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e Some Regular Regions in the s-dimensional (s > 2)
Euclidean Space R* and the Corresponding Uniform Dis-
tributions

The unit hypercube:

Co=0,1"={2=(21,-"+,25) e R, 0< 5 <1,i=1,...,s}
(1)
The uniform distribution on C* is denoted by U(C?).
The (surface of) L,-norm unit sphere:
St ={w=(an, ) € R, ally = (P oot o) =1,

p>0, s>2}

(2)
When p = 1, S? = S! reduces to a unit hypercube;

When p = 2, S? = S? reduces to the (surface of) a unit

sphere in the usual meaning.



Definition. A random vector us = (Uy, - - -, Uy)' is said to
have an L,-norm uniform distribution (p > 0), denoted
by ws ~ U(s,p), if =7 |U;|P = 1 and the joint p.d.f. of

Uy, ..., Us_1 is given by

ps—lr(s/p) ( s—1 )(1p)/p

U ) = 1 — |7 ,
g(ula U 1) 25_1FS(1/p> Z; ’u ‘

—l<u <1, i=1,...,8—1, ] |ylf <1,

Sets of points in S? (p > 0, s > 2) with certain unifor-
mity are usually obtained by using the Inverse Transfor-
mation Method to project sets of points in C* with certain
optimal uniformity property onto S?.

Major reference:

Fang, K.T. & Wang, Y. (1994). Number-theoretic

Methods in Statistics. Chapman and Hall, London.

The purpose of this paper is to find a suitable Inverse

Transformation Method.



e Measures of Uniformity
There are several ways of measuring uniformity by dis-
crepancy.

The usual discrepancy: Let P = {xy,...,x,} C R°.

D(n,P) = sup N(v.P)
YeCs n

o v([()?’)/]) ) (3)

is called the (usual) discrepancy.

v([0,~]): the volume of the rectangle [0, ~]

N(~,P): the number of points in P satisfying z; < ~
(componentwise)

The F-discrepancy: Let F(x) be a c.d.f and

1 n
Fox)=—Y I{z; <z},
ni=1
the e.c.f. based on P = {x1,...,x,}. Then

Dp(n,P) = swp |Fn(z) - Flz)] (4)

is called the F-discrepancy of P with respect to F(x).

4



The quasi F'-discrepancy: Let & be an s X 1 random vec-
tor with c.d.f. F(x). x has a stochastic representation
x = h(z), where z ~ U(C") (t < s). Let {e : k =
1,...,n} be a set of points that are uniformly scattered
in C* with (usual) discrepancy d. Then the set of points
Pr = {h(cy) : k =1,...,n} is said to have a quasi
F-discrepancy d with respect to F'(x).

In this paper we will provide an algorithm for generating
a set of uniformly scattered points in S? with a minimum
quasi F-discrepancy by projecting the glp set in C°.
Definition. Let (n;hq,...,hs) be a vector with integer
components satisfying 1 < h; < n, h; # h; (i # j),
s < n, and the greatest common divisors (n,h;) = 1,

1=1,...,s. Let



qri = kh; (mod n),

T = (2q —1)/2n,

where 1 < g; < n. Then theset P, = {xy = (1, ..., xps), k=
1,...,n} is called the lattice point set with the generating
vector (n; hy, ..., hs). If the set P, has the smallest dis-
crepancy in the sense of (3) among all possible generating
vectors, then the set P, is called a glp set.

Fang & Wang (1994) provides the generating vectors for

some glp set in C*%.



e Theoretical Results
Theorem 1. Let uy = (Uy,---,Uy) ~ U(s,p). Define
the random variables B; (i = 1,...,s—1) by the following
conditional distributions:

B, £ U,

By £ {(1—|U|") Y| UsP|th },

||~

By = {(1 =<5 UIP) U IOy, -+, Un—)

(6)
where m = 2,...,s—1, the sign “d7 means that the two
sides of the equality have the same probability distribution,
and {-|-} stands for the conditional distribution given the
part on the right hand side of “|”. Then By, ..., Bs_; are

mutually independent and By, ~ Beta|l/p, (s —k)/p] (the

beta distribution, k =1,...,s —1).



