A Method for Generating Uniformly Scattered Points on the L_p -norm Unit Sphere and Its Applications

Jiajuan Liang

University of New Haven, U.S.A.

(Joint work with Kai Wang Ng, The University of Hong Kong)

• Some Regular Regions in the s-dimensional (s \geq 2) Euclidean Space R^s and the Corresponding Uniform Distributions

The unit hypercube:

$$C^{s} = [0, 1]^{s} = \{ \boldsymbol{z} = (z_{1}, \cdots, z_{s})' \in R^{s}, \ 0 \le z_{i} \le 1, \ i = 1, \dots, s \}$$
(1)

The uniform distribution on C^s is denoted by $U(C^s)$.

The (surface of) L_p -norm unit sphere:

$$S_{s}^{p} = \{ \boldsymbol{x} = (x_{1}, \cdots, x_{s})' \in R^{s}, \| \boldsymbol{x} \|_{p} = (|x_{1}|^{p} + \cdots + |x_{s}|^{p})^{1/p} = 1,$$
$$p > 0, \ s \ge 2 \}.$$
(2)

When p = 1, $S_s^p = S_s^1$ reduces to a unit hypercube;

When p = 2, $S_s^p = S_s^2$ reduces to the (surface of) a unit sphere in the usual meaning.

Definition. A random vector $\boldsymbol{u}_s = (U_1, \cdots, U_s)'$ is said to have an L_p -norm uniform distribution (p > 0), denoted by $\boldsymbol{u}_s \sim \mathcal{U}(s, p)$, if $\sum_{i=1}^s |U_i|^p = 1$ and the joint p.d.f. of U_1, \ldots, U_{s-1} is given by $g(u_1, \ldots, u_{s-1}) = \frac{p^{s-1}\Gamma(s/p)}{2^{s-1}\Gamma^s(1/p)} \left(1 - \sum_{i=1}^{s-1} |u_i|^p\right)^{(1-p)/p},$ $-1 < u_i < 1, \quad i = 1, \ldots, s - 1, \quad \sum_{i=1}^{s-1} |u_i|^p < 1.$

Sets of points in S_s^p ($p > 0, s \ge 2$) with certain uniformity are usually obtained by using the Inverse Transformation Method to project sets of points in C^s with certain optimal uniformity property onto S_s^p .

Major reference:

Fang, K.T. & Wang, Y. (1994). Number-theoretic

Methods in Statistics. Chapman and Hall, London.

The purpose of this paper is to find a suitable Inverse Transformation Method. • Measures of Uniformity

There are several ways of measuring uniformity by discrepancy.

<u>The usual discrepancy</u>: Let $\mathcal{P} = \{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n\} \subset R^s$.

$$D(n, \mathcal{P}) = \sup_{\boldsymbol{\gamma} \in C^s} \left| \frac{N(\boldsymbol{\gamma}, \mathcal{P})}{n} - v([\boldsymbol{0}, \boldsymbol{\gamma}]) \right|, \quad (3)$$

is called the (usual) discrepancy.

 $v([\mathbf{0}, \boldsymbol{\gamma}])$: the volume of the rectangle $[\mathbf{0}, \boldsymbol{\gamma}]$ $N(\boldsymbol{\gamma}, \mathcal{P})$: the number of points in \mathcal{P} satisfying $\boldsymbol{z}_i \leq \boldsymbol{\gamma}$ (componentwise)

<u>The *F*-discrepancy</u>: Let $F(\boldsymbol{x})$ be a c.d.f and

$$F_n(\boldsymbol{x}) = rac{1}{n}\sum_{i=1}^n I\{\boldsymbol{x}_i \leq \boldsymbol{x}\},$$

the e.c.f. based on $\mathcal{P} = \{ \boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \}$. Then

$$D_F(n, \mathcal{P}) = \sup_{\boldsymbol{x} \in R^s} |F_n(\boldsymbol{x}) - F(\boldsymbol{x})|$$
(4)

is called the *F*-discrepancy of \mathcal{P} with respect to $F(\boldsymbol{x})$.

