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Fractional factorial design (FFD) 
pk−2  FFD's of resolution IV or III are frequently used in 

industrial experiments for run-size economy, when only main 
effects and 2fi's (two-factor interactions) are considered 
important, while three- or more-factor interactions are 
negligible.  

 In a pk−
III2  FFD, some main effects are aliased with 2fi's; 

 In a pk−
IV2  FFD, some 2fi's (two-factor interactions) are 

aliased. 
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Foldover of FFD 

Foldover is a technique in augmenting pk−2  FFD to de-alias 
confounded main effects and 2fi's.  

Some important work on foldover:  

Box et al (1978),  

Wu and Hamada (2000),  

Montgomery (2001),  

Li and Lin (2003),  

etc. 
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The shortcoming of foldover 

Mee & Peralta (2000) pointed out:  

For most commonly used pk −
IV2  FFD's, a foldover plan can 

only offer no more than half of the degree of freedoms in 
de-aliasing 2fi's.  
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Example 1  

A 26
IV2 −  FFD with defining relations I=1235=2346= 1456 has 7 

alias relations: 

12=35, 13=25, 15=23=46, 24=36, 26=34, 14=56, 16=45. 

By folding the factors 5 and 6 (Fo=56), 9 2fi's are dealiased; but 
there are still three pairs are aliased: 

15=46, 14=56, 16=45. 

Hence, for the foldover plan, only 5 more 2fi's can be estimated by 
adding 16 runs.  
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Semifolding FFD (Mee & Peralta, 2000) 

Semifolding FFD:  

1)  Take a foldover plan; 

2)  Take a subset of the foldover plan, which is a regular 
half. 

A regular half of a foldover plan is consisted of the runs in it 
corresponding to "+" (or "-") of a “branching column”. 
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Example 2 In the unique 14
IV2 −  FFD, the foldover plan Fo=4: 

column  
run 1 2 12=-34 3 13=-24 23=-14 4 

1 - - + - + + + 

2 - - + + - - - 

3 - + - - + - - 

4 - + - + - + + 

5 + - - - - + - 

6 + - - + + - + 

7 + + + - - - + 

8 + + + + + + - 

The red 4 rows is the subset with 1=－. There are totally 14 
regular half subsets. 
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The gain and lost of semifolding 

Mee and Peltra (2000) pointed out: 

 For most FFD’s of resolution IV and a foldover plan, a 
carefully selected semifolding plan can estimate as many 
2fi’s as the foldover plan does. 

 Hence, by semifolding, one can get the same estimation 
capacity and more run-size economy, compared with 
foldover plan. 
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 The lost (of semifolding instead of foldover): In the later 
the estimated effects are independent and of high 
estimation efficiency, but in the former, they are correlated 
and lower estimation efficiency. 
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Example 2 (Continued)  

For the 14
IV2 −  FFD with the foldover plan Fo=4, all the 4 main 

effects (ME’s) and 6 2fi’s can be estimated independently in 
the total of 16 runs. 

By taking the subset ss=4+ (the 4 runs with column “4” entries 
being “+”, i.e., the runs 1, 4, 6, and 7), all the ME’s and 2fi’s 

can also be estimated (with correlations 0 or 
3
1

± ) in only 12 

runs.  
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Mee & Peralta’s suggestion 

If the consideration of run-size economy is more serious 
than the consideration of estimation independency and 
efficiency for the same estimation capacity, semifolding is 
recommended.  

They gave a detailed discussion of semifolding strategies for 
16-run FFD’s of resolution IV. 

However, they did not offer general rules in semifolding FFD’s 
of resolution IV or III and different sizes.  
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The pitfall of multicollinearity in semifolding 
FFD’s 

In trying to find some general rules in semifolding FFD’s, we 
found that there may be pitfalls in semifolding a FFD: 

Among the effects to be estimated in a semifolding plan, 
there can be hiding multicollinearity between them! 

By multi-collinearity we mean that some effects seem to be 
dealiased, but are in fact strictly linearly dependent.  

