A Method for Generating Uniformly Scattered

Points on the $\boldsymbol{L}_{\boldsymbol{p}}$-norm Unit Sphere and Its Applications

Jiajuan Liang
University of New Haven, U.S.A.
(Joint work with Kai Wang Ng, The University of Hong Kong)

- Some Regular Regions in the s-dimensional $(s \geq 2)$ Euclidean Space R^{s} and the Corresponding Uniform Distributions

The unit hypercube:

$$
\begin{equation*}
C^{s}=[0,1]^{s}=\left\{\boldsymbol{z}=\left(z_{1}, \cdots, z_{s}\right)^{\prime} \in R^{s}, 0 \leq z_{i} \leq 1, i=1, \ldots, s\right\} \tag{1}
\end{equation*}
$$

The uniform distribution on C^{s} is denoted by $U\left(C^{s}\right)$.
The (surface of) L_{p}-norm unit sphere:

$$
\begin{gather*}
S_{s}^{p}=\left\{\boldsymbol{x}=\left(x_{1}, \cdots, x_{s}\right)^{\prime} \in R^{s},\|\boldsymbol{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{s}\right|^{p}\right)^{1 / p}=1\right. \\
p>0, s \geq 2\} \tag{2}
\end{gather*}
$$

When $p=1, S_{s}^{p}=S_{s}^{1}$ reduces to a unit hypercube;
When $p=2, S_{s}^{p}=S_{s}^{2}$ reduces to the (surface of) a unit sphere in the usual meaning.

Definition. A random vector $\boldsymbol{u}_{s}=\left(U_{1}, \cdots, U_{s}\right)^{\prime}$ is said to have an L_{p}-norm uniform distribution $(p>0)$, denoted by $\boldsymbol{u}_{s} \sim \mathcal{U}(s, p)$, if $\sum_{i=1}^{s}\left|U_{i}\right|^{p}=1$ and the joint p.d.f. of U_{1}, \ldots, U_{s-1} is given by

$$
\begin{aligned}
& g\left(u_{1}, \ldots, u_{s-1}\right)= \frac{p^{s-1} \Gamma(s / p)}{2^{s-1} \Gamma^{s}(1 / p)}\left(1-\sum_{i=1}^{s-1}\left|u_{i}\right|^{p}\right)^{(1-p) / p} \\
&-1<u_{i}<1, \quad i=1, \ldots, s-1, \quad \sum_{i=1}^{s-1}\left|u_{i}\right|^{p}<1
\end{aligned}
$$

Sets of points in $S_{s}^{p}(p>0, s \geq 2)$ with certain uniformity are usually obtained by using the Inverse Transformation Method to project sets of points in C^{s} with certain optimal uniformity property onto S_{s}^{p}.

Major reference:

Fang, K.T. \& Wang, Y. (1994). Number-theoretic

Methods in Statistics. Chapman and Hall, London.

The purpose of this paper is to find a suitable Inverse Transformation Method.

- Measures of Uniformity

There are several ways of measuring uniformity by discrepancy.

The usual discrepancy: Let $\mathcal{P}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset R^{s}$.

$$
\begin{equation*}
D(n, \mathcal{P})=\sup _{\boldsymbol{\gamma} \in C^{s}}\left|\frac{N(\boldsymbol{\gamma}, \mathcal{P})}{n}-v([\mathbf{0}, \boldsymbol{\gamma}])\right| \tag{3}
\end{equation*}
$$

is called the (usual) discrepancy.
$v([\mathbf{0}, \boldsymbol{\gamma}])$: the volume of the rectangle $[\mathbf{0}, \boldsymbol{\gamma}]$
$N(\gamma, \mathcal{P})$: the number of points in \mathcal{P} satisfying $\boldsymbol{z}_{i} \leq \gamma$ (componentwise)

The F-discrepancy: Let $F(\boldsymbol{x})$ be a c.d.f and

$$
F_{n}(\boldsymbol{x})=\frac{1}{n} \sum_{i=1}^{n} I\left\{\boldsymbol{x}_{i} \leq \boldsymbol{x}\right\}
$$

the e.c.f. based on $\mathcal{P}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$. Then

$$
\begin{equation*}
D_{F}(n, \mathcal{P})=\sup _{\boldsymbol{x} \in R^{s}}\left|F_{n}(\boldsymbol{x})-F(\boldsymbol{x})\right| \tag{4}
\end{equation*}
$$

is called the F-discrepancy of \mathcal{P} with respect to $F(\boldsymbol{x})$.

