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1 Introduction
Difference matrix was first defined by Bose and Bush (1952), and it is a simple
but powerful tool for the construction of orthogonal arrays of strength 2 (He-
dayat et al. 1999, Beth et al. 1985). Mixed difference matrices have also been
used for construction of orthogonal arrays (see Wang and Wu, 1991; Wang,
1996; Pang et al. 2004b; Seun and Kuhfeld, 2005, etc).

http://www.amss.ac.cn
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Proposition 1 (Beth et al. 1985) The Kronecker sum of an orthogonal array
Lµp(p

s) and a difference matrix D(λp, r; p)

Lµp(p
s)⊕D(λp, r; p)

is an orthogonal array.
By taking µ = λ = 1, the Kronecker sum method reduces to the well known
construction of Bose and Bush (1952).

http://www.amss.ac.cn
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Proposition 2 (Wang and Wu, 1991) If A is an orthogonal array LN(ps1
1 · · · psn

n )
with the partition A = [LN(ps1

1 ), · · · , LN(psn
n )],

B = [D(M, k1; p1), · · · , D(M, kn; pn)](a mixed difference matrix),

where D(M, ki; pi) is a difference matrix. Then

[LN(ps1
1 )⊕D(M, k1; p1), · · · , LN(psn

n )⊕D(M, kn; pn)]

is an orthogonal array.
Let LM(qr1

1 · · · qrm
m ) be an orthogonal array. Then

[0N ⊕ LM(qr1
1 · · · qrm

m ), LN(ps1
1 )⊕D(M, k1; p1), · · · , LN(psn

n )⊕D(M, kn; pn)]

is also an orthogonal array.

http://www.amss.ac.cn
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Proposition 3 (Wang, 1996) Let D0 = D(n, k0; p1p2), Di = D(n, ki; pi) (i =
1, 2) be difference matrices. Let D

′

i(i = 1, 2) be the matrix obtained by taking
modulus pi operation entry-wise on D0. Suppose [D

′

i, Di](i = 1, 2) is an n ×
(k0 + ki) difference matrix having pi levels. Denote D = [D0, D1, D2]. Let
C0 = [0, 1, . . . , p1p2 − 1]T and Ci(i = 1, 2) be obtained by taking modulus
pi operation entry-wise on C0. Thus, C = [C0, C1, C2] is a partition matrix
in which the three columns have p1p2, p1, p2 levels, respectively. Denote an
existing orthogonal array of size n by E, then

M = [C0 ⊕D0, C1 ⊕D1, C2 ⊕D2, 0p1p2
⊕ E]

constitutes an orthogonal array, where 0p1p2
is a p1p2 × 1 vector of zeros.

D = [D0, D1, D2] is a special mixed difference matrix

http://www.amss.ac.cn
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Example 1.

C = (C0, C1, C2) =


0 0 0
1 1 1
2 2 0
3 0 1
4 1 0
5 2 1

 = (C0, L6(3
121)).

http://www.amss.ac.cn
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A special mixed difference matrix D = [D0(12, 5; 6), D1(12, 3; 3), D2(12, 6; 2)]

00000 000 000000
13240 221 001111
20152 011 010111
31542 000 110001
43521 102 011010
55311 120 000100
02323 212 101101
12405 102 110110
25234 011 111100
34114 212 101010
41035 221 100011
54433 120 011001


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Normal mixed difference matrix is a generalization of the special mixed differ-
ence matrix in the above. It is introduced and used for construction of mixed-
level orthogonal arrays by Pang et al. (2004b). However, it has not received
much attention to construct mixed difference matrices, especially normal mixed
difference matrix. Hence, this paper presents some methods for constructing
normal mixed difference matrix.

http://www.amss.ac.cn
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Definition 1. (Pang et al. 2004b) Let Lq = Lq(s1 · · · sm) = (C1, . . . , Cm) be an orthogonal
array where Cl is a vector with entries from an additive group Gl of order sl for any l

(l = 1, . . . ,m). The array Lq is said to be normal if the set G = {A1, . . . , Aq : Ai is
the i-th row of Lq} constitutes an additive subgroup of order q, where G ⊂ G1 × · · · ×
Gm := {(x1, . . . , xm); xl ∈ Gl, l = 1, 2, . . . ,m} with the usual addition, i.e., for any
x, y ∈ G, x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym), we have

x + y = (x1 + y1, x2 + y2, . . . , xm + ym).

http://www.amss.ac.cn


Introduction

Construction method . . .

