

The 2006 International Conference on Design of Experiment and Its Applications July, 9-13, 2006 · Nankai University

On the construction of normal mixed difference matrices

Shanqi Pang

Henan Normal University, China

pangshanqi@263.net

Ноте	Home Page		
Title	Page		
••	•• ••		
•	•		
Page .	Page 2 of 36		
Go	Go Back		
Full S	Full Screen		
	Close		
Q	Quit		

On the construction of normal mixed difference matrices (NMDM) Outline

- 1 Introduction
- 2 Construction method for NMDMs
- 3 Examples
- 4 Discussion

Home Page		
Title Page		
44		
Page <mark>3</mark> of <mark>36</mark>		
Go Back		
Full Screen		
Close		
Quit		

1 Introduction

Difference matrix was first defined by Bose and Bush (1952), and it is a simple but powerful tool for the construction of orthogonal arrays of strength 2 (He-dayat et al. 1999, Beth et al. 1985). Mixed difference matrices have also been used for construction of orthogonal arrays (see Wang and Wu, 1991; Wang, 1996; Pang et al. 2004b; Seun and Kuhfeld, 2005, etc).

Home	Home Page		
Title	Page		
••	••		
•			
Page	Page 5 of 36		
Go	Go Back		
Full S	Full Screen		
C	Close		
	Quit		

Proposition 1 (Beth et al. 1985) The Kronecker sum of an orthogonal array $L_{\mu p}(p^s)$ and a difference matrix $D(\lambda p, r; p)$

 $L_{\mu p}(p^s) \oplus D(\lambda p, r; p)$

is an orthogonal array.

By taking $\mu = \lambda = 1$, the Kronecker sum method reduces to the well known construction of Bose and Bush (1952).

Home Page

Title Page

Page 6 of 36

Go Back

Full Screen

Close

Quit

••

where $D(M, k_i; p_i)$ is a difference matrix. Then

with the partition $A = [L_N(p_1^{s_1}), \cdots, L_N(p_n^{s_n})],$

 $[L_N(p_1^{s_1}) \oplus D(M, k_1; p_1), \cdots, L_N(p_n^{s_n}) \oplus D(M, k_n; p_n)]$

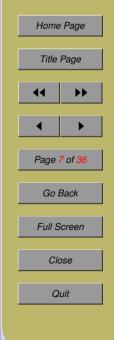
Proposition 2 (Wang and Wu, 1991) If A is an orthogonal array $L_N(p_1^{s_1} \cdots p_n^{s_n})$

 $B = [D(M, k_1; p_1), \cdots, D(M, k_n; p_n)]$ (a mixed difference matrix),

is an orthogonal array. Let $L_M(q_1^{r_1} \cdots q_m^{r_m})$ be an orthogonal array. Then

 $[0_N \oplus L_M(q_1^{r_1} \cdots q_m^{r_m}), L_N(p_1^{s_1}) \oplus D(M, k_1; p_1), \cdots, L_N(p_n^{s_n}) \oplus D(M, k_n; p_n)]$

is also an orthogonal array.



Proposition 3 (Wang, 1996) Let $D_0 = D(n, k_0; p_1 p_2)$, $D_i = D(n, k_i; p_i)$ (i = 1, 2) be difference matrices. Let $D'_i(i = 1, 2)$ be the matrix obtained by taking modulus p_i operation entry-wise on D_0 . Suppose $[D'_i, D_i](i = 1, 2)$ is an $n \times (k_0 + k_i)$ difference matrix having p_i levels. Denote $D = [D_0, D_1, D_2]$. Let $C_0 = [0, 1, \ldots, p_1 p_2 - 1]^T$ and $C_i(i = 1, 2)$ be obtained by taking modulus p_i operation entry-wise on C_0 . Thus, $C = [C_0, C_1, C_2]$ is a partition matrix in which the three columns have $p_1 p_2, p_1, p_2$ levels, respectively. Denote an existing orthogonal array of size n by E, then

 $M = [C_0 \oplus D_0, C_1 \oplus D_1, C_2 \oplus D_2, 0_{p_1 p_2} \oplus E]$

constitutes an orthogonal array, where $0_{p_1p_2}$ is a $p_1p_2 \times 1$ vector of zeros. $D = [D_0, D_1, D_2]$ is a special mixed difference matrix

Example 1.

$$C = (C_0, C_1, C_2) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 0 \\ 3 & 0 & 1 \\ 4 & 1 & 0 \\ 5 & 2 & 1 \end{pmatrix} = (C_0, L_6(3^1 2^1)).$$