The quasi *F*-discrepancy: Let \boldsymbol{x} be an $s \times 1$ random vector with c.d.f. $F(\boldsymbol{x})$. \boldsymbol{x} has a stochastic representation $\boldsymbol{x} = \boldsymbol{h}(\boldsymbol{z})$, where $\boldsymbol{z} \sim U(C^t)$ $(t \leq s)$. Let $\{\boldsymbol{c}_k : k = 1, \ldots, n\}$ be a set of points that are uniformly scattered in C^t with (usual) discrepancy d. Then the set of points $\mathcal{P}_F = \{\boldsymbol{h}(\boldsymbol{c}_k) : k = 1, \ldots, n\}$ is said to have a quasi *F*-discrepancy d with respect to $F(\boldsymbol{x})$.

In this paper we will provide an algorithm for generating a set of uniformly scattered points in S_s^p with a minimum quasi *F*-discrepancy by projecting the *glp* set in C^s . <u>Definition</u>. Let $(n; h_1, \ldots, h_s)$ be a vector with integer components satisfying $1 \leq h_i \leq n$, $h_i \neq h_j$ $(i \neq j)$, s < n, and the greatest common divisors $(n, h_i) = 1$, $i = 1, \ldots, s$. Let

$$\begin{cases} q_{ki} = kh_i \pmod{n}, \\ k = 1, \dots, n; \ i = 1, \dots, s, \\ x_{ki} = (2q_{ki} - 1)/2n, \end{cases}$$
(5)

where $1 \leq q_{ki} < n$. Then the set $\mathcal{P}_n = \{ \boldsymbol{x}_k = (x_{k1}, \ldots, x_{ks})', k = 1, \ldots, n \}$ is called the lattice point set with the generating vector $(n; h_1, \ldots, h_s)$. If the set \mathcal{P}_n has the smallest discrepancy in the sense of (3) among all possible generating vectors, then the set \mathcal{P}_n is called a glp set.

Fang & Wang (1994) provides the generating vectors for some glp set in C^s .

• Theoretical Results

Theorem 1. Let $\boldsymbol{u}_s = (U_1, \dots, U_s)' \sim \mathcal{U}(s, p)$. Define the random variables B_i $(i = 1, \dots, s-1)$ by the following conditional distributions:

$$B_{1} \stackrel{d}{=} |U_{1}|^{p},$$

$$B_{2} \stackrel{d}{=} \{(1 - |U_{1}|^{p})^{-1} |U_{2}|^{p} |U_{1}\},$$

$$\vdots$$

$$B_{m} \stackrel{d}{=} \{(1 - \sum_{i=1}^{m-1} |U_{i}|^{p})^{-1} |U_{m}|^{p} |(U_{1}, \cdots, U_{m-1})\},$$
(6)

where m = 2, ..., s - 1, the sign " $\stackrel{\text{de}}{=}$ " means that the two sides of the equality have the same probability distribution, and $\{\cdot | \cdot\}$ stands for the conditional distribution given the part on the right hand side of "|". Then $B_1, ..., B_{s-1}$ are mutually independent and $B_k \sim \text{Beta}[1/p, (s-k)/p]$ (the beta distribution, k = 1, ..., s - 1). **Theorem 2.** Assume that $\boldsymbol{u} = (U_1, \dots, U_s)' \sim \mathcal{U}(s, p)$. Let V_1, \dots, V_s be i.i.d. and $V_i \sim U(0, 1)$, and B_1, \dots, B_{s-1} be independent such that $B_k \sim \text{Beta}[1/p, (s-k)/p]$ $(k = 1, \dots, s-1)$. Denote by $F_k(\cdot)$ the c.d.f. of B_k and $F_k^{-1}(\cdot)$ the inverse function of $F_k(\cdot)$. Then the random vector $\boldsymbol{u} = (U_1, \dots, U_s)' \sim \mathcal{U}(s, p)$ has a stochastic representation

$$\boldsymbol{u} \stackrel{\mathrm{d}}{=} \boldsymbol{x} = (X_1, \cdots, X_s)', \tag{7}$$

where the components X_1, \ldots, X_s are given by

$$X_{1} = \operatorname{sign}(2V_{1} - 1) \left\{ F_{1}^{-1}[(2V_{1} - 1)\operatorname{sign}(2V_{1} - 1)] \right\}^{1/p},$$

$$X_{2} = \operatorname{sign}(2V_{2} - 1) \left\{ (1 - |X_{1}|^{p})F_{2}^{-1}[(2V_{2} - 1)\operatorname{sign}(2V_{2} - 1)] \right\}^{1/p},$$

$$\vdots$$

$$X_{s-1} = \operatorname{sign}(2V_{s-1} - 1) \left\{ (1 - \sum_{i=1}^{s-2} |X_i|^p) \cdot F_{s-1}^{-1} [(2V_{s-1} - 1)\operatorname{sign}(2V_{s-1} - 1)] \right\}^{1/p},$$

$$X_s = \operatorname{sign}(2V_s - 1) \left(1 - \sum_{i=1}^{s-1} |X_i|^p \right)^{1/p},$$
(7)

here $\operatorname{sign}(\cdot)$ stands for the sign function.

