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Introduction

What’s supersaturated design?

Supersaturated design (SSD):
factorial design in which #{main effects} ≥ #{runs}.
Screening active effects under the assumption of effect
sparsity.

Construction:

Most studies have focused on two-level and multi-level SSDs;
Extensions to mixed-level SSDs include Yamada and Lin (2002),
Yamada and Matsui (2002), Fang et al. (2003, 2004), Li et al.
(2004), Yamada et al. (2006) and Liu et al. (2006).

Data analysis:
To find the sparse active effects, variable selection becomes
fundamental in the analysis stage of such screening experiments.
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Some recent analysis methods

All restricted at two-level SSDs.

Bayesian variable selection approach: Chipman et al. (1997)

error control skill in forward selection: Westfall et al. (1998)

two-stage Bayesian model selection strategy (SSVS/IBF):
Beattie et al. (2002)

smoothly clipped absolute deviation (SCAD) method: Li and
Lin (2002, 2003)

contrast-based methods: Holcomb et al. (2003)

modified stepwise selection based on the idea of staged
dimensionality reduction: Lu and Wu (2004)

Simulation studies demonstrated that the SCAD method outperforms
the other approaches.
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Motivation

The aspect of data analysis of multi-level and mixed-level SSDs
has not been studied in adequate detail.

This talk will introduce an approach via Partial least-squares
(PLS) regression, called the PLS variable selection (PLSVS)
method, for searching active effects in SSDs based on the
variable importance in projection (VIP).

PLSVS can be used to analyze data collected from SSDs with
mixed-level, multi-level or two-level factors.
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Background of PLS regression

y0, x01, . . . , x0k : raw variables
y, x1, . . . , xk : column centered and normalized patterns
X = (x1, . . . , xk)
wh = (wh1, . . . ,whk)′

th =
∑k

j=1 whjxj = Xwh, h = 1, . . . ,m,

PLS regression model with m components:

y =
m∑

h=1

ch(
k∑

j=1

whjxj) + residual, (1)

s.t. the m PLS components th’s are orthogonal.

PLS regression is an algorithm for estimating the parameters of
model (1) (Bastien et al., 2005).
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Computation of the first PLS component t1

maximize cov(y, t1) = s(t1) ∗ corr(y, t1),
s.t. t1 = Xw1 and w′

1w1 = 1.

w1 is the standard eigenvector of X′yy′X corresponding to the
largest eigenvalue, and then

t1 =
1√∑k

j=1 cov(y, xj)2

k∑
j=1

cov(y, xj)xj .

cov(y, xj) =corr(y, xj), since y and xj are respectively
standardized.

So in order for a variable xj to be important in building up t1, it
needs to be strongly correlated with y.
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Computation of the second PLS component t2

Run the k + 1 simple regressions:

y = c1t1 + y1,

xj = p1jt1 + x1j , j = 1, . . . , k.

Then t2 is defined as

t2 =
1√∑k

j=1 cov(y1, x1j)2

k∑
j=1

cov(y1, x1j)x1j .

It can be expressed as a function of variables xj ’s: t2 = Xw2.
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Computation of the next PLS components and stopping rule

We follow the same procedure for computing the next
components th = Xwh for h ≥ 3.

The search of new components is stopped either in accordance
with a cross-validation procedure or when all partial covariances
are not significant.

The PLS algorithm converges very quickly, in practice, it will
give a satisfactory result when m = 1, 2 or 3.
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PLS regression formula

Estimate ch’s in model (1) by multiple regression of y on the
PLS components th’s.

Then

ŷ =
m∑

h=1

ĉh(
k∑

j=1

whjxj) =
k∑

j=1

(
m∑

h=1

ĉhwhj)xj =
k∑

j=1

b̂jxj .

If an inverse procedure of standardization is implemented, we
will get the regression equation expressed in terms of the raw
variables y0 and x0j ’s:

ŷ0 = b̂∗ +
k∑

j=1

b̂∗j x0j .

Min-Qian Liu, http://www.math.nankai.edu.cn/˜mqliu/ 2006 DOE, Nankai University, China, July 9-13

http://202.113.29.3/~mqliu


PLS regression formula

Estimate ch’s in model (1) by multiple regression of y on the
PLS components th’s.

Then
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Variable importance in projection (VIP)

For xj , its VIP is defined as:

VIPj =

√√√√ k

Rd(y; t1, . . . , tm)

m∑
h=1

Rd(y; th)w2
hj , (2)

Rd(y; th) = [corr(y, th)]
2, Rd(y; t1, . . . , tm) =

∑m
h=1 Rd(y; th).

For given y and X,
∑k

j=1 VIP2
j is a constant.

For the response variable y, the explanatory variable with larger
VIP value will tend to be more important than others (Wang,
1999).