The quasi F-discrepancy: Let \boldsymbol{x} be an $s \times 1$ random vector with c.d.f. $F(\boldsymbol{x})$. \boldsymbol{x} has a stochastic representation $\boldsymbol{x}=\boldsymbol{h}(\boldsymbol{z})$, where $\boldsymbol{z} \sim U\left(C^{t}\right)(t \leq s)$. Let $\left\{\boldsymbol{c}_{k}: k=\right.$ $1, \ldots, n\}$ be a set of points that are uniformly scattered in C^{t} with (usual) discrepancy d. Then the set of points $\mathcal{P}_{F}=\left\{\boldsymbol{h}\left(\boldsymbol{c}_{k}\right): k=1, \ldots, n\right\}$ is said to have a quasi F-discrepancy d with respect to $F(\boldsymbol{x})$.

In this paper we will provide an algorithm for generating a set of uniformly scattered points in S_{s}^{p} with a minimum quasi F-discrepancy by projecting the $g l p$ set in C^{s}.

Definition. Let $\left(n ; h_{1}, \ldots, h_{s}\right)$ be a vector with integer components satisfying $1 \leq h_{i} \leq n, h_{i} \neq h_{j}(i \neq j)$, $s<n$, and the greatest common divisors $\left(n, h_{i}\right)=1$, $i=1, \ldots, s$. Let

$$
\left\{\begin{array}{rl}
q_{k i} & =k h_{i}(\bmod n), \tag{5}\\
x_{k i} & =\left(2 q_{k i}-1\right) / 2 n,
\end{array} \quad k=1, \ldots, n ; i=1, \ldots, s,\right.
$$

where $1 \leq q_{k i}<n$. Then the set $\mathcal{P}_{n}=\left\{\boldsymbol{x}_{k}=\left(x_{k 1}, \ldots, x_{k s}\right)^{\prime}, k=\right.$ $1, \ldots, n\}$ is called the lattice point set with the generating vector $\left(n ; h_{1}, \ldots, h_{s}\right)$. If the set \mathcal{P}_{n} has the smallest discrepancy in the sense of (3) among all possible generating vectors, then the set \mathcal{P}_{n} is called a $g l p$ set.

Fang \& Wang (1994) provides the generating vectors for some glp set in C^{s}.

- Theoretical Results

Theorem 1. Let $\boldsymbol{u}_{s}=\left(U_{1}, \cdots, U_{s}\right)^{\prime} \sim \mathcal{U}(s, p)$. Define the random variables $B_{i}(i=1, \ldots, s-1)$ by the following conditional distributions:

$$
\begin{align*}
& B_{1} \stackrel{\mathrm{~d}}{=}\left|U_{1}\right|^{p} \\
& B_{2} \stackrel{\mathrm{~d}}{=}\left\{\left(1-\left|U_{1}\right|^{p}\right)^{-1}\left|U_{2}\right|^{p} \mid U_{1}\right\} \\
& \vdots \tag{6}\\
& B_{m} \stackrel{\mathrm{~d}}{=}\left\{\left(1-\Sigma_{i=1}^{m-1}\left|U_{i}\right|^{p}\right)^{-1}\left|U_{m}\right|^{p} \mid\left(U_{1}, \cdots, U_{m-1}\right)\right\}
\end{align*}
$$

where $m=2, \ldots, s-1$, the sign " ${ }^{\text {d }}$ " means that the two sides of the equality have the same probability distribution, and $\{\cdot \mid \cdot\}$ stands for the conditional distribution given the part on the right hand side of "". Then B_{1}, \ldots, B_{s-1} are mutually independent and $B_{k} \sim \operatorname{Beta}[1 / p,(s-k) / p]$ (the beta distribution, $k=1, \ldots, s-1)$.