Theorem 2. Assume that u = (Uy,---,Us) ~ U(s,p).
Let Vi,..., Vibeiid. andV; ~ U(0,1),and By, ..., Bs_1
be independent such that By ~ Beta[l/p, (s —k)/p] (k =
1,...,5—1). Denote by Fj(-) the c.d.f. of By, and F}, '(*)
the inverse function of Fj(-). Then the random vector
uw = (Uy,---,Uy) ~ U(s,p) has a stochastic representa-
tion

ugm:<X17”'7XS)/7 (7)

where the components X, ..., X, are given by



X1 = sign(2V; — 1) {FY(2V4 — 1)sign(2V; — 1)}}1/]97

Xy = sign(2Vs — D {(1— | Xi[")Fy 1[(2V5 — Dsign(2Vs — D)},

X1 = sign(2Vior — D {(1 = =57 | X))
F4 2V, — 1)sign(2V,_4 — 1)]}1/ "

S—

X, = sign(2V, — 1) (1 — == [ X|P) 7,

here sign(-) stands for the sign function,



e The Algorithm for Generating Uniformly Scattered Points
on S¥

Step 1. For the given number of points n and the dimen-

sion s > 2, find the glp set P, = {z1,...,2,} C C* from

Appendix A in Fang & Wang (1994);

Step 2. Obtain the set of points P, = {@y,...,x,} C
SP by projection in the following way: denote by x; =
(Ti1y -y xs) and 2z, = (251, ..., 2i5) (1 =1,...,n), let

v = sign(2z — 1) {F7 V(220 — 1)sign(2z — 1]},

iy = sign(2z — 1) {(1 = [za ") Fy '[(22: — Dsign (22 — 1)}

5—2 1/
Tis—1 = sign(2z; 5.1 —1) {(1 - > |xij\p)F5111[(22i75_1 — 1)sign(2z; 51 — 1)]}
j=1
s—1

sign(2z;, — 1)(1 = 3 |y |P)?, if 2 # 0.5,
j=1

s—1 ) 1/p )
(1 — Z ‘ZC”‘ ) , if Zis — 0.5.
j=1
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Then the set of points P, = {x1,...,x,} C S? has a
quasi F-discrepancy d (d is the usual discrepancy of P, C
C*) with respect to the c.d.f. of & ~ U(s, p), or P, has an
F-discrepancy d with respect to the c.d.f. H(v) =115, v;
of the random vector V- = (V4, ..., V;) with independent
components V; ~ U(0,1) (v = (vy,...,vs) € C%).

It can be proved that d is equal to:

d = sup N (P, Gr)

reCs n

— H{(r)|, (9)

where r = (r1,...,75) € C*, H(r) =1;_, r;, N(Py, Gp)
stands for number of points in P, that fall in the set Gy

defined by

Gr={x: ©="h(v), v <r}. (10)

where h(v) = (h1(v), ..., hs(v)) (v = (vy,...,vs) € C?)
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hn(v) = sign(2vy — 1) {F[(201 — Dsign (20 — )]},
ha(v) = sign(2v; — 1).
{[1 = F7H (201 — Dsign (201 — 1)) Fy (205 — 1sign (20 — 1)}
h(v) = sign(2u, — 1) {[1 - tgl F((20; — 1)sign(20; — 1))]-
F (20, — 1)sign(2v,, — 1))},
m=2,...5—1,

s5—1 1/p
hs(v) = sign(2vs — 1) (1 — ;1 |hi(v)|p) :
(11)

The set of points P, = {x1,...,x,} obtained by the
above algorithm has the smallest quasi F-discrepancy d
with respect to the c.d.f. of the uniform distribution & ~
U(s,p) on SP or P, has the smallest F-discrepancy d
with respect to the uniform c.d.f. H(r) = IIJ_; r; with

independent components, where r = (r1,...,ry) € C*.
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e Examples

(1) s =2, n =38, p=1/2 1,2, 3, generating vector

(h1, he) = (1,5), the glp set in C* is (k—0-5’ {th‘—O.E)})

n n

forn=8and 1 <k <n;

2)s=2n=21p=1/212 3, (h,h) = (1,13),

the glp set in C? is (k_n0'5, {th;O‘E)}) for n = 21 and

1 <k<n;

B)s =2 n=>55p=1/21,2 3 (h,h) = (1,34),

the glp set in C? is (k_n0'5, {thgo‘E)}) for n = 55 and
1 <k<n;
(4) s =2, n =144, p=1/2, 1,2, 3, (hy,hy) = (1,89),

the glp set in C? is (k_0'5, {hzk;%}) for n = 144 and

n

1<k <n.