If a group of effects are strictly linearly dependent, they are not  
estimable. 
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Example 3  

A 25
III2 −

 FFD with defining relations I=124=135=2345 has 

aliasing relations among the ME’s and 2fi’s: 

(1=24=35)，(2=14)，(3=15)，(4=12)，(5=13)，(23=45)，(25=34) 

In the foldover plan Fo=45, the defining relations become 
I=-124=-135=2345, and the aliasing relations are: 

[1=-(24=35)]，[2=-14]，[3=-15]，[-4=12]，[-5=13]，(23=45)，
(25=34) 

In the whole design, all the MEs are separated from 2fi’s.  
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Take a subset ss=1+ in the 
foldover plan Fo=45. Since 
we have I=B=1 in the subset 
where “B” represents the 
blocking effect, the effects are 
grouped as: 

Group Effects 

1 {I=B=1=(24=35)} 

2 {[2=-14]=[-4=12]}

3 {[3=-15]=[-5=13]}

4 (23=45) 

5 (25=34) 

Note: The effects in ( ) are 
always aliased; the effects in 
[ ] are aliased in the foldover; 
the effects in { } are aliased in 
the semifolding subset 

It can be verified that in the 
total of 12 runs, the effects in 
each of Groups 1, 2, and 3 are 
strictly linearly dependent. 
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The N-S condition for multicollinearity 

Theorem 1 For a group of inner-correlated effects in a 
semifolding plan, multicollinearity exists if and only if the 
group is formed by two pairs of effects, in each of which the 
two effects are aliased in the original design, and dealiased in 
the foldover plan. 
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Proof of the sufficiency 

Let a, b, c, and d are four effects ( ME or 2fi),  

1) a=b and c=d in the original design,  

2) [a=-b] and [c=-d] in the foldover plan, and  

3) {[a=-b]=[c=-d]} in the semifolding subset.  

Then, in the whole design, a-b-c+d=0, i.e., the four effects are 
strictly linearly dependent. 
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Semifolding strategy (resolution IV) 

In semifolding a pk −
IV2  FFD, Mee & Peralta propose: 

The semifolding subset is determined by a single factor, 
i.e., formed by the runs where a single factor at a fixed 
level (“+”, or “-”).    

They, however, only considered the case of 16-run FFD’s and 
did not explain the reason as clearly as we do.  
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We proved the following theorem. 

Theorem 2 For a pk −
IV2  FFD, taking a semifolding subset  

determined by a single factor branching column can avoid 
the occurrence of multicollinearity among the main effects 
and 2fi’s. 
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Optimal single-semifold designs 

We considered the problem of optimal single-semifold designs 
for FFD’s of resolution IV.  

Criterion: 

 Take a optimal foldover plan in Li and Lin (2003); 

 Select a subset determined by a single factor so that the 
whole design is D-optimal among all the possible 
choices. 

For 16-run FFD’s of resolution IV, optimal semifolding plans 
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can be found in Mee & Peralta (2000). 

We have found the optimal semifolding plan for each 32-run 
FFD of resolution IV. 
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Optimal single-semifold designs for 32-run FFD’s of 
resolution IV 

(The initial design coding is based on Chen, et al (1993).) 

Initial 

design 

 

Generators 

Foldover 

design 

Possible factors as 

Branching columns 

7-2.1 

7-2.2 

7-2.3 

6=1234,7=1245 

6=123,7=145 

6=123,7=124 

6 

67 

67 

1, 2, 4 

2, 3, 4, 5, 6, 7 

5 

8-3.1 

8-3.2 

8-3.3 

8-3.4 

6=123,7=124,8=2345 

6=123,7=124,8=135 

6=123,7=124,8=125 

6=123,7=124,8=134 

678 

78 

67 

6 

5, 8 

4, 5, 7, 8 

2, 3, 4, 5, 6, 7, 8 

5 
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9-4.1 

 

9-4.2 

 

9-4.3 

 

9-4.4 

 

9-4.5 

 

6=2345,7=1345,8=1245, 

9=1235 

6=123,7=124,8=134, 

9=2345 

6=123,7=124,8=135, 

9=145 

6=123,7=124,8=134, 

9=125 

6=123,7=124,8=134, 

9=234 

67 

 

67 

 

78 

 

89 

 

67 

 

5 

 

5, 9 

 

1, 2, 3, 4, 5, 6, 7, 8, 9 

 

8 

 

5 

 

10-5.1 

 

10-5.2 

 

10-5.3 

6=1234,7=1235,8=1245, 

9=1345,10=2345 

6=123,7=124,8=135, 

9=145,10=12345 

6=123,7=124,8=134, 

67 

 

678 

 

89 

1, 2, 3, 4, 5, 6, 7, 8, 9 

10 

1, 2, 3, 4, 5, 6, 7, 8, 9 

10 

1, 2, 3, 4, 5, 6, 7, 8, 9 
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10-5.4 

9=125,10=135 

6=123,7=124,8=135, 

9=234,10=125 

 

8910 

 

10 

1, 2, 3, 4, 5, 6, 7, 8, 9 

10 

11-6.1 

 

11-6.2 

6=123,7=124,8=134, 

9=125,10=135,11=145 

6=123,7=124,8=134, 

9=234,10=125,11=135 

689 

 

8910 

1, 2, 3, 4, 5, 6, 7, 8, 9 

10, 11 

1, 2, 3, 4, 5, 6, 7, 8, 9 

10, 11 
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Example 4  

 The FFD 7-2.1 has defining relations I=12346=12457=3567. 
There are three pairs aliased 2fi’s: 35=67, 36=57, 37=56.  