Theorem 2. Assume that $\boldsymbol{u}=\left(U_{1}, \cdots, U_{s}\right)^{\prime} \sim \mathcal{U}(s, p)$.
Let V_{1}, \ldots, V_{s} be i.i.d. and $V_{i} \sim U(0,1)$, and B_{1}, \ldots, B_{s-1} be independent such that $B_{k} \sim \operatorname{Beta}[1 / p,(s-k) / p](k=$ $1, \ldots, s-1)$. Denote by $F_{k}(\cdot)$ the c.d.f. of B_{k} and $F_{k}^{-1}(\cdot)$ the inverse function of $F_{k}(\cdot)$. Then the random vector $\boldsymbol{u}=\left(U_{1}, \cdots, U_{s}\right)^{\prime} \sim \mathcal{U}(s, p)$ has a stochastic representation

$$
\begin{equation*}
\boldsymbol{u} \stackrel{\mathrm{d}}{=} \boldsymbol{x}=\left(X_{1}, \cdots, X_{s}\right)^{\prime} \tag{7}
\end{equation*}
$$

where the components X_{1}, \ldots, X_{s} are given by

$$
\begin{align*}
& X_{1}= \operatorname{sign}\left(2 V_{1}-1\right)\left\{F_{1}^{-1}\left[\left(2 V_{1}-1\right) \operatorname{sign}\left(2 V_{1}-1\right)\right]\right\}^{1 / p} \\
& X_{2}= \operatorname{sign}\left(2 V_{2}-1\right)\left\{\left(1-\left|X_{1}\right|^{p}\right) F_{2}^{-1}\left[\left(2 V_{2}-1\right) \operatorname{sign}\left(2 V_{2}-1\right)\right]\right\}^{1 / p} \\
& \vdots \\
& X_{s-1}= \operatorname{sign}\left(2 V_{s-1}-1\right)\left\{\left(1-\sum_{i=1}^{s-2}\left|X_{i}\right|^{p}\right)\right. \\
&\left.F_{s-1}^{-1}\left[\left(2 V_{s-1}-1\right) \operatorname{sign}\left(2 V_{s-1}-1\right)\right]\right\}^{1 / p} \tag{7}\\
& X_{s}= \operatorname{sign}\left(2 V_{s}-1\right)\left(1-\sum_{i=1}^{s-1}\left|X_{i}\right|^{p}\right)^{1 / p}
\end{align*}
$$

here $\operatorname{sign}(\cdot)$ stands for the sign function.

- The Algorithm for Generating Uniformly Scattered Points on S_{s}^{p}

Step 1. For the given number of points n and the dimension $s \geq 2$, find the $g l p$ set $\mathcal{P}_{z}=\left\{\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}\right\} \subset C^{s}$ from Appendix A in Fang \& Wang (1994);

Step 2. Obtain the set of points $\mathcal{P}_{x}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset$ S_{s}^{p} by projection in the following way: denote by $\boldsymbol{x}_{i}=$ $\left(x_{i 1}, \ldots, x_{i s}\right)^{\prime}$ and $\boldsymbol{z}_{i}=\left(z_{i 1}, \ldots, z_{i s}\right)^{\prime}(i=1, \ldots, n)$, let

$$
x_{i 1}=\operatorname{sign}\left(2 z_{i 1}-1\right)\left\{F_{1}^{-1}\left[\left(2 z_{i 1}-1\right) \operatorname{sign}\left(2 z_{i 1}-1\right)\right]\right\}^{1 / p},
$$

$$
x_{i 2}=\operatorname{sign}\left(2 z_{i 2}-1\right)\left\{\left(1-\left|x_{i 1}\right|^{p}\right) F_{2}^{-1}\left[\left(2 z_{i 2}-1\right) \operatorname{sign}\left(2 z_{i 2}-1\right)\right]\right\}^{1 / p},
$$

$$
\begin{align*}
x_{i, s-1} & =\operatorname{sign}\left(2 z_{i, s-1}-1\right)\left\{\left(1-\sum_{j=1}^{s-2}\left|x_{i j}\right|^{p}\right) F_{s-1}^{-1}\left[\left(2 z_{i, s-1}-1\right) \operatorname{sign}\left(2 z_{i, s-1}-1\right)\right]\right\}^{1 / h} \\
x_{i s} & = \begin{cases}\operatorname{sign}\left(2 z_{i s}-1\right)\left(1-\sum_{j=1}^{s-1}\left|x_{i j}\right|^{p}\right)^{1 / p}, & \text { if } z_{i s} \neq 0.5, \\
\left(1-\sum_{j=1}^{s-1}\left|x_{i j}\right|^{p}\right)^{1 / p}, & \text { if } z_{i s}=0.5 .\end{cases} \tag{8}
\end{align*}
$$