Home Page		
Title Page		
•• ••		
•		
Page <mark>9</mark> of <mark>36</mark>		
Go Back		
Full Screen		
Close		
Quit		

A special mixed difference matrix $D = [D_0(12, 5; 6), D_1(12, 3; 3), D_2(12, 6; 2)]$

/	00000	000	000000
	13240	221	001111
	20152	011	010111
	31542	000	110001
	43521	102	011010
	55311	120	000100
	02323	212	101101
	12405	102	110110
	25234	011	111100
	34114	212	101010
	41035	221	100011
	54433	120	011001
١			

Normal mixed difference matrix is a generalization of the special mixed difference matrix in the above. It is introduced and used for construction of mixedlevel orthogonal arrays by Pang et al. (2004b). However, it has not received much attention to construct mixed difference matrices, especially normal mixed difference matrix. Hence, this paper presents some methods for constructing normal mixed difference matrix.

Home Page

 Title Page

 Image: Title Page

Definition 1. (Pang et al. 2004b) Let $L_q = L_q(s_1 \cdots s_m) = (C_1, \ldots, C_m)$ be an orthogonal array where C_l is a vector with entries from an additive group G_l of order s_l for any l $(l = 1, \ldots, m)$. The array L_q is said to be **normal** if the set $G = \{A_1, \ldots, A_q : A_i \text{ is the } i\text{-th row of } L_q\}$ constitutes an additive subgroup of order q, where $G \subset G_1 \times \cdots \times G_m := \{(x_1, \ldots, x_m); x_l \in G_l, l = 1, 2, \ldots, m\}$ with the usual addition, i.e., for any $x, y \in G, x = (x_1, x_2, \ldots, x_m), y = (y_1, y_2, \ldots, y_m)$, we have

 $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_m + y_m).$

Home Page Title Page ↓ ↓ Page 12 of 36 Go Back Full Screen Close Quit

Proposition 4. (Pang et al. 2004b) There is a map $\phi(A_i) = i - 1$ which is a group isomorphism between $G = \{A_1, A_2, \dots, A_q\}$ and $G_0 = \{0, 1, \dots, q - 1\}$. And the map

$$\phi_l(i-1) = c_{il} \tag{1}$$

is a group homomorphism from $G_0 = \{0, 1, \dots, q-1\}$ to G_l for $l = 1, 2, \dots, m$. If $C_0 = (0, 1, \dots, q-1)^T$, then $\phi_l(C_0) = C_l$ holds.

Home	Page				
Title	Page				
••	•• ••				
	• •				
Page 1	Page 13 of 36				
Go E	Go Back				
Full S	Full Screen				
Close					
Quit					

Definition 2. Suppose that the array L_q is normal, and that the maps ϕ_1, \ldots, ϕ_m are defined in (1). Let $D_0 = D(n, k_0; q)$ be a difference matrix based on G_0 , and let D_l be a difference matrix based on G_l , $l = 1, 2, \ldots, m$. If the matrices

 $[\phi_1(D_0), D_1], [\phi_2(D_0), D_2], \dots, [\phi_m(D_0), D_m]$

are difference matrices based on G_1, G_2, \ldots, G_m , respectively, then the matrix

 $[D_0, D_1, D_2, \ldots, D_m]$

is called a normal mixed difference matrix (NMDM).

Example 2. Orthogonal array $L_6(2 \cdot 3)$ and $L_4(2^3)$ are normal.

$$C = (C_0, C_1, C_2, C_3) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 3 & 1 & 1 & 0 \end{pmatrix}$$
$$= [C_0, \phi_1(C_0), \phi_2(C_0), \phi_3(C_0)] = [C_0, L_4(2^3)]$$

	+	000	011	101	110	\oplus	0	1	2	
	000	000	011	101	110	0	0	1	2	
	011	011	000	110	101	1	1	0	3	4
	101	101	110	000	011	2	2	3	0	-
	110	110	101	011	000	3	3	2	1	(
_										

(G, +) and (G_0, \oplus) are isomorphic, Where $G_0 = \{0, 1, 2, 3\}$.

