs for 6 ≤ N ≤ 11 on χ =
{
x ∈ R2|xTx ≤ 1

}
.

sample size (quotient, remainder) center runs regular vertices
N (p, t) n0 polygon n = N − n0

6 (1, 0) 1 pentagon 5
7 (1, 1) 1 hexagon 6
8 (1, 2) 1 heptagon 7
9 (1, 3) 2 heptagon 7
10 (1, 4) 2 octagon 8
11 (1, 5) 2 nonagon 9
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Minimal Supports

Lemma (3)

Given an exact design Pn, if n ≥ 10, then there exists an exact
design

(
n1
n Pn1 + n2

n Pn2

)
such that

M
(n1

n
Pn1 +

n2

n
Pn2

)
= M (Pn) ,

with n1 + n2 = n, n1 ≥ 5 and n2 ≥ 5.

Recall that

Pn (x) =

�
1
n
, if x ∈ Vn

0, otherwise
,

Vn =

(�
cos

�
2πv

n

�
, sin

�
2πv

n

��T

, v = 0, . . . , n − 1

)
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Table 2. Illustration of the procedure in reducing supports for P19.

Step 1 Step 2 number of

(n1, n2) (n1, n21, n22) distinct supports

(5, 14)
(5, 5, 9)
(5, 6, 8)
(5, 7, 7)

13
18
11

(6, 13)
(6, 5, 8)
(6, 6, 7)

18
12

(7, 12)
(7, 5, 7)
(7, 6, 6)

11
12

(8, 11) (8, 5, 6) 18

(9, 10) (9, 5, 5) 13
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Lemma (4)

Let n1 and n2 be relatively prime positive integers. If

n ≥ (n1 − 1) (n2 − 1) ,

then there exist nonnegative integers u1 and u2 such that

n1u1 + n2u2 = n.
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Procedure for obtaining minimal supports exact D-optimal designs

Step 1 : if n is a multiple of m ∈ {5, · · · , 9}, choose Pm to
replace Pn with weight m

n ;

Step 2 : if n is not a multiple of m ∈ {5, · · · , 9} and n ≥ 20,
then use a convex combination of P5 and P6 to
replace Pn;

Step 3 : the remaining cases of n are listed at the Table 3.

Table 3. Exact D-optimal designs with minimal supports.

sample size center runs vertices of Pn partitions for n number of
N n0 n = N − n0 (n1, n2) (u1, u2) supports

13 2 11 (5, 6) (1, 1) 11
16 3 13 (6, 7) (1, 1) 13
20 3 17 (5, 6) (1, 2) 11
21 4 17 (5, 6) (1, 2) 11
23 4 19 (5, 7) (1, 2) 12
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Models with Both Qualitative and Quantitative Factors

Recall the model

y (j , x) = αTe (j) + βT f (x) + ε

When J ≥ 2, we restrict our attentions to the exact designs in
the class Ξ∗ defined as

Ξ∗ =

(
ζN : ζN (j , x) =

Nj

N
× ξNj ,n0j (x) , 1 ≤ n0j ≤ Nj − 5,

X
j

Nj = N, Nj ≥ 6

)

Here, we assume that the sample size N ≥ 2J
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For any ζN ∈ Ξ∗, the information matrix of ζN is

M (ζN) =

(
Mα (ζN) Mαβ (ζN)
MT

αβ (ζN) Mβ (ζN)

)
,

where

Mα (ζN) =
1

N
Diag (N1, · · ·,NJ) ,

Mαβ (ζN) =
1

2N
(0, 0, 0, 1, 1)⊗

 N1 − n01

...
NJ − n0J

 ,

Mβ (ζN) =
sJ
8N


4 0 0 0 0
0 4 0 0 0
0 0 1 0 0
0 0 0 3 1
0 0 0 1 3

 , and sJ =
J∑

j=1

(Nj − n0j) .
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Table 4. Exact D-optimal designs for model (1) with 2 qualitative levels

within Ξ∗. Assume that Nj = 6p + tj , noj = p + uj , j = 1, 2.

(t1, t2) (u1, u2) (t1, t2) (u1, u2)

(0, 0) (0, 0) (1, 0) (0, 0)
(1, 1) (0, 0) (2, 1) (0, 0)
(2, 2) (1, 0) (3, 2) (1, 0)
(3, 3) (1, 0) (4, 3) (1, 0)
(4, 4) (1, 1) (5, 4) (1, 1)
(5, 5) (1, 1) (6, 5) (1, 1)
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Table 5. Exact D-optimal designs for model (1) with 3 qualitative levels
within Ξ∗. Assume that Nj = 6p + tj , noj = p + uj , j = 1, 2, 3.

(t1, t2, t3) (u1, u2, u3) (t1, t2, t3) (u1, u2, u3) (t1, t2, t3) (u1, u2, u3)

(0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 1, 0) (0, 0, 0)
(1, 1, 1) (0, 0, 0) (2, 1, 1) (0, 0, 0) (2, 2, 1) (1, 0, 0)
(2, 2, 2) (1, 0, 0) (3, 2, 2) (1, 0, 0) (3, 3, 2) (1, 0, 0)
(3, 3, 3) (1, 1, 0) (4, 3, 3) (1, 1, 0) (4, 4, 3) (1, 1, 0)
(4, 4, 4) (1, 1, 0) (5, 4, 4) (1, 1, 0) (5, 5, 4) (1, 1, 1)
(5, 5, 5) (1, 1, 1) (6, 5, 5) (1, 1, 1) (6, 6, 5) (1, 1, 1)
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Construction method of Exact D-optimal designs for J ≥ 4

step 1 Choose N1, · · · ,NJ to be as equal as possible, i.e.
|Ni − Nj | ≤ 1, ∀i , j ∈ {1, · · · , J}.

W.l.o.g., we assume that N1 = · · · = Nr = 6p + t + 1,
Nr+1 = · · · = NJ = 6p + t, where r ∈ {1, · · · , J − 1},
p ∈ {1, 2, · · · } and t ∈ {0, · · · , 5}.

step 2 An exact design ζN ∈ Ξ∗ with n0j = p or p + 1, j = 1, · · · , J,
is a candidate for exact D-optimal designs.
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Construction method of Exact D-optimal designs for J ≥ 4

step 3 Choose the design ζ∗N among these 2J candidates s.t.

ζ∗N = arg max |ζN |

= arg max
N1 · · ·NJ

N(J+5)

s4
J

sJ −
J∑

j=1

(Nj − n0j)
2

Nj


where sJ =

∑J
j=1 (Nj − n0j).

Then ζ∗N is an exact D-optimal design within the subclass.
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Properties of ξN,n0 :

The information matrix is identical as long as n = N − n0 ≥ 5:

M (ξN,n0) =



1 0 0 0 n
2N

n
2N

0 n
2N 0 0 0 0

0 0 n
2N 0 0 0

0 0 0 n
8N 0 0

n
2N 0 0 0 3n

8N
n

8N
n

2N 0 0 0 n
8N

3n
8N

 ; (5)

The determinant of M (ξN,n0):

|M (ξN,n0)| =
(

1

2

)8 (n0

N

) ( n

N

)5
; (6)
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