 \bullet The Algorithm for Generating Uniformly Scattered Points on S^p_s

<u>Step 1</u>. For the given number of points n and the dimension $s \ge 2$, find the glp set $\mathcal{P}_z = \{\boldsymbol{z}_1, \ldots, \boldsymbol{z}_n\} \subset C^s$ from Appendix A in Fang & Wang (1994);

<u>Step 2</u>. Obtain the set of points $\mathcal{P}_x = \{x_1, \dots, x_n\} \subset$ S_s^p by projection in the following way: denote by $x_i =$ $(x_{i1}, \dots, x_{is})'$ and $z_i = (z_{i1}, \dots, z_{is})'$ $(i = 1, \dots, n)$, let $x_{i1} = \operatorname{sign}(2z_{i1} - 1) \{F_1^{-1}[(2z_{i1} - 1)\operatorname{sign}(2z_{i1} - 1)]\}^{1/p},$ $x_{i2} = \operatorname{sign}(2z_{i2} - 1) \{(1 - |x_{i1}|^p)F_2^{-1}[(2z_{i2} - 1)\operatorname{sign}(2z_{i2} - 1)]\}^{1/p},$ \vdots

$$x_{i,s-1} = \operatorname{sign}(2z_{i,s-1} - 1) \left\{ (1 - \sum_{j=1}^{s-2} |x_{ij}|^p) F_{s-1}^{-1} [(2z_{i,s-1} - 1) \operatorname{sign}(2z_{i,s-1} - 1)] \right\}^{1/p}$$
$$x_{is} = \left\{ \begin{array}{l} \operatorname{sign}(2z_{is} - 1)(1 - \sum_{j=1}^{s-1} |x_{ij}|^p)^{1/p}, & \text{if } z_{is} \neq 0.5, \\ (1 - \sum_{j=1}^{s-1} |x_{ij}|^p)^{1/p}, & \text{if } z_{is} = 0.5. \end{array} \right.$$
(8)

Then the set of points $\mathcal{P}_x = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_n \} \subset S_s^p$ has a quasi *F*-discrepancy *d* (*d* is the usual discrepancy of $\mathcal{P}_z \subset$ C^s) with respect to the c.d.f. of $\boldsymbol{x} \sim \mathcal{U}(s, p)$, or \mathcal{P}_x has an *F*-discrepancy *d* with respect to the c.d.f. $H(\boldsymbol{v}) = \prod_{i=1}^s v_i$ of the random vector $\boldsymbol{V} = (V_1, \dots, V_s)'$ with independent components $V_i \sim U(0, 1)$ ($\boldsymbol{v} = (v_1, \dots, v_s) \in C^s$).

It can be proved that d is equal to:

$$d = \sup_{\boldsymbol{r} \in C^s} \left| \frac{N(\mathcal{P}_x, G_{\boldsymbol{r}})}{n} - H(r) \right|, \tag{9}$$

where $\mathbf{r} = (r_1, \ldots, r_s)' \in C^s$, $H(\mathbf{r}) = \prod_{i=1}^s r_i$, $N(\mathcal{P}_x, G_{\mathbf{r}})$ stands for number of points in \mathcal{P}_x that fall in the set $G_{\mathbf{r}}$ defined by

$$G_{\boldsymbol{r}} = \{ \boldsymbol{x} : \boldsymbol{x} = \boldsymbol{h}(\boldsymbol{v}), \ \boldsymbol{v} \le r \}.$$
(10)