Home Page		
Title	Page	
•• >>		
◀	►	
Page 14 of 36		
Go Back		
Full Screen		
Close		
Quit		

Proposition 5. (Pang et al.,2004b) Let L_n be an existing orthogonal arrays, and let $C_0 = (0, 1, ..., q - 1)^T$. Suppose that $[D_0, D_1, D_2, ..., D_m]$ is a normal mixed difference matrix based on the normal orthogonal array L_q . Then the matrix

 $[C_0 \oplus D_0, \phi_1(C_0) \oplus D_1, \dots, \phi_m(C_0) \oplus D_m, 0_q \oplus L_n]$

constitutes an orthogonal array,

Home Page

Title Page

Page 16 of 36

Go Back

Full Screen

Close

Quit

2 Construction method for normal mixed difference matrices

Lemma 1. Suppose that $D(\lambda p, m; p)$ is a $\lambda p \times m$ matrix with entries from a Galois field of order p, GF(p), and that γ is a column of orthogonal array $L_n(p^s)$. If $D(\lambda p, m; p) \oplus \gamma$ is also an orthogonal array, then $D(\lambda p, m; p)$ is a difference matrix.

Theorem 1. Suppose that $L_p(s_1 \cdots s_n) = (C_1, \ldots, C_n)$ is a normal orthogonal array, and that $L = [D(m, k; p) \oplus (p), D(m, k_1; s_1) \oplus C_1, \ldots, D(m, k_n; s_n) \oplus C_n]$ is also an orthogonal array. Then

 $D = [D(m, k; p), D(m, k_1; s_1), \dots, D(m, k_n; s_n)]$

is a normal mixed difference matrix.

Proof. Since $L_p(s_1 \cdots s_n) = (C_1, \ldots, C_n)$ is a normal orthogonal array, we have a group homomorphism ϕ_l from $G_0 = \{0, 1, \ldots, p-1\}$ to G_l . Set $C_0 = (p) = (0, 1, \ldots, p-1)^T$, then $\phi_l(C_0) = C_l$. From the expansive replacement method in Hedayat et al (1999), if the levels $0, 1, \ldots, p-1$ in $[D(m, k; p) \oplus (p), D(m, k_l; s_l) \oplus C_l]$ are replaced with A_1, \ldots, A_p , respectively, where A_i is the *i*th row of L_p , we can obtain a mixed orthogonal array with the levels s_1, \cdots, s_n . Pick out all the s_l -level columns, we can get an s_l -level orthogonal array, which can be written as

 $[\phi_l(D(m,k;p)), D(m,k_l;s_l)] \oplus C_l.$

It follows from Lemma 1 that $[\phi_l(D(m, k; p)), D(m, k_l; s_l)]$ is a difference matrix, l = 1, ..., n. We have $D = [D(m, k; p), D(m, k_1; s_1), ..., D(m, k_n; s_n)]$ is a normal mixed

difference matrix based on $L_p(s_1 \cdots s_n)$.

Home Page

Title Page

Page 19 of 36

Go Back

Full Screen

Close

Quit

...

Theorem 2. Suppose that $L_p(s_1 \cdots s_n) = (C_1, \ldots, C_n)$ is a normal orthogonal array, and that D(m, k; p) is a difference matrix. If we partition D(m, k; p) into [D(m, k; p) = [D(m, k - r; p), D(m, r; p)], then $[D(m, k - r; p), \phi_1(D(m, r; p)), \ldots, \phi_n(D(m, r; p))]$ is a normal mixed difference matrix, where ϕ_i is as in (1).

Ноте	Home Page				
Title	Page				
••	•• ••				
•					
Page 20 of 36					
Go Back					
Full S	Full Screen				
Close					
Quit					
Quit					

Lemma 2. (Zhang et al. 2002) Suppose that both

$$D(r,r;r) = (d_{ij})_{r \times r} = (d_1, \ldots, d_r)$$

and

$$D(r+1, r+1; p) = \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & (a_{ij})_{r \times r} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & a_1 & \cdots & a_r \end{pmatrix}$$

are difference matrices with entries from two additive groups $G_r = \{0, 1, \ldots, r-1\}$ and $G_p = \{0, 1, \ldots, p-1\}$, respectively. For any $d_{ij} \in G_r$, define a permutation matrix $\sigma(d_{ij})$ as follows

$$\sigma(d_{ij}) \cdot (r) = d_{ij} + (r). \tag{2}$$

Set $F = (\sigma(d_{ij})A)_{1 \le i \le r, 1 \le j \le r}$. Then the following array

$$D(r(r+1), r(r+1); p) = \begin{pmatrix} 0 & A \oplus 0_r^T \\ A \oplus 0_r & F \end{pmatrix}.$$

is a difference matrix.

