Designing Response Surface Experiments for Factors with Symmetric Effects

Max Morris^{1,2}, Brad Dilts³, Stuart Birrell³, Philip Dixon¹

¹ Department of Statistics

- ² Department of Industrial & Manufacturing Systems Engineering
 - ³ Department of Agricultural & Biological Systems Engineering

Iowa State University, Ames, IA 50011, USA

Motivating Problem: Experimentation related to the engineering design of commercial corn harvesting equipment.

- Investigation about how the efficiency of harvesting performance is influenced by six variables.
- Three of these can be described as "environmental" variables, the other three can be described as "control" variables.
- Eventual goal is to develop real-time control processes for control variables, to optimize performance for encountered values of environmental variables.

Experimental Variables and Values

Variable	Influence	Type	Domain
1	Environmental	-	positive real
2	Environmental	-	positive real
3	Control	-	positive real
4	Control	-	positive real
5	Environmental	angle	$[-\pi/2,\pi/2]$
6	Control	angle	$[-\pi/2,\pi/2]$

Pilot Experiment: Central Composite Design

 $(\frac{1}{2} \text{ fraction of } 2^6 + 12 \text{ star/axial} + 10 \text{ center points})$

Note: Values for x_1 - x_4 are centered and scaled; values for x_5 and x_6 are scaled only (zero is "true" zero)

But:

- $(x_5,x_6)=(+,-)$ and (-,+) don't make physical sense
 - angles are parameterized so that only pairs of the same sign are operationally feasible
- Symmetry of system implies you only need one of (+,+), (-,-)
 - reversing the signs of both x_5 and x_6 simultaneously lead to a physically symmetric configuration, and the same expected response
- For the follow-up experiment, we wanted an asymmetric composite design that still puts most of the weight at the origin (in coded variables for x_1 x_4 , true zero for x_5 and x_6), and uses only the (+,+) quadrant for (x_5,x_6) .
- Related: Lucas, J.M. (1974), "Optimum Composite Designs," Technometrics 4 pp 561-567

Template for Some Asymmetric Composite Designs

$$+1$$
 $+1$
 $+1$
 $+1$
 f
 f
 -1
 $+1$
 $+1$
 $+1$
 f
 f
 -1
 $+1$
 -1
 $+1$
 f
 f
 -1
 $+1$
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1

Candidate Designs:

• 8 combinations of

$$- f = +1 \text{ or } +2$$

$$-a = 0$$
 (then $x=1$) or $+1$ (then $x=0$)

$$-c = 0 \text{ or } +1$$

• Denote by (f,a,c), e.g. "design 211"

Which is best? In this application (as in most), many issues – some statistical and some operational/engineering – are involved in this decision. Based on many of these, we used:

Design 210

One- and Two-Dimensional Projections

Project	ion f	for va	ar	1:		Projecti	on fo	r va	rs	1	2:
1	16	18	16	1			0	0	1	0	0
							0	8	0	8	0
Project	ion f	for va	ar	5:			1	0	16	0	1
0	0	23	12	17			0	8	0	8	0
							0	0	1	0	0
Project	ion 1	for va	ars	1	5:	Projecti	on fo	r va	rs	5	6:
Project:	ion 1	for va	ars 8	1 0	5:	Projecti	on fo	r va:	rs 8	5 1	6: 8
· ·					5:	Projecti					
0	8	1	8		5:	Projecti	0	0	8	1	8
0 1	8	1 10	8	0 1	5:	Projecti	0 0	0	8 1	1 10	8 1
0 1 0	8 0 8	1 10 7	8 0 8	0 1 0	5:	Projecti	0 0 0	0 0 0	8 1 14	1 10 1	8 1 8

More Generally:

- The problem has other potential settings, including:
 - multiple sources of fluid flow, each \leftarrow or \rightarrow , in a closed system
 - opposing magnetic fields, each + or -, in a control setting
 - multiple heat pumps, each \uparrow or \downarrow , in a common space
- Suppose we have $k = k_1 + k_2$ factors:
 - k_1 asymmetric factors, A, B, C, ..., or \mathbf{x}_1 .
 - k_2 symmetric factors, $1, 2, 3, ..., k_2$, or \mathbf{x}_2 .
- Extend the symmetry assumption to say that the expected response is not changed when *all* symmetric factors are multiplied by -1.