Min-Qian Liu, http://www.math.nankai.edu.cn/˜mqliu/ 2006 DOE, Nankai University, China, July 9-13

http://202.113.29.3/~mqliu


Variable selection procedure

Notations

mixed-level design: D(n, s1 · · · sp), D(n, sr1
1 · · · srq

q )

orthogonal array of strength t: OA(n, s1 · · · sp, t)
supersaturated design: SSD(n, s1 · · · sp), where

k =
∑p

i=1(si − 1) > n − 1

For an SSD, actual active effects are believed to be sparse, and most
of the coefficients in model (1) should be close to zero.

The index VIPj defined in (2) can be used to describe how important
xj is to y. So the best variable subset selection is based on the VIP
values.
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Mpress – a new variable selection criterion

Assume there are l (0 ≤ l ≤ k) explanatory variables,

y0i , x0i1, . . . , x0il : i-th observation, i = 1, . . . , n

x̃0i = (1, x0i1, . . . , x0il)
′, X̃0n×(l+1) = (x̃01, . . . , x̃0n)

′

ŷ0l(−i): predicted value of y0i under the OLS model after
deleting the i-th observation

êl(−i) = y0i − ŷ0l(−i), i = 1, . . . , n,

Press(l) =
n∑

i=1

(êl(−i))
2 will decrease with the value of l

increasing, so it can not be used as a variable selection criterion.
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Mpress

Mpress: a modified version of Press(l), i.e.

Mpress(l) =
Press(l)
2(n − l)

+
2l

n
. (3)

Simulation results reveal that this modified version works
effectively for screening active effects in SSDs.

Other modified versions of Press(l) have been tried, however,
simulation results show that they are not so good as Mpress.

With the number of variables selected into the best variable
subset increasing, Mpress will decrease firstly; then it will
increase with the number of variables increasing.
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The proposed variable selection strategy

Let I be an empty set and J = {x1, . . . , xk}, the PLSVS procedure
can be carried out as follows.

1 Selection of the first important variable

For the variables in set J, compute the VIP values based on y
by the PLS procedure.

Select the variables with the largest two VIP values: x̄1, x̄2,
suppose their corresponding raw variables are x̄01, x̄02 resp.

For x̄01, x̄02 and y0, compute the Mpress values respectively.

The variable with the minimum Mpress, say Mpress1, will be
the first important variable z01. The best variable subset now is
I = {z01}.
Let z1 be x̄1 or x̄2 depending on whether z01 is equal to x̄01 or
x̄02.

Min-Qian Liu, http://www.math.nankai.edu.cn/˜mqliu/ 2006 DOE, Nankai University, China, July 9-13

http://202.113.29.3/~mqliu


2 Selection of the second important variable

Run a simple regression y = u1z1 + yre , where u1 = y′z1/‖z1‖2

and yre is the regression residual.

With yre and J\{z1}, compute the m PLS components and the
VIP values of the rest (k − 1) variables.

Select the two variables x̄3 and x̄4 with the largest two VIP’s,
suppose their corresponding raw variables are x̄03, x̄04 resp.

Let I1 = {z01, x̄03} and I2 = {z01, x̄04}, with the raw response
variable y0, compute their Mpress values. Let Mpress2 be the
minimum of the two Mpress values.

The best variable subset I will equal I1 or I2 depending on whose
Mpress is Mpress2.
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3 Selection of the next important variables and stopping rule

Follow the same procedure for selecting the next important
variables.

For selecting the r -th important variable, let Mpressr be the
minimum of the two Mpress values.

The selection will be stopped if Mpressr+1 > Mpressr for the
first time. The best variable subset is then obtained, which has r
important variables.
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Mixed-level SSDs and ANOVA model

For an SSD(n, s1 · · · sp), consider the following main-effect ANOVA
model

Y = 1nβ0 + Xcβ + ε, (4)

Y is the vector of n observations of the response,

β0 is the general mean,

β is a vector of k treatment contrasts (or factorial main effects),

Xc is the matrix of contrast coefficients for β,

ε ∼ N(0n, σ
2In).
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Example 1

SSD(6, 2133) design D constructed from Fang et al.’s (2003)
fractions of saturated orthogonal arrays (FSOA) method:

D =



0 0 1 1
0 1 2 0
0 2 0 2
1 0 2 2
1 1 0 1
1 2 1 0
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.
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Simulation study and example

Example 2

An SSD(18, 21312) constructed from Fang et al.’s (2003) FSOA method:
Factor Run

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
4 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2
5 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1
6 0 2 1 1 0 2 2 1 0 0 2 1 1 0 2 2 1 0
7 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1
8 2 0 1 2 0 1 2 0 1 1 2 0 1 2 0 1 2 0
9 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1
10 2 1 0 1 0 2 0 2 1 1 0 2 0 2 1 2 1 0
11 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
12 2 1 0 2 1 0 2 1 0 1 0 2 1 0 2 1 0 2
13 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2
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Xc has 18 rows and 25 columns.

