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• Some Regular Regions in the s-dimensional (s ≥ 2)

Euclidean Space Rs and the Corresponding Uniform Dis-

tributions

The unit hypercube:

Cs = [0, 1]s = {z = (z1, · · · , zs)
′ ∈ Rs, 0 ≤ zi ≤ 1, i = 1, . . . , s}

(1)

The uniform distribution on Cs is denoted by U(Cs).

The (surface of) Lp-norm unit sphere:

Sp
s = {x = (x1, · · · , xs)

′ ∈ Rs, ‖x‖p = (|x1|p + · · · + |xs|p)1/p = 1,

p > 0, s ≥ 2}.
(2)

When p = 1, Sp
s = S1

s reduces to a unit hypercube;

When p = 2, Sp
s = S2

s reduces to the (surface of) a unit

sphere in the usual meaning.
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Definition. A random vector us = (U1, · · · , Us)
′ is said to

have an Lp-norm uniform distribution (p > 0), denoted

by us ∼ U(s, p), if
∑s

i=1 |Ui|p = 1 and the joint p.d.f. of

U1, . . . , Us−1 is given by

g(u1, . . . , us−1) =
ps−1Γ(s/p)

2s−1Γs(1/p)

1−
s−1∑
i=1

|ui|p
(1−p)/p

,

− 1 < ui < 1, i = 1, . . . , s− 1,
∑s−1

i=1 |ui|p < 1.

Sets of points in Sp
s (p > 0, s ≥ 2) with certain unifor-

mity are usually obtained by using the Inverse Transfor-

mation Method to project sets of points in Cs with certain

optimal uniformity property onto Sp
s .

Major reference:

Fang, K.T. & Wang, Y. (1994). Number-theoretic

Methods in Statistics. Chapman and Hall, London.

The purpose of this paper is to find a suitable Inverse

Transformation Method.
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• Measures of Uniformity

There are several ways of measuring uniformity by dis-

crepancy.

The usual discrepancy: Let P = {x1, . . . ,xn} ⊂ Rs.

D(n,P) = sup
γ∈Cs

∣∣∣∣∣∣∣
N(γ,P)

n
− v([0, γ])

∣∣∣∣∣∣∣ , (3)

is called the (usual) discrepancy.

v([0, γ]): the volume of the rectangle [0, γ]

N(γ,P): the number of points in P satisfying zi ≤ γ

(componentwise)

The F -discrepancy: Let F (x) be a c.d.f and

Fn(x) =
1

n

n∑
i=1

I{xi ≤ x},

the e.c.f. based on P = {x1, . . . ,xn}. Then

DF (n,P) = sup
x∈Rs

|Fn(x) − F (x)| (4)

is called the F -discrepancy of P with respect to F (x).
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The quasi F -discrepancy: Let x be an s× 1 random vec-

tor with c.d.f. F (x). x has a stochastic representation

x = h(z), where z ∼ U(Ct) (t ≤ s). Let {ck : k =

1, . . . , n} be a set of points that are uniformly scattered

in Ct with (usual) discrepancy d. Then the set of points

PF = {h(ck) : k = 1, . . . , n} is said to have a quasi

F -discrepancy d with respect to F (x).

In this paper we will provide an algorithm for generating

a set of uniformly scattered points in Sp
s with a minimum

quasi F -discrepancy by projecting the glp set in Cs.

Definition. Let (n; h1, . . . , hs) be a vector with integer

components satisfying 1 ≤ hi ≤ n, hi 6= hj (i 6= j),

s < n, and the greatest common divisors (n, hi) = 1,

i = 1, . . . , s. Let
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
qki = khi (mod n),

xki = (2qki − 1)/2n,

k = 1, . . . , n; i = 1, . . . , s,

(5)

where 1 ≤ qki < n. Then the setPn = {xk = (xk1, . . . , xks)
′, k =

1, . . . , n} is called the lattice point set with the generating

vector (n; h1, . . . , hs). If the set Pn has the smallest dis-

crepancy in the sense of (3) among all possible generating

vectors, then the set Pn is called a glp set.

Fang & Wang (1994) provides the generating vectors for

some glp set in Cs.
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• Theoretical Results

Theorem 1. Let us = (U1, · · · , Us)
′ ∼ U(s, p). Define

the random variables Bi (i = 1, . . . , s−1) by the following

conditional distributions:

B1
d= |U1|p,

B2
d= {(1− |U1|p)−1|U2|p|U1},

...

Bm
d= {(1− ∑m−1

i=1 |Ui|p)−1|Um|p|(U1, · · · , Um−1)},
(6)

where m = 2, . . . , s− 1, the sign “ d=” means that the two

sides of the equality have the same probability distribution,

and {·|·} stands for the conditional distribution given the

part on the right hand side of “|”. Then B1, . . . , Bs−1 are

mutually independent and Bk ∼ Beta[1/p, (s−k)/p] (the

beta distribution, k = 1, . . . , s− 1).
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Theorem 2. Assume that u = (U1, · · · , Us)
′ ∼ U(s, p).