where $h(v) = (h_1(v), ..., h_s(v)) (v = (v_1, ..., v_s) \in C^s)$

with

$$h_{1}(\boldsymbol{v}) = \operatorname{sign}(2v_{1}-1) \left\{ F_{1}^{-1}[(2v_{1}-1)\operatorname{sign}(2v_{1}-1)] \right\}^{1/p},
h_{2}(\boldsymbol{v}) = \operatorname{sign}(2v_{2}-1) \cdot \\ \left\{ [1 - F_{1}^{-1}((2v_{1}-1)\operatorname{sign}(2v_{1}-1))] F_{2}^{-1}((2v_{2}-1)\operatorname{sign}(2v_{2}-1))] \right\}^{1/p},
h_{m}(\boldsymbol{v}) = \operatorname{sign}(2v_{m}-1) \left\{ [1 - \sum_{i=1}^{m-1} F_{i}^{-1}((2v_{i}-1)\operatorname{sign}(2v_{i}-1))] \cdot \\ F_{m}^{-1}((2v_{m}-1)\operatorname{sign}(2v_{m}-1))] \right\}^{1/p}, \\ m = 2, \dots, s - 1, \\ h_{s}(\boldsymbol{v}) = \operatorname{sign}(2v_{s}-1) \left(1 - \sum_{i=1}^{s-1} |h_{i}(\boldsymbol{v})|^{p} \right)^{1/p}.$$
(11)

The set of points $\mathcal{P}_x = \{ \boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \}$ obtained by the above algorithm has the smallest quasi *F*-discrepancy *d* with respect to the c.d.f. of the uniform distribution $\boldsymbol{x} \sim$ $\mathcal{U}(s,p)$ on S_s^p , or \mathcal{P}_x has the smallest *F*-discrepancy *d* with respect to the uniform c.d.f. $H(\boldsymbol{r}) = \prod_{i=1}^s r_i$ with independent components, where $\boldsymbol{r} = (r_1, \ldots, r_s)' \in C^s$.

• Examples

- (1) s = 2, n = 8, p = 1/2, 1, 2, 3, generating vector $(h_1, h_2) = (1, 5)$, the glp set in C^2 is $\left(\frac{k-0.5}{n}, \left\{\frac{h_2k-0.5}{n}\right\}\right)$ for n = 8 and $1 \le k \le n$; (2) $s = 2, n = 21, p = 1/2, 1, 2, 3, (h_1, h_2) = (1, 13),$ the glp set in C^2 is $\left(\frac{k-0.5}{n}, \left\{\frac{h_2k-0.5}{n}\right\}\right)$ for n = 21 and $1 \le k \le n$; (3) $s = 2, n = 55, p = 1/2, 1, 2, 3, (h_1, h_2) = (1, 34),$
 - the *glp* set in C^2 is $\left(\frac{k-0.5}{n}, \left\{\frac{h_2k-0.5}{n}\right\}\right)$ for n = 55 and $1 \le k \le n$;
- (4) $s = 2, n = 144, p = 1/2, 1, 2, 3, (h_1, h_2) = (1, 89),$ the *glp* set in C^2 is $\left(\frac{k-0.5}{n}, \left\{\frac{h_2k-0.5}{n}\right\}\right)$ for n = 144 and $1 \le k \le n.$

Insert Figure 1 around here

Figure 1: Illustration of projecting some glp sets in C^2 onto the L_p -norm unit sphere S_2^p by the algorithm given by (25) for some selected values of p.

• Applications

<u>Definition</u>. An *s*-variate random vector \boldsymbol{x} is said to have an L_p -norm spherical distribution (denoted by $\boldsymbol{x} \sim SP(s, p)$) if

$$\boldsymbol{x} \stackrel{\mathrm{d}}{=} R \boldsymbol{u},$$
 (12)

where $\boldsymbol{u} \sim \mathcal{U}(s, p)$, R is a univariate nonnegative random variable that is independent of \boldsymbol{u} .

Example 1. Application in generating empirical samples from the class of *p*-generalized normal distributions. The *p*-generalized normal distribution was given by Goodman and Kotz (1973). Denote it by $N_s(\mathbf{0}, \mathbf{I}_s, p)$. $\mathbf{x} = (X_1, \ldots, X_s)' \sim N_s(\mathbf{0}, \mathbf{I}_s, p)$ has a p.d.f.