More about Symmetry:

• Full second-order model:

$$\eta(\mathbf{x}_1, \mathbf{x}_2) = \beta_0 + \sum_{i=1}^k x_i \beta_i + \sum_{i=1}^k x_i^2 \beta_{ii} + \sum_{i=1}^{k-1} \sum_{j=i+1}^k x_i x_j \beta_{ij}$$

• System symmetry assumption implies:

$$\eta(\mathbf{x}_1, \mathbf{x}_2) = \eta(\mathbf{x}_1, -\mathbf{x}_2), \text{ all } \mathbf{x}$$

• Equivalently, for the second-order model:

$$\sum_{i=k_1+1}^{k} x_i \beta_i + \sum_{i=1}^{k_1} \sum_{j=k_1+1}^{k} x_i x_j \beta_{ij} = 0, \text{ all } \mathbf{x}$$

- Or, all β 's in this equation = 0.
- (Data from the Pilot Study supported this in our application.)

• Parameters of the second-order model that are present under the symmetry assumption (s), and parameters that should be zero (z) under that assumption:

	_	1	2	•••	k_1	$k_1 + 1$	$k_1 + 2$	•••	$k_1 + k_2$
-	β_0	s	s	•••	s	${f z}$	${f z}$	•••	\mathbf{z}
1		s	s	•••	\mathbf{s}	${f z}$	${f z}$	•••	${f z}$
2			\mathbf{s}	•••	\mathbf{s}	${f Z}$	${f z}$	•••	${f z}$
				••••	•••			•••	•••
k_1					s	${f Z}$	${f Z}$	•••	Z
$k_1 + 1$						\mathbf{s}	\mathbf{s}	•••	\mathbf{s}
$k_1 + 1$ $k_1 + 2$							\mathbf{s}	•••	\mathbf{s}
								•••	\mathbf{s}
$k_1 + k_2$									\mathbf{s}

• Consider designs for fitting the assumed model (\mathbf{s} 's only), assuming that the assumption (\mathbf{z} 's = 0) has been validated in a pilot study.

- Central Composite Designs for the full quadratic model include:
 - Regular fractional factorial of Resolution $\geq V \quad [\leftarrow]$
 - -2k axial points
 - $-n_{cp}$ center points
- For the *assumed model*, the generating relation for a regular f.f. can contain:
 - words of length 5 or more, AND
 - shorter words including an odd number of symmetric factors
- Can shift projection of symmetric factors to one quadrant if desired

Examples: 2^{6-2} maximum resolution & minimum aberration

k_1	k_2		$I = \dots$	
5	1	ABCDE	AB1	CDE1
4	2	AB1	ACD2	BCD12
3	3	AB1	ABC23	C123
2	4	AB1	A234	B1234
1	5	123	A145	A2345
0	6	123	456	123456

After selecting a composite design framework, can optimize factor levels:

• Partition the (standard notation) model matrix as

$$\mathbf{X} = (\mathbf{1}|\mathbf{X}_z|\mathbf{X}_s)$$

$$\tilde{\mathbf{X}}_z = \mathbf{X}_z(\mathbf{I} - \frac{1}{n}\mathbf{J}) \quad \tilde{\mathbf{X}}_s = \mathbf{X}_s(\mathbf{I} - \frac{1}{n}\mathbf{J}) \quad \tilde{\mathbf{X}} = (\tilde{\mathbf{X}}_z | \tilde{\mathbf{X}}_s)$$

- Think about reduced designs (above) that maximize:
 - $-\phi_s = log|\tilde{\mathbf{X}}_s'\tilde{\mathbf{X}}_s|$ (fitting the assumed model)

or full composite design that maximize:

- $-\phi_{sz} = log|\tilde{\mathbf{X}}'\tilde{\mathbf{X}}|$ (fitting the entire model)
- $\phi_{z|s} = log|\tilde{\mathbf{X}}_z'(\mathbf{I} \tilde{\mathbf{X}}_s(\tilde{\mathbf{X}}_s'\tilde{\mathbf{X}}_s)^{-1}\tilde{\mathbf{X}}_s)\tilde{\mathbf{X}}_z| \text{ (assumption test)}$

and note that $\phi_{sz} = \phi_{z|s} + \phi_s$

Example (from original application)

- $k_1 = 4, k_2 = 2$
- f.f.: $I = AB1 = ACD2 (= BCD12), n_{cp} = 5$
- optimize ϕ_s for the template:

	axial	factorial	center	factorial	axial		
asymmetric factors				f	\overline{a}		
symmetric factors	a_L	f_L	С	f_H	a_H		
symmetric factors a_L f_L c f_H a_H subject to $\sum_{i=1}^n x_i^2 = n$ for each factor							
	\downarrow \downarrow \downarrow						
	axial	factorial	center	factorial	axial		
asymmetric factors	-2.36	-1.17	0	1.17	2.36		
asymmetric factors symmetric factors	-2.92	0.00	0.60	0.00	4.36		

Summary:

- Even in *empirical studies*, "system knowledge" is often available.
- Such knowledge can sometimes have important implications for appropriate models, and so ...
- ... it should also be considered in experimental design.
- Joint effect symmetry, like hierarchy, heredity, ..., is an example.