Let V1, . . . , Vs be i.i.d. and Vi ∼ U(0, 1), and B1, . . . , Bs−1

be independent such that Bk ∼ Beta[1/p, (s− k)/p] (k =

1, . . . , s− 1). Denote by Fk(·) the c.d.f. of Bk and F−1
k (·)

the inverse function of Fk(·). Then the random vector

u = (U1, · · · , Us)
′ ∼ U(s, p) has a stochastic representa-

tion

u d= x = (X1, · · · , Xs)
′, (7)

where the components X1, . . . , Xs are given by
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X1 = sign(2V1 − 1)
{
F−1

1 [(2V1 − 1)sign(2V1 − 1)]
}1/p

,

X2 = sign(2V2 − 1)
{
(1− |X1|p)F−1

2 [(2V2 − 1)sign(2V2 − 1)]
}1/p

,

...

Xs−1 = sign(2Vs−1 − 1)
{
(1− ∑s−2

i=1 |Xi|p)·

F−1
s−1[(2Vs−1 − 1)sign(2Vs−1 − 1)]

}1/p
,

Xs = sign(2Vs − 1)
(
1− ∑s−1

i=1 |Xi|p
)1/p

,

(7)

here sign(·) stands for the sign function.
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•The Algorithm for Generating Uniformly Scattered Points

on Sp
s

Step 1. For the given number of points n and the dimen-

sion s ≥ 2, find the glp set Pz = {z1, . . . ,zn} ⊂ Cs from

Appendix A in Fang & Wang (1994);

Step 2. Obtain the set of points Px = {x1, . . . ,xn} ⊂

Sp
s by projection in the following way: denote by xi =

(xi1, . . . , xis)
′ and zi = (zi1, . . . , zis)

′ (i = 1, . . . , n), let

xi1 = sign(2zi1 − 1)
{
F−1

1 [(2zi1 − 1)sign(2zi1 − 1)]
}1/p

,

xi2 = sign(2zi2 − 1)
{
(1− |xi1|p)F−1

2 [(2zi2 − 1)sign(2zi2 − 1)]
}1/p

,

...

xi,s−1 = sign(2zi,s−1 − 1)

(1−
s−2∑
j=1

|xij|p)F−1
s−1[(2zi,s−1 − 1)sign(2zi,s−1 − 1)]


1/p

,

xis =


sign(2zis − 1)(1−

s−1∑
j=1

|xij|p)1/p
, if zis 6= 0.5,

(1−
s−1∑
j=1

|xij|p)1/p
, if zis = 0.5.

(8)
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Then the set of points Px = {x1, . . . ,xn} ⊂ Sp
s has a

quasi F -discrepancy d (d is the usual discrepancy of Pz ⊂

Cs) with respect to the c.d.f. of x ∼ U(s, p), or Px has an

F -discrepancy d with respect to the c.d.f. H(v) =
∏s

i=1 vi

of the random vector V = (V1, . . . , Vs)
′ with independent

components Vi ∼ U(0, 1) (v = (v1, . . . , vs) ∈ Cs).

It can be proved that d is equal to:

d = sup
r∈Cs

∣∣∣∣∣∣∣
N(Px, Gr)

n
−H(r)

∣∣∣∣∣∣∣ , (9)

where r = (r1, . . . , rs)
′ ∈ Cs, H(r) =

∏s
i=1 ri, N(Px, Gr)

stands for number of points in Px that fall in the set Gr

defined by

Gr = {x : x = h(v), v ≤ r}. (10)

where h(v) = (h1(v), . . . , hs(v)) (v = (v1, . . . , vs) ∈ Cs)
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with

h1(v) = sign(2v1 − 1)
{
F−1

1 [(2v1 − 1)sign(2v1 − 1)]
}1/p

,

h2(v) = sign(2v2 − 1)·
{
[1− F−1

1 ((2v1 − 1)sign(2v1 − 1))]F−1
2 ((2v2 − 1)sign(2v2 − 1))

}1/p
,

hm(v) = sign(2vm − 1)

[1−
m−1∑
i=1

F−1
i ((2vi − 1)sign(2vi − 1))]·

F−1
m ((2vm − 1)sign(2vm − 1))

}1/p
,

m = 2, . . . , s− 1,

hs(v) = sign(2vs − 1)

1−
s−1∑
i=1

|hi(v)|p
1/p

.