Then the set of points $\mathcal{P}_{x}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset S_{s}^{p}$ has a quasi F-discrepancy d (d is the usual discrepancy of $\mathcal{P}_{z} \subset$ $\left.C^{s}\right)$ with respect to the c.d.f. of $\boldsymbol{x} \sim \mathcal{U}(s, p)$, or \mathcal{P}_{x} has an F-discrepancy d with respect to the c.d.f. $H(\boldsymbol{v})=\Pi_{i=1}^{S} v_{i}$ of the random vector $\boldsymbol{V}=\left(V_{1}, \ldots, V_{s}\right)^{\prime}$ with independent components $V_{i} \sim U(0,1)\left(\boldsymbol{v}=\left(v_{1}, \ldots, v_{s}\right) \in C^{s}\right)$.

It can be proved that d is equal to:

$$
\begin{equation*}
d=\sup _{\boldsymbol{r} \in C^{s}}\left|\frac{N\left(\mathcal{P}_{x}, G \boldsymbol{r}\right)}{n}-H(r)\right|, \tag{9}
\end{equation*}
$$

where $\boldsymbol{r}=\left(r_{1}, \ldots, r_{s}\right)^{\prime} \in C^{s}, H(\boldsymbol{r})=\prod_{i=1}^{s} r_{i}, N\left(\mathcal{P}_{x}, G \boldsymbol{r}\right)$ stands for number of points in \mathcal{P}_{x} that fall in the set $G \boldsymbol{r}$ defined by

$$
\begin{equation*}
G \boldsymbol{r}=\{\boldsymbol{x}: \boldsymbol{x}=\boldsymbol{h}(\boldsymbol{v}), \boldsymbol{v} \leq r\} . \tag{10}
\end{equation*}
$$

where $\boldsymbol{h}(\boldsymbol{v})=\left(h_{1}(\boldsymbol{v}), \ldots, h_{s}(\boldsymbol{v})\right)\left(\boldsymbol{v}=\left(v_{1}, \ldots, v_{s}\right) \in C^{s}\right)$
with

$$
\begin{align*}
h_{1}(\boldsymbol{v})= & \operatorname{sign}\left(2 v_{1}-1\right)\left\{F_{1}^{-1}\left[\left(2 v_{1}-1\right) \operatorname{sign}\left(2 v_{1}-1\right)\right]\right\}^{1 / p}, \\
h_{2}(\boldsymbol{v})= & \operatorname{sign}\left(2 v_{2}-1\right) . \\
& \left\{\left[1-F_{1}^{-1}\left(\left(2 v_{1}-1\right) \operatorname{sign}\left(2 v_{1}-1\right)\right)\right] F_{2}^{-1}\left(\left(2 v_{2}-1\right) \operatorname{sign}\left(2 v_{2}-1\right)\right)\right\}^{1 / p}, \\
h_{m}(\boldsymbol{v})= & \operatorname{sign}\left(2 v_{m}-1\right)\left\{\left[1-\sum_{i=1}^{m-1} F_{i}^{-1}\left(\left(2 v_{i}-1\right) \operatorname{sign}\left(2 v_{i}-1\right)\right)\right] .\right. \\
& \left.F_{m}^{-1}\left(\left(2 v_{m}-1\right) \operatorname{sign}\left(2 v_{m}-1\right)\right)\right\}^{1 / p}, \\
& m=2, \ldots, s-1, \\
h_{s}(\boldsymbol{v})= & \operatorname{sign}\left(2 v_{s}-1\right)\left(1-\sum_{i=1}^{s-1}\left|h_{i}(\boldsymbol{v})\right|^{p}\right)^{1 / p} . \tag{11}
\end{align*}
$$

The set of points $\mathcal{P}_{x}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ obtained by the above algorithm has the smallest quasi F-discrepancy d with respect to the c.d.f. of the uniform distribution $\boldsymbol{x} \sim$ $\mathcal{U}(s, p)$ on S_{s}^{p}, or \mathcal{P}_{x} has the smallest F-discrepancy d with respect to the uniform c.d.f. $H(\boldsymbol{r})=\Pi_{i=1}^{s} r_{i}$ with independent components, where $\boldsymbol{r}=\left(r_{1}, \ldots, r_{s}\right)^{\prime} \in C^{s}$.