 Optimal foldover plans are Fo=6 or 7.  

 Taking Fo=6, there are three pairs aliased 2fi’s in the 
foldover design: [35=-67], [-36=57], [37=-56]. 

 Semifold designs produced from a single factor branching 
column are divided into two equivalence class: {3+, 5+, 6+, 
and 7+ (or -) } and {1+, 2+, and 4+ (or -)}.  
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 Taking the subset 6+ in the 1st class, the inner-correlated 
effect groups in the whole design are: {[35=-67]=-7}，
{[36=-57]=3}， {37=-56}=-5}，{1=16}，{2=26}，and 
{4=46}. It has the determinant of the correlation matrix 

equal to 5

7

27
8

. 

 Taking the subset 1+ in the 2nd class, the inner-correlated 
effect groups in the whole design are: {[35=-67]} ，

{[36=-57]}， {37=-56}}，and {1x=x}， x=2 to 6. It has the 

determinant of the correlation matrix equal to 6

9

27
8

. 



International Conference on Design of Experiments-NanKai-2006 

 26

 Since 6

9

27
8

 is larger than 5

7

27
8

,the subset 1+ is better than 

the subset 6+ based on D-optimality criterion, and hence, is 
optimal. 



International Conference on Design of Experiments-NanKai-2006 

 27

Optimal double-semifold designs 

It is natural to consider such a question: 

Instead of a single foldover design, if we use two semifold 
designs as a followup design for a FFD of resolution IV, 
whether the whole design can estimate more 2fi’s?  

The answer is Yes. 
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Thus further considerations are: 

1.  Select a double-semifold design (two semifold designs) 
for a FFD of resolution IV such that the whole design can 
estimate as many 2fi’s as possible. 

2.  If there are more than one double-semifold designs 
satisfying condition (1), select the one with the highest 
D-efficiency. 

A double-semifold design satisfying conditions (1) and (2) is 
called optimal double-semifold design. 
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Optimal double-semifold designs  

for 16- and 32-run FFD’s of resolution IV 

Initial 

design 

1st semifold 

design 

2nd semifold 

design 

# of 2fi’s estimated 

in the DS design 

# of 2fi’s estimated 

in a single foldover

6-2.1 

7-3.1 

8-4.1 

fo=5, bc=1 

fo=5, bc=1 

fo=56, bc=1 

fo=6, bc=2 

fo=6, bc=2 

fo=7, bc=2 

All the 15 

18 

20 

12 

13 

13 

7-2.1 

7-2.2 

7-2.3 

 

 

fo=6, bc=5 

 

 

fo=7, bc=5 

 

 

All the 21 

All 

All 

18 

8-3.1 

8-3.2 

8-3.3 

8-3.4 

fo=6, bc=5 

fo=78, bc=4 

fo=67, bc=1 

fo=6, bc=5 

fo=7, bc=8 

fo=6, bc=5 

fo=8, bc=2 

fo=7, bc=1 

All the 28 

All the 28 

25 

25 

25 

25 

22 

20 
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9-4.1 

9-4.2 

9-4.3 

9-4.4 

9-4.5 

fo=67, bc=5 

fo=67, bc=5 

fo=78, bc=1 

fo=89, bc=8 

fo=67, bc=5 

fo=8, bc=1 

fo=8, bc=9 

fo=679, bc=2 

fo=6, bc=5 

fo=8, bc=1 

33 

33 

All the 36 

33 

28 

30 

28 

27 

28 

21 

10-5.1 

10-5.2 

10-5.3 

10-5.4 

fo=67, bc=1 

fo=678, bc=1 

fo=89, bc=1 

fo=8910, bc=1 

fo=8, bc=2 

fo=69, bc=2 

fo=7910, bc=4 

fo=6, bc=5 

39 

42 

42 

39 

34 

29 

29 

30 

11-6.1 

11-6.2 

fo=689, bc=1 

fo=7810, bc=1 

fo=10, bc=2 39 

39 

30 

30 
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Thank You! 