Insert Figure 1 around here
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Figure 1: Illustration of projecting some glp sets in C? onto the L,-norm unit

sphere S§ by the algorithm given by (25) for some selected values of p.
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e Applications
Definition. An s-variate random vector « is said to have an
L,-norm spherical distribution (denoted by & ~ SP(s,p))
if

L Ru, (12)
where u ~ U(s, p), R is a univariate nonnegative random
variable that is independent of u.
Example 1. Application in generating empirical sam-
ples from the class of p-generalized normal distributions.
The p-generalized normal distribution was given by Good-
man and Kotz (1973). Denote it by Ny(0, I, p). x =
(X1,...,Xs) ~ Ny(0, I, p)has ap.df.

psrs/p

flxy, ..., xs) :W

S
-exp {—r Zl lz; P}, (x1,---,24) € R,
1=

where r > 0 is a parameter. It is easy to verify that
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x ~ N,(0,I,,p) < Ru, u~U(s,p), and R has a p.d.f.

p/)’*s/p

T Lexp(=rt?), t> 0.
YO RS

g(t) =

Then the random variable Y = r RP has a gamma distri-
bution with a p.d.f.

gly) = F(Sl/p)ys/pl exp(—y), y>0. (13

An iid. sample {Y7,...,Y,} can be easily generated

from the gamma distribution (13). Then an i.i.d. sam-

ple {Ry,..., R,} can be obtained by
R, = (Y;/m)V?,  i=1,...,n. (14)

A random sample {x1,...,x,} from N(0, I, p) is ob-
tained by

wi:Riui, 1= 1,...,71. (15)

where {u; : i = 1,...,n} is a random sample from
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U(s,p), which is obtained by generating a uniform sam-
ple z; = (zi1,...,2i5) € C° with z;; (j =1,...,s) i.i.d.
U(0,1) and projecting this uniform sample onto S? by the
algorithm.

Example 2. Application in generating representative
points (simply called rep-points) for the class of L,-norm
spherical distributions.

Definition. Let F'(x) = F(xy,...,z,) beagiven s-dimensional
continuous c.d.f. and P = {x1,...,x,} C R°. The
F-discrepancy Dp(n,P) is a measure of the representa-
tion of P to F(x). If we can find a set of points P* =

{xF,..., 2"} such that
Dp(n,P*) = min Dp(n,P), (16)

where P runs over all sets of n points in R*, then P* is
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called a set of cdf-rep-points of F'(x).

For the one-dimensional case s = 1, it is easy to find the
set of cdf-rep-points of any given continuous c.d.f., for the
high-dimensional case s > 1, it is usually difficult to find
the set of cdf-rep-points P* of any given c.d.f.  ~ F(x).
We consider r.v. @ has the stochastic representation of the
type

z < Ry, (17)
where & ~ F(x), R > 0 is a positive random variable,
and y ~ U(s,p). By using the algorithm in this paper
to generate y ~ U(s, p) and the NTSR algorithm in Fang
& Wang (1994), we can generate the approximate cdf-rep-

points of the r.v. in (17).
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Example 3. Application in optimization problems. Let
f(x) (x = (x1,...,25)" € R®) be a continuous function.

Suppose that we want to find the maximal point &* € S?

such that
M = ) = : 18
f(x”) ggéf(w) (18)
This is an optimization problem of f(x) = f(z1,...,%s)

subject to the restriction

lz P+ |z =1, p>0.

By generating a set of uniformly scattered points in S?,

we can approximately obtain (18).
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END OF TALK

THANK YOU FOR YOUR ATTENTION!
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