Given β, Y can be generated from the linear model
Y = Xcβ + ε, where ε ∼ N(018, I18).

f : the number of randomly chosen active effects, f = 1, 2, 3, 4, 5;

Case: the relative magnitude of coefficients, in Case
i(i = 1, 2, 3), the coefficients of f active effects are (i , 2i , . . . , fi);

m: the number of components in the PLS regression,
m = 1, 2, 3, 4;

Simulation results for PLSVS based on 1000 replicates show that
m = 3 is a better choice.
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Simulation results in Example 2 when m = 3

f Case True Model Active Effects Model Size Identified
Identified Rate Identified Rate Median [f , f + 2]

1 60% 97% 1 98%
1 2 59% 100% 1 98%

3 60% 100% 1 98%
1 48% 93% 2 93%

2 2 50% 100% 2 94%
3 54% 100% 2 95%
1 40% 91% 4 90%

3 2 48% 97% 4 93%
3 50% 97% 3 92%
1 33% 85% 5 87%

4 2 47% 92% 5 92%
3 54% 92% 4 92%
1 32% 75% 6 81%

5 2 49% 83% 5 91%
3 58% 84% 5 93%

where “[f , f + 2]” denotes the rates of identifying the model size
between f and f + 2.
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Summary of simulation results in Example 2

PLSVS performs better when there are less active effects
providing the same magnitude of coefficients;

PLSVS performs better with larger magnitude of coefficients
when the numbers of active effects are the same;

In almost all the cases, PLSVS is effective in identifying active
effects and determining the correct model size.

Hence we conclude that our strategy is efficient and
effective.

Simulation results show that selecting a single variable with the
largest VIP value or the variables with the largest three VIP
values in the procedure performs not so well as selecting the
variables with the largest two VIP values.

Min-Qian Liu, http://www.math.nankai.edu.cn/˜mqliu/ 2006 DOE, Nankai University, China, July 9-13

http://202.113.29.3/~mqliu


Example 3: (Williams Rubber Experiment)

The rubber data has been analyzed in many studies, e.g. Lin (1993,
1995), . . ..

PLSVS identifies {15, 12, 20, 4} as the active effects when
m = 1, 2 or 3. This is consistent with the conclusion of

Lin (1993): {15, 12, 20, 4},

Li and Lin (2002): {4, 12, 15, 20},

Li and Lin (2003): {15, 20, 12, 4},

a little difference is their order of importance.
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Example 4: Comparisons with SCAD and SSVS/IBF

Consider the same models with Li and Lin (2002, 2003):

Y = Xβ + ε, where ε ∼ N(014, I14),

X is an SSD(14, 223), i.e. half-fraction of Williams’ (1968) data.

1 Case I: β1 = 10 and all other components of β equal zero;

2 Case II: β1 = −15, β5 = 8, β9 = −2, and all other components
of β equal zero;

3 Case III: β1 = −15, β5 = 12, β9 = −8, β13 = 6, β17 = −2, and
all other components of β equal zero.
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Summary of simulation results in Example 4

Method True Model Smallest Effect Average Size

Identified Rate Identified Rate Median Mean

Case I: One Active Effect

SSVS(0.10, 500)/IBF 61% 98% 1 2.5

SCAD 75.6% 100% 1 1.7

PLSVS(m = 1) 61% 100% 1 1.5

Case II: Three Active Effects

SSVS(0.10, 500)/IBF 8.0% 28% 3 4.2

SCAD 74.7% 98.5% 3 3.3

PLSVS(m = 1) 76.4% 97.7% 3 3.3

Case III: Five Active Effects

SSVS(0.10, 500)/IBF 40.7% 75% 5 5.6

SCAD 69.7% 99.4% 5 5.4

PLSVS(m = 1) 73.6% 95% 5 5.2
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PLSVS includes the smallest active effect with a high probability
(≥ 95%);

PLSVS performs quite well in terms of the model size.

Both the SCAD and PLSVS perform better than the SSVS/IBF
method.
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Concluding remarks

The existence of correlation among the k columns of Xc in
model (4) may cause the inconsistent between the order of the
VIP values and the explanatory ability of the variables, so we
proposed the PLSVS method;

Simulation performance and a real data set analysis demonstrate
that the PLSVS method is efficient;

PLSVS can be used for screening active effects collected by
SSDs with two-level, multi-level and even mixed-level factors;

PLSVS method can be used in the situation when there are
several response variables;

The screening of active effects and data analysis in multi-level
and mixed-level SSDs still need further investigations.
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Any question or comment?
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Enjoy the Chinese banquet tonight!

Min-Qian Liu, http://www.math.nankai.edu.cn/˜mqliu/ 2006 DOE, Nankai University, China, July 9-13

http://202.113.29.3/~mqliu