Home Page Title Page ↓ ↓ Page 21 of 36 Go Back Full Screen Close Quit

Lemma 3. If $D = [D(m, k; p), D(m, k_1; s_1), \dots, D(m, k_n; s_n)]$ is a normal mixed difference matrix based on a normal orthogonal array $L_p(s_1 \cdots s_n) = (C_1, \dots, C_n)$, then D is still an normal mixed difference matrix after performing the following operations:

(1) adding an $i \ (i \in \{0, 1, \dots, p-1\})$ to any column of D(m, k; p) or adding an $i_j \ (i_j \in G_j)$ to any column of $D(m, k_j; s_j)$.

(2) adding an $i \ (i \in \{0, 1, \dots, p-1\})$ to a row of D(m, k; p) and adding $\phi_j(i)$ to the same row of $D(m, k_j; s_j)$ for $j = 1, \dots, n$.

Theorem 3. Under the conditions of Lemma 2, suppose that $[D(r+1, k+1; p), D_1(r+1, k_1; s_1), \ldots, D_m(r+1, k_m; s_m)]$ is a normal mixed difference matrix based on a normal orthogonal array $L_p(s_1 \cdots s_m) = (C_1, \ldots, C_n)$ and that D(r, r; r) is a difference matrix. Then we can obtain a larger normal mixed difference matrix

 $[D(r(r+1), k(k+1); p), D_1(r(r+1), k_1(r+k+1); s_1), \dots, D_m(r(r+1), k_m(r+k+1); s_m)]$

based on the array $L_p(s_1 \cdots s_m)$.

Proof. From Lemma 3, we assume that

$$\begin{bmatrix} D(r+1, k+1; p), D(r+1, k_t; s_t) \end{bmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & H \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & (h_{ij})_{r \times r_t} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & h_1 & \cdots & h_{r_t} \end{pmatrix},$$

where $r_t = k + k_t$ and $H = (A_{r \times k}, B_{r \times k_t})$. And set $F = (\sigma(d_{ij})H)_{1 \le i \le r, 1 \le j \le r_t}$, where $\sigma(d_{ij})$ is as in (2). Then we construct the following matrix K as follows

$$K = \left(\begin{array}{cc} 0 & H \oplus 0_{r_t}^T \\ H \oplus 0_r & F \end{array}\right).$$

And in the K, set
$$K_0 = \begin{pmatrix} 0 \\ H \oplus 0_r \end{pmatrix}$$
 and $K_j = \begin{pmatrix} h_j \oplus 0_{r_t}^T \\ \sigma(d_{1j})H \\ \cdots \\ \sigma(d_{rj})H \end{pmatrix}$ for $j = 1, \dots, r_t$

Moreover, if h_j is a *p*-level column i.e. a column of $A_{r \times k}$, we take K_j as follows

$$K_{j} = \begin{pmatrix} h_{j} \oplus 0_{k}^{T}, \phi_{t}(h_{j}) \oplus 0_{k_{t}}^{T} \\ \sigma(d_{1j})(A, B) \\ \cdots \\ \sigma(d_{rj})(A, B) \end{pmatrix}$$

If h_j is a s_t -level column i.e. a column of $B_{r \times k_t}$, we take K_j as follows

$$K_j = \begin{pmatrix} h_j \oplus 0_{r_t}^T \\ \sigma(d_{1j})(\phi_t(A), B) \\ \cdots \\ \sigma(d_{rj})(\phi_t(A), B) \end{pmatrix}$$

Through some column permutation, K can be written as

 $K = [D(r(r+1), k(k+1); p), D_t(r(r+1), k_t(r+k+1); s_t)].$

It easily follows from Lemma 2 that all the *p*-level columns of K constitute a difference matrix D(r(r+1), k(k+1); p).

Home Page Title Page ▲ ▶ Page 25 of 36 Go Back Full Screen Close Quit

Now we prove that $[\phi_t(D(r(r+1), k(k+1); p)), D_t(r(r+1), k_t(r+k+1); s_t)]$ is a difference matrix based on the group G_t .

Let $[\phi_t(D(r+1,k+1;p)), D_t(r+1,k_t;s_t)] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \phi_t(A) & B \end{pmatrix}$.

