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1. Hilbert-based likelihood

• Posterior density and score functions.

pθ(y) is the density function of data Y .

π(θ) is the prior density function of parameter θ.

The posterior density of θ is defined by

π(θ|y) = π(θ)pθ(y)/
∫

Θ π(θ)pθ(y)dθ.

The posterior score function can be expressed as

s(θ|y) = ∂ log π(θ|y)/∂θ = s(θ, y) + π−1(θ)π̇(θ).

If the function forms of density pθ(y) and / or the prior density π(θ)

are unknown, then the function forms of the posterior density π(θ|y) and

posterior score function s(θ|y) are unknown as well.

In this case a new theoretical framework for Bayesian inference is desired.
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• Hilbert-based likelihood function.

To find a replacer of the density function of data Y , we define a function

space G endowed with a family of inner products 〈·, ·〉θ indexed by θ ∈ Θ.

According to the existing Hilbert space version, the mean of g(θ, y) ∈ G is

defined by Eθ(g(θ, y)) = 〈g(θ, y),1G〉θ, where 1G is an unitary element of

G. If this mean is regarded as a linear functional Eθ: G → R, then, the

Riesz representation theorem ensures that, under some regularity conditions,

there exists a function L(y|θ) such that

Eθ(g(θ, y)) =

∫

Y
g(θ, y)L(y|θ)dy. (1.1)

In this case we call L(y|θ) the Hilbert-based likelihood function.

The Hilbert-based likelihood function depends on the defined inner product

〈·, ·〉θ but not on the form of the distribution of data and then it is still

available when the form of the distribution of data is unknown.
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• Hilbert-based prior density.

To get a replacer of the prior density of θ, we define another function

space F : Θ → R and an inner product 〈·, ·〉0 on F . The mean of f (θ) ∈ F
is defined by E0(f (θ)) = 〈f (θ),1F〉0, where 1F is the unitary element of

F . The Riesz representation theorem ensures that, under some regularity

conditions, there exists a function γ(θ) such that

E0(f (θ)) =

∫

Θ

f (θ)γ(θ)dθ. (1.2)

We call γ(θ) the Hilbert-based prior density of θ.
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• Hilbert-based joint density function

By inner product 〈·, ·〉0, together with inner product 〈·, ·〉θ, we define a

derived inner product on G as

〈g1(θ, y), g2(θ, y)〉∗ = 〈〈g1(θ, y), g2(θ, y)〉θ,1F〉0
for any g1(θ, y), g2(θ, y) ∈ G. Under this inner product, the mean of

g(θ, y) ∈ G is defined by E0Eθ(g(θ, y)) = 〈g(θ, y),1G〉∗ and then, by Riesz

representation theorem, there exists a function L(θ, y) such that

E0Eθ(g(θ, y)) =

∫

Θ

∫

Y
g(θ, y)L(θ, y)dydθ. (1.3)

In this case we call L(θ, y) the Hilbert-based joint density function of θ and

Y .
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• Hilbert-based posterior score function

Combining (1.1), (1.2) and (1.3) leads to

L(θ, y) = γ(θ)L(y|θ). (1.4)

Finally, we define

L(θ|y) =
γ(θ)L(y|θ)

p(y)
(1.5)

as the Hilbert-based posterior density function of θ given Y = y, and

h(θ|y) = ∂ log L(θ|y)/∂θ (1.6)

as the Hilbert-based posterior score function of θ given y, where p(y) =∫
Θ γ(θ)L(y|θ)dθ.

The new theoretical framework depends on the defined inner products but

not on the distributions of data and parameter θ, and then is still available

when these distributions are unknown.
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• 2. Hilbert-based Bayesian estimating equation

• Hilbert-based unbiasedness.

Let θ̂ be the root of an estimating equation g(θ, y) = 0. We need the

unbiasedness to get a consistent estimator θ̂ of θ.

An estimating function g(θ, y) is said to be the Hilbert-based conditionally

unbiased, if

EL(g(θ, y)|y) ≡
∫

Θ

g(θ, y)L(θ|y)dθ = 0 (2.1)

holds with probability one. Similarly, a function g(θ, y) is said to be the

Hilbert-based average unbiased if

EL(g(θ, y)) ≡
∫

Θ

∫

Y
g(θ, y)L(θ, y)dydθ = 0. (2.2)
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• Hilbert-based information unbiasedness.

We say that a Bayesian estimating function g(θ, y) is Hilbert-based con-

ditionally information unbiased, if

EL(g(θ, y)g′(θ, y)|y) = −EL(ġ(θ, y)|y) (2.3)

holds with probability one. And a function g(θ, y) is said to be Hilbert-based

average information unbiased, if

EL(g(θ, y)g′(θ, y)) = −EL(ġ(θ, y)). (2.4)

Under both the unbiasedness and the information unbiasedness, further-

more, the estimating function may share some of the properties that are

typically associated with log-likelihoods.
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3. An example

• Function space. Suppose that the n-dimensional random variable y =

(y1, · · · , yn)′ has mean µ(θ) = (µ1(θ), · · · , µn(θ))′ and covariance matrix

σ2V (θ) ≡ σ2(vij(θ)), the estimating function space is chosen as

G =

{
g(θ, y) : g(θ, y) =

n∑
i=1

ai(θ)yi + c(θ)

}
,

where ai(θ) and c(θ) are arbitrary functions of θ ∈ (a, b). The main goal of

this example is to find an optimal estimating function in G.

• Inner product defined on G. Assume that an inner product on G is defined

by

〈yi, 1〉θ = µi(θ) and 〈yi, yj〉θ = σ2vij(θ)+µi(θ)µj(θ) for all i, j = 1, · · · , n.

In this case the usual notion of covariance is

Covθ(yi, yj) = 〈yi − µi(θ), yj − µj(θ)〉θ.
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• Inner product defined on F . Furthermore, define an inner product on F :

Θ → R by

〈f1(θ), f2(θ)〉0 =

∫

Θ

f1(θ)f2(θ)π(θ)dθ for any f1(θ), f2(θ) ∈ F ,

where π(θ) is the prior density of θ on Θ and is supposed to be known.

• Derived product defined on G. We get an inner product defined by

〈yi, 1〉∗ =

∫

Θ

µi(θ)π(θ)dθ

and

〈yi, yj〉∗ =

∫

Θ

[σ2vij(θ) + µi(θ)µj(θ)]π(θ)dθ for all i, j = 1, · · · , n.
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• Projection of true posterior score function. We can verify that the projec-

tion of true posterior score function s(θ|y) onto G is

q(θ|y) = −q(θ, y) + π−1(θ)π̇(θ), (3.1)

where q(θ, y) is the quasi score function as defined by

q(θ, y) = σ−2{µ̇(θ)}′{V (θ)}−1e(y, θ),

µ̇(θ) is an n-dimensional column vector with components ∂µi(θ)/∂θ and

e(y, θ) = y − µ(θ).

• Quasi posterior score. We call q(θ|y) the quasi posterior score function in

G.
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• Unbiasedness. An estimating function g(θ, y) ∈ G is Hilbert-based condi-

tionally unbiased if and only if

n∑
i=1

ai(θ)µi(θ) + c(θ) = 0. (3.2)

q(θ|y) is Hilbert-based average unbiased if and only if

lim
θ→b−

π(θ)− lim
θ→a+

π(θ) = 0. (3.3)

Note that q(θ, y) is Hilbert-based conditionally information unbiased. Then

q(θ|y) is Hilbert-based average information unbiased if and only if

lim
θ→b−

π̇(θ)− lim
θ→a+

π̇(θ) = 0. (3.4)

The conditions(3.2)-(3.4) are mild. These conditions give a principle about

how to choose prior density π(θ).
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• Optimal estimating function.

The optimal estimating function in G is q(θ|y), the quasi score function,

defined by (3.1), i.e,

q(θ|y) = −q(θ, y) + π−1(θ)π̇(θ).

Here the optimality means that q(θ|y) is the projection of the true posterior

sore function onto G and, at the same time, is Hilbert-based average unbiased

and average information unbiased. It is also worth pointing out that the

inference here depends only on the form of inner product and thus is free of

the form of distribution of data.
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• Linear regression. Particularly, consider the following linear regression

model:

Eθ(y) = Xθ, V ar(y) = σ2I, (3.5)

where X is an n× p design matrix and θ ∼ N(0, k−1σ2I) for some k > 0.

The quasi posterior score function can be expressed as

q(θ|y) = σ−2X ′(y −Xθ)− kσ−2θ. (3.6)

This estimating equation is Hilbert-based average unbiased and average in-

formation unbiased. Solving the equation q(θ|y) = 0 for θ leads to a quasi

posterior estimator of θ as

θ̂(k) = (X ′X + kI)−1X ′y, (3.7)

which is just the Ridge estimator or the Bayesian estimator if the distribution

of data is normal, as suggested in the literature.
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• Extensions.

Hilbert-based Bayesian estimating equation is a general theoretical frame-

work. It can be employed to investigate many statistical problems including

penalized least squares, penalized likelihood and variable selection.
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Thank you very much !
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