(11)

The set of points Px = {x1, . . . ,xn} obtained by the

above algorithm has the smallest quasi F -discrepancy d

with respect to the c.d.f. of the uniform distribution x ∼

U(s, p) on Sp
s , or Px has the smallest F -discrepancy d

with respect to the uniform c.d.f. H(r) =
∏s

i=1 ri with

independent components, where r = (r1, . . . , rs)
′ ∈ Cs.
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• Examples

(1) s = 2, n = 8, p = 1/2, 1, 2, 3, generating vector

(h1, h2) = (1, 5), the glp set in C2 is
(

k−0.5
n ,

{
h2k−0.5

n

})

for n = 8 and 1 ≤ k ≤ n;

(2) s = 2, n = 21, p = 1/2, 1, 2, 3, (h1, h2) = (1, 13),

the glp set in C2 is
(

k−0.5
n ,

{
h2k−0.5

n

})
for n = 21 and

1 ≤ k ≤ n;

(3) s = 2, n = 55, p = 1/2, 1, 2, 3, (h1, h2) = (1, 34),

the glp set in C2 is
(

k−0.5
n ,

{
h2k−0.5

n

})
for n = 55 and

1 ≤ k ≤ n;

(4) s = 2, n = 144, p = 1/2, 1, 2, 3, (h1, h2) = (1, 89),

the glp set in C2 is
(

k−0.5
n ,

{
h2k−0.5

n

})
for n = 144 and

1 ≤ k ≤ n.

Insert Figure 1 around here
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Figure 1: Illustration of projecting some glp sets in C2 onto the Lp-norm unit

sphere Sp
2 by the algorithm given by (25) for some selected values of p.
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• Applications

Definition. An s-variate random vector x is said to have an

Lp-norm spherical distribution (denoted by x ∼ SP (s, p))

if

x d= Ru, (12)

where u ∼ U(s, p), R is a univariate nonnegative random

variable that is independent of u.

Example 1. Application in generating empirical sam-

ples from the class of p-generalized normal distributions.

The p-generalized normal distribution was given by Good-

man and Kotz (1973). Denote it by Ns(0, Is, p). x =

(X1, . . . , Xs)
′ ∼ Ns(0, Is, p) has a p.d.f.

f (x1, . . . , xs) =
psrs/p

2sΓs(1/p)
·exp {−r

s∑
i=1

|xi|p}, (x1, · · · , xs)
′ ∈ Rs,

where r > 0 is a parameter. It is easy to verify that
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x ∼ Ns(0, Is, p) d= Ru, u ∼ U(s, p), and R has a p.d.f.

g(t) =
prs/p

Γ(s/p)
· ts−1 exp(−rtp), t > 0.

Then the random variable Y = rRp has a gamma distri-

bution with a p.d.f.

g(y) =
1

Γ(s/p)
ys/p−1 exp(−y), y > 0. (13)

An i.i.d. sample {Y1, . . . , Yn} can be easily generated

from the gamma distribution (13). Then an i.i.d. sam-

ple {R1, . . . , Rn} can be obtained by

Ri = (Yi/r)1/p, i = 1, . . . , n. (14)

A random sample {x1, . . . , xn} from Ns(0, Is, p) is ob-

tained by

xi = Riui, i = 1, . . . , n. (15)

where {ui : i = 1, . . . , n} is a random sample from
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U(s, p), which is obtained by generating a uniform sam-

ple zi = (zi1, . . . , zis)
′ ∈ Cs with zij (j = 1, . . . , s) i.i.d.

U(0, 1) and projecting this uniform sample onto Sp
s by the

algorithm.

Example 2. Application in generating representative

points (simply called rep-points) for the class of Lp-norm

spherical distributions.

Definition. Let F (x) = F (x1, . . . , xs) be a given s-dimensional

continuous c.d.f. and P = {x1, . . . ,xn} ⊂ Rs. The

F -discrepancy DF (n,P) is a measure of the representa-

tion of P to F (x). If we can find a set of points P∗ =

{x∗
1, . . . ,x

∗
n} such that

DF (n,P∗) = min
P

DF (n,P), (16)

where P runs over all sets of n points in Rs, then P∗ is
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called a set of cdf-rep-points of F (x).

For the one-dimensional case s = 1, it is easy to find the

set of cdf-rep-points of any given continuous c.d.f., for the

high-dimensional case s > 1, it is usually difficult to find

the set of cdf-rep-points P∗ of any given c.d.f. x ∼ F (x).

We consider r.v. x has the stochastic representation of the

type

x d= Ry, (17)

where x ∼ F (x), R > 0 is a positive random variable,

and y ∼ U(s, p). By using the algorithm in this paper

to generate y ∼ U(s, p) and the NTSR algorithm in Fang

& Wang (1994), we can generate the approximate cdf-rep-

points of the r.v. in (17).
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Example 3. Application in optimization problems. Let

f (x) (x = (x1, . . . , xs)
′ ∈ Rs) be a continuous function.

Suppose that we want to find the maximal point x∗ ∈ Sp
s

such that

M = f (x∗) = max
x∈S

p
s

f (x). (18)

This is an optimization problem of f (x) = f (x1, . . . , xs)

subject to the restriction

|x1|p + · · · + |xs|p = 1, p > 0.

By generating a set of uniformly scattered points in Sp
s ,

we can approximately obtain (18).
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