Examples

Discussion

Home Page

Title Page

JJ II

J I

Page 12 of 36

Go Back

Full Screen

Close

Quit

Proposition 4. (Pang et al. 2004b) There is a map φ(Ai) = i − 1 which is a
group isomorphism between G = {A1, A2 . . . , Aq} and G0 = {0, 1, . . . , q− 1}.
And the map

φl(i− 1) = cil (1)

is a group homomorphism from G0 = {0, 1, . . . , q−1} to Gl for l = 1, 2, . . . ,m.
If C0 = (0, 1, . . . , q − 1)T , then φl(C0) = Cl holds.

http://www.amss.ac.cn
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Definition 2. Suppose that the array Lq is normal, and that the maps φ1, . . . , φm

are defined in (1). Let D0 = D(n, k0; q) be a difference matrix based on G0, and
let Dl be a difference matrix based on Gl, l = 1, 2, . . . ,m. If the matrices

[φ1(D0), D1], [φ2(D0), D2], . . . , [φm(D0), Dm]

are difference matrices based on G1, G2, . . . , Gm, respectively, then the matrix

[D0, D1, D2, . . . , Dm]

is called a normal mixed difference matrix (NMDM).

http://www.amss.ac.cn
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Example 2. Orthogonal array L6(2 · 3) and L4(2
3) are normal.

C = (C0, C1, C2, C3) =


0 0 0 0
1 0 1 1
2 1 0 1
3 1 1 0


= [C0, φ1(C0), φ2(C0), φ3(C0)] = [C0, L4(2

3)]

+ 000 011 101 110 ⊕ 0 1 2 3

000 000 011 101 110 0 0 1 2 3
011 011 000 110 101 1 1 0 3 2
101 101 110 000 011 2 2 3 0 1
110 110 101 011 000 3 3 2 1 0

(G, +) and (G0,⊕) are isomorphic, Where G0 = {0, 1, 2, 3}.

http://www.amss.ac.cn
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Proposition 5. (Pang et al.,2004b) Let Ln be an existing orthogonal arrays, and
let C0 = (0, 1, . . . , q − 1)T . Suppose that [D0, D1, D2, . . . , Dm] is a normal
mixed difference matrix based on the normal orthogonal array Lq. Then the
matrix

[C0 ⊕D0, φ1(C0)⊕D1, . . . , φm(C0)⊕Dm, 0q ⊕ Ln]

constitutes an orthogonal array,

http://www.amss.ac.cn
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2 Construction method for normal mixed
difference matrices
Lemma 1. Suppose that D(λp,m; p) is a λp × m matrix with entries from
a Galois field of order p, GF (p), and that γ is a column of orthogonal array
Ln(p

s). If D(λp,m; p) ⊕ γ is also an orthogonal array, then D(λp,m; p) is a
difference matrix.

http://www.amss.ac.cn
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Theorem 1. Suppose that Lp(s1 · · · sn) = (C1, . . . , Cn) is a normal orthogonal
array, and that L = [D(m, k; p)⊕(p), D(m, k1; s1)⊕C1, . . . , D(m, kn; sn)⊕Cn]
is also an orthogonal array. Then

D = [D(m, k; p), D(m, k1; s1), . . . , D(m, kn; sn)]

is a normal mixed difference matrix.

http://www.amss.ac.cn
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Proof. Since Lp(s1 · · · sn) = (C1, . . . , Cn) is a normal orthogonal array, we
have a group homomorphism φl from G0 = {0, 1, . . . , p − 1} to Gl. Set C0 =
(p) = (0, 1, . . . , p − 1)T , then φl(C0) = Cl. From the expansive replacement
method in Hedayat et al (1999), if the levels 0, 1, . . . , p − 1 in [D(m, k; p) ⊕
(p), D(m, kl; sl)⊕Cl] are replaced with A1, . . . , Ap, respectively, where Ai is the
ith row of Lp, we can obtain a mixed orthogonal array with the levels s1, · · · , sn.
Pick out all the sl-level columns, we can get an sl-level orthogonal array, which
can be written as

[φl(D(m, k; p)), D(m, kl; sl)]⊕ Cl.

It follows from Lemma 1 that [φl(D(m, k; p)), D(m, kl; sl)] is a difference ma-
trix, l = 1, . . . , n.
We have D = [D(m, k; p), D(m, k1; s1), . . . , D(m, kn; sn)] is a normal mixed
difference matrix based on Lp(s1 · · · sn).

http://www.amss.ac.cn
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Theorem 2. Suppose that Lp(s1 · · · sn) = (C1, . . . , Cn) is a normal or-
thogonal array, and that D(m, k; p) is a difference matrix. If we partition
D(m, k; p) into [D(m, k; p) = [D(m, k − r; p), D(m, r; p)], then [D(m, k −
r; p), φ1(D(m, r; p)), . . . , φn(D(m, r; p))] is a normal mixed difference matrix,
where φi is as in (1).

http://www.amss.ac.cn
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Lemma 2. (Zhang et al. 2002) Suppose that both

D(r, r; r) = (dij)r×r = (d1, . . . , dr)

and