$$f(x_1, \dots, x_s) = \frac{p^s r^{s/p}}{2^s \Gamma^s(1/p)} \cdot \exp\{-r \sum_{i=1}^s |x_i|^p\}, \quad (x_1, \dots, x_s)' \in R^s,$$

where r > 0 is a parameter. It is easy to verify that

 $\boldsymbol{x} \sim N_s(\boldsymbol{0}, \boldsymbol{I}_s, p) \stackrel{\mathrm{d}}{=} R \boldsymbol{u}, \, \boldsymbol{u} \sim \mathcal{U}(s, p), \, \mathrm{and} \, R \, \mathrm{has} \, \mathrm{a} \, \mathrm{p.d.f.}$

$$g(t) = \frac{pr^{s/p}}{\Gamma(s/p)} \cdot t^{s-1} \exp(-rt^p), \quad t > 0.$$

Then the random variable $Y = rR^p$ has a gamma distribution with a p.d.f.

$$g(y) = \frac{1}{\Gamma(s/p)} y^{s/p-1} \exp(-y), \quad y > 0.$$
(13)

An i.i.d. sample $\{Y_1, \ldots, Y_n\}$ can be easily generated from the gamma distribution (13). Then an i.i.d. sample $\{R_1, \ldots, R_n\}$ can be obtained by

$$R_i = (Y_i/r)^{1/p}, \qquad i = 1, \dots, n.$$
 (14)

A random sample $\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n\}$ from $N_s(\boldsymbol{0}, \boldsymbol{I}_s, p)$ is obtained by

$$\boldsymbol{x}_i = R_i \boldsymbol{u}_i, \qquad i = 1, \dots, n.$$
 (15)

where $\{\boldsymbol{u}_i : i = 1, \ldots, n\}$ is a random sample from

 $\mathcal{U}(s, p)$, which is obtained by generating a uniform sample $\mathbf{z}_i = (z_{i1}, \ldots, z_{is})' \in C^s$ with z_{ij} $(j = 1, \ldots, s)$ i.i.d. U(0, 1) and projecting this uniform sample onto S_s^p by the algorithm.

Example 2. Application in generating representative points (simply called rep-points) for the class of L_p -norm spherical distributions.

Definition. Let $F(\boldsymbol{x}) = F(x_1, \ldots, x_s)$ be a given *s*-dimensional continuous c.d.f. and $\mathcal{P} = \{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n\} \subset R^s$. The *F*-discrepancy $D_F(n, \mathcal{P})$ is a measure of the representation of \mathcal{P} to $F(\boldsymbol{x})$. If we can find a set of points $\mathcal{P}^* = \{\boldsymbol{x}_1^*, \ldots, \boldsymbol{x}_n^*\}$ such that

$$D_F(n, \mathcal{P}^*) = \min_{\mathcal{P}} D_F(n, \mathcal{P}), \qquad (16)$$

where \mathcal{P} runs over all sets of n points in \mathbb{R}^s , then \mathcal{P}^* is

called a set of cdf-rep-points of $F(\boldsymbol{x})$.

For the one-dimensional case s = 1, it is easy to find the set of cdf-rep-points of any given continuous c.d.f., for the high-dimensional case s > 1, it is usually difficult to find the set of cdf-rep-points \mathcal{P}^* of any given c.d.f. $\boldsymbol{x} \sim F(\boldsymbol{x})$. We consider r.v. \boldsymbol{x} has the stochastic representation of the type

$$\boldsymbol{x} \stackrel{\mathrm{d}}{=} R \boldsymbol{y},$$
 (17)

where $\boldsymbol{x} \sim F(\boldsymbol{x}), R > 0$ is a positive random variable, and $\boldsymbol{y} \sim \mathcal{U}(s,p)$. By using the algorithm in this paper to generate $\boldsymbol{y} \sim \mathcal{U}(s,p)$ and the NTSR algorithm in Fang & Wang (1994), we can generate the approximate cdf-reppoints of the r.v. in (17). **Example 3**. Application in optimization problems. Let $f(\boldsymbol{x}) \ (\boldsymbol{x} = (x_1, \dots, x_s)' \in R^s)$ be a continuous function. Suppose that we want to find the maximal point $\boldsymbol{x}^* \in S^p_s$ such that

$$M = f(\boldsymbol{x}^*) = \max_{\boldsymbol{x} \in S_s^p} f(\boldsymbol{x}).$$
(18)

This is an optimization problem of $f(\boldsymbol{x}) = f(x_1, \dots, x_s)$ subject to the restriction

$$|x_1|^p + \dots + |x_s|^p = 1, \qquad p > 0.$$

By generating a set of uniformly scattered points in S_s^p , we can approximately obtain (18).

END OF TALK

THANK YOU FOR YOUR ATTENTION!