By using D(r, r; r) and Lemma 3, we can construct an s_t -level difference matrix

 $K_{\phi_t} = [D(r(r+1), k(k+1) + k_t(r+k+1); s_t)]$ $= \begin{pmatrix} 0 & (\phi_t(A), B) \oplus 0_{r_t}^T \\ (\phi_t(A), B) \oplus 0_r & \sigma(d_{ij})(\phi_t(A), B) \end{pmatrix}.$

On the other hand, through some column permutation, we just have that K_{ϕ_t} can be written as

$$K_{\phi_t} = [\phi_t(D(r(r+1), k(k+1); p)), D_t(r(r+1), k_t(r+k+1); s_t)].$$

Hence, To take $t = 1, \ldots, m$, respectively, we can get a normal mixed difference matrix

 $[D(r(r+1), k(k+1); p), D_1(r(r+1), k_1(r+k+1); s_1), \dots, D_m(r(r+1), k_m(r+k+1); s_m)]$

based on the normal orthogonal array $L_p(s_1 \cdots s_m)$.

Ноте	Home Page		
Title	Page		
••	•• ••		
•	►		
Page 2	Page 27 of 36		
Go	Go Back		
Full S	Full Screen		
Cl	Close		
G	Quit		

When the difference matrix D(r, r, r) in Theorem 3 does not exist but an orthogonal array exists, we state the following theorem.

Theorem 4. Under the conditions of Lemma 2, suppose that $[D(r+1, k+1; p), D_1(r+1, k_1; s_1), \ldots, D_m(r+1, k_m; s_m)]$ is a normal mixed difference matrix based on a normal orthogonal array $L_p(s_1 \cdots s_m) = (C_1, \ldots, C_m)$ and that there exists an orthogonal array $L_{r^2}(r^{x+1}) = [(r) \otimes 1_r, Q_1(1_r \otimes (r)), \cdots, Q_x(1_r \otimes (r))]$ where $Q_j = diag(\sigma_{1j}, \cdots, \sigma_{rj})$ is a permutation matrix satisfying $Q_j((r) \otimes 1_r) = (r) \otimes 1_r$. Then we can obtain a normal mixed difference matrix

$$[D(r(r+1), k(k+1); p), D_1(r(r+1), y_1; s_1), \dots, D_m(r(r+1), y_m; s_m)]$$

based on the normal orthogonal array $L_p(s_1 \cdots s_m)$, where

$$y_t = \begin{cases} k_t(2k+k_t+1) & \text{if } x \ge k+k_t \\ k_t(k+1) + (x-k)(k+k_t) & \text{if } k \le x < k+k_t \end{cases}$$

If x < k, the above normal mixed difference matrix becomes

 $[D(r(r+1), k(x+1); p), D_1(r(r+1), k_1(x+1); s_1), \dots, D_m(r(r+1), k_m(x+1); s_m)].$

3 Examples

Example 3. Construction of two normal mixed difference matrices

 $[D_0(132, 30; 6), D_1(132, 42; 3), D_2(132, 102; 2)]$

and

 $[D_0(132, 20; 6), D_1(132, 112; 3), D_2(132, 112; 2)].$

Home Page Title Page ↓ ↓ Page 29 of 36 Go Back Full Screen Close Quit

By Lemma 3, we can make the normal mixed difference matrix $[D_0(12,6;6), D_1(12,3;3), D_2(12,6;2)]$ in Wang (1996) have the following form

 $\left(\begin{array}{cc} 0 & 0 \\ 0 & H \end{array}\right).$

Then using the difference matrix D(11, 11; 11) and Theorem 3, we can construct a normal mixed difference matrix $[D_0(132, 30; 6), D_1(132, 42; 3), D_2(132, 102; 2)]$. Similarly by using $[D_0(12, 5; 6), D_1(12, 7; 3), D_2(12, 7; 2)]$ in Wang (1996), we can obtain a larger normal mixed difference matrix $[D_0(132, 20; 6), D_1(132, 112; 3), D_2(132, 112; 2)]$.

 Home Page

 Title Page

 ▲

 ▶

 ▲

 Page 30 of 36

 Go Back

 Full Screen

 Close

 Quit

Remark In theorem 3, if r(r+1) - 1 is a prime or prime power, then we can use the method again to construct a new normal mixed difference matrix.