- Examples
(1) $s=2, n=8, p=1 / 2,1,2,3$, generating vector
$\left(h_{1}, h_{2}\right)=(1,5)$, the $g l p$ set in C^{2} is $\left(\frac{k-0.5}{n},\left\{\frac{h_{2} k-0.5}{n}\right\}\right)$
for $n=8$ and $1 \leq k \leq n$;
(2) $s=2, n=21, p=1 / 2,1,2,3,\left(h_{1}, h_{2}\right)=(1,13)$,
the $g l p$ set in C^{2} is $\left(\frac{k-0.5}{n},\left\{\frac{h_{2} k-0.5}{n}\right\}\right)$ for $n=21$ and $1 \leq k \leq n ;$
(3) $s=2, n=55, p=1 / 2,1,2,3,\left(h_{1}, h_{2}\right)=(1,34)$,
the $g l p$ set in C^{2} is $\left(\frac{k-0.5}{n},\left\{\frac{h_{2} k-0.5}{n}\right\}\right)$ for $n=55$ and $1 \leq k \leq n ;$
(4) $s=2, n=144, p=1 / 2,1,2,3,\left(h_{1}, h_{2}\right)=(1,89)$, the $g l p$ set in C^{2} is $\left(\frac{k-0.5}{n},\left\{\frac{h_{2} k-0.5}{n}\right\}\right)$ for $n=144$ and $1 \leq k \leq n$.

Figure 1: Illustration of projecting some $g l p$ sets in C^{2} onto the L_{p}-norm unit sphere S_{2}^{p} by the algorithm given by (25) for some selected values of p.

- Applications

Definition. An s-variate random vector \boldsymbol{x} is said to have an
L_{p}-norm spherical distribution (denoted by $\boldsymbol{x} \sim S P(s, p)$)
if

$$
\begin{equation*}
\boldsymbol{x} \stackrel{\mathrm{d}}{=} R \boldsymbol{u} \tag{12}
\end{equation*}
$$

where $\boldsymbol{u} \sim \mathcal{U}(s, p), R$ is a univariate nonnegative random variable that is independent of \boldsymbol{u}.

Example 1. Application in generating empirical samples from the class of p-generalized normal distributions. The p-generalized normal distribution was given by Goodman and Kotz (1973). Denote it by $N_{s}\left(\mathbf{0}, \boldsymbol{I}_{s}, p\right) . \quad \boldsymbol{x}=$ $\left(X_{1}, \ldots, X_{s}\right)^{\prime} \sim N_{s}\left(\mathbf{0}, \boldsymbol{I}_{s}, p\right)$ has a p.d.f. $f\left(x_{1}, \ldots, x_{s}\right)=\frac{p^{s} r^{s / p}}{2^{s} \Gamma^{s}(1 / p)} \cdot \exp \left\{-r \sum_{i=1}^{s}\left|x_{i}\right|^{p}\right\}, \quad\left(x_{1}, \cdots, x_{s}\right)^{\prime} \in R^{s}$,
where $r>0$ is a parameter. It is easy to verify that
$\boldsymbol{x} \sim N_{s}\left(\mathbf{0}, \boldsymbol{I}_{s}, p\right) \stackrel{\mathrm{d}}{=} R \boldsymbol{u}, \boldsymbol{u} \sim \mathcal{U}(s, p)$, and R has a p.d.f.

$$
g(t)=\frac{p r^{s / p}}{\Gamma(s / p)} \cdot t^{s-1} \exp \left(-r t^{p}\right), \quad t>0
$$

Then the random variable $Y=r R^{p}$ has a gamma distribution with a p.d.f.

$$
\begin{equation*}
g(y)=\frac{1}{\Gamma(s / p)} y^{s / p-1} \exp (-y), \quad y>0 \tag{13}
\end{equation*}
$$

An i.i.d. sample $\left\{Y_{1}, \ldots, Y_{n}\right\}$ can be easily generated from the gamma distribution (13). Then an i.i.d. sample $\left\{R_{1}, \ldots, R_{n}\right\}$ can be obtained by

$$
\begin{equation*}
R_{i}=\left(Y_{i} / r\right)^{1 / p}, \quad i=1, \ldots, n . \tag{14}
\end{equation*}
$$

A random sample $\left\{\boldsymbol{x}_{1}, \ldots, x_{n}\right\}$ from $N_{s}\left(\mathbf{0}, \boldsymbol{I}_{s}, p\right)$ is obtained by

$$
\begin{equation*}
\boldsymbol{x}_{i}=R_{i} \boldsymbol{u}_{i}, \quad i=1, \ldots, n . \tag{15}
\end{equation*}
$$

where $\left\{\boldsymbol{u}_{i}: i=1, \ldots, n\right\}$ is a random sample from
$\mathcal{U}(s, p)$, which is obtained by generating a uniform sample $\boldsymbol{z}_{i}=\left(z_{i 1}, \ldots, z_{i s}\right)^{\prime} \in C^{s}$ with $z_{i j}(j=1, \ldots, s)$ i.i.d.
$U(0,1)$ and projecting this uniform sample onto S_{s}^{p} by the algorithm.

Example 2. Application in generating representative points (simply called rep-points) for the class of L_{p}-norm spherical distributions.

Definition. Let $F(\boldsymbol{x})=F\left(x_{1}, \ldots, x_{s}\right)$ be a given s-dimensional continuous c.d.f. and $\mathcal{P}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset R^{s}$. The F-discrepancy $D_{F}(n, \mathcal{P})$ is a measure of the representation of \mathcal{P} to $F(\boldsymbol{x})$. If we can find a set of points $\mathcal{P}^{*}=$ $\left\{\boldsymbol{x}_{1}^{*}, \ldots, \boldsymbol{x}_{n}^{*}\right\}$ such that

$$
\begin{equation*}
D_{F}\left(n, \mathcal{P}^{*}\right)=\min _{\mathcal{P}} D_{F}(n, \mathcal{P}) \tag{16}
\end{equation*}
$$

where \mathcal{P} runs over all sets of n points in R^{s}, then \mathcal{P}^{*} is
called a set of cdf-rep-points of $F(\boldsymbol{x})$.

For the one-dimensional case $s=1$, it is easy to find the set of cdf-rep-points of any given continuous c.d.f., for the high-dimensional case $s>1$, it is usually difficult to find the set of cdf-rep-points \mathcal{P}^{*} of any given c.d.f. $\boldsymbol{x} \sim F(\boldsymbol{x})$. We consider r.v. \boldsymbol{x} has the stochastic representation of the type

$$
\begin{equation*}
\boldsymbol{x} \stackrel{\stackrel{\mathrm{d}}{=} R \boldsymbol{y}, ~}{\text {, }} \tag{17}
\end{equation*}
$$

where $\boldsymbol{x} \sim F(\boldsymbol{x}), R>0$ is a positive random variable, and $\boldsymbol{y} \sim \mathcal{U}(s, p)$. By using the algorithm in this paper to generate $\boldsymbol{y} \sim \mathcal{U}(s, p)$ and the NTSR algorithm in Fang \& Wang (1994), we can generate the approximate cdf-reppoints of the r.v. in (17).

Example 3. Application in optimization problems. Let $f(\boldsymbol{x})\left(\boldsymbol{x}=\left(x_{1}, \ldots, x_{s}\right)^{\prime} \in R^{s}\right)$ be a continuous function. Suppose that we want to find the maximal point $\boldsymbol{x}^{*} \in S_{s}^{p}$ such that

$$
\begin{equation*}
M=f\left(\boldsymbol{x}^{*}\right)=\max _{\boldsymbol{x} \in S_{s}^{j}} f(\boldsymbol{x}) . \tag{18}
\end{equation*}
$$

This is an optimization problem of $f(\boldsymbol{x})=f\left(x_{1}, \ldots, x_{s}\right)$ subject to the restriction

$$
\left|x_{1}\right|^{p}+\cdots+\left|x_{s}\right|^{p}=1, \quad p>0 .
$$

By generating a set of uniformly scattered points in S_{s}^{p}, we can approximately obtain (18).

END OF TALK

THANK YOU FOR YOUR ATTENTION!