For instance, by continuing to use difference matrix D(131, 131; 131)in Example 3 and Theorem 3, we can construct a normal mixed difference matrix $[D_0(131 \times 132, 19 \times 20; 6), D_1(131 \times 132, 112 \times (131 + 20); 3), D_2(131 \times 132, 112 \times (131 + 20); 2)] = [D_0(17292, 380; 6), D_1(17292, 16912; 3), D_2(17292, 16912; 2)].$

Home Page Title Page ↓ ↓ ↓ Page 31 of 36 Go Back Full Screen Close Quit

Example 4. Construction of normal mixed difference matrix $[D_0(23 \times 24, 380; 4), D_1(23 \times 24, 172; 2), D_2(23 \times 24, 172; 2), D_3(23 \times 24, 172; 2)]$

By Lemma 3, we can make the $[D_0(24, 20; 4), D_1(24, 4; 2), D_2(24, 4; 2), D_3(24, 4; 2)]$ in Pang et al.(2004b) have the following form

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & H \end{array}\right)$$

Then using the difference matrix D(23, 23; 23) and Theorem 3, we can construct a normal mixed difference matrix $[D_0(23 \times 24, 380; 4), D_1(23 \times 24, 172; 2), D_2(23 \times 24, 172; 2), D_3(23 \times 24, 172; 2)].$

Home Page

Title Page

Page 32 of 36

Go Back

Full Screen

Close

Quit

4 Discussion

How can we generalize the normal orthogonal array to any orthogonal array? $L_p(s_1 \cdots s_n) = (C_1, \ldots, C_n)$ is an orthogonal array, then there exists a map ϕ_l such that $\phi_l(C_0) = C_l$. Can we find a mixed difference matrix $D = [D_0, D_1, \ldots, D_n]$ such that $[C_0 \oplus D_0, C_1 \oplus D_1, \ldots, C_n \oplus D_n]$ constitute an orthogonal array? How?

- [1] Bose, R.C., Bush, K. A., Orthogonal arrays of strength two and three. Ann. Math. Stat. 1952, 23: 508-524.
- [2] Beth, T., Jungnickel, D. and Lenz, H. *Design theory.* Bibliographishes institute, Mannheinu-Wien-Zürich 1985.
- [3] Hedayat, A.S., Sloane, N.J.A., Stufken, J., Orthogonal arrays: Theory and Applications, Springer, New York, 1999.
- [4] Pang, S.Q., Zhang, Y.S., Liu S.Y., Further Results on the Orthogonal Arrays Obtained by Generalized Hadamard Product, Statist. Probab. Lett., 2004a, 68(1): 17-25.
- [5] Pang, S.Q., Zhang, Y.S., Liu S.Y., Normal Mixed Difference Matrix and the Construction of Orthogonal Arrays. Statist. Probab. Lett., 2004b, 69(4): 431-437.
- [6] Wang, J.C., Mixed difference matrices and the construction of orthogonal arrays. Statist. Probab. Lett., 1996, 28: 121-126.

Home	Home Page		
Title	Page		
••	••		
•	►		
Page	Page 33 of 36		
Go	Go Back		
Full S	Full Screen		
CI	Close		
C	Quit		

- Home Page
 Title Page
- [7] Wang, J.C., Wu, C.F.J. An approach to the construction of asymmetrical orthogonal arrays. J. Amer. Statist. Assoc., 1991 6: 450-456.
- [8] Chung-yi Suen and Warren F. Kuhfeld (2005). On the construction of mixed orthogonal arrays of strength two. J. Statist. Plann. Inference, 133, 555-560.
- [9] Wu,C.F.J., Zhang, R., Wang, R. Construction of asymmetrical orthogonal array of the type $OA(s^k, s^m(s_1^r)^{n_1} \cdots (s_t^r)^{n_t})$. Statist. Sinica., 1992, 1: 203-219.
- [10] Zhang, Y.S., Duan, L., Lu, Y.Q. Construction of Generalized Hadamard Matrices $D(r^m(r+1), r^m(r+1); p)$. J. of Statist. Plann. Inference, 2002, 104:239-258.
- [11] Zhang, Y.S., Pang, S.Q., Wang, Y.P. Orthogonal arrays obtained by generalized Hadamard product. Discrete Math., 2001, 238: 151-170.

Title Page Image 35 of 36 Page 35 of 36 Go Back Full Screen Close Quit	Ноте	e Page		
	Title	Page		
Page 35 of 36 Go Back Full Screen Close	••	••		
Go Back Full Screen Close				
Full Screen	Page 3	Page 35 of 36		
Close	Gol	Go Back		
	Full S	Full Screen		
Quit	Clo	Close		
	Quit			

Home Page
Title Page
•• >>
•
Page <mark>36</mark> of <mark>36</mark>
Go Back
Full Screen
Close
Quit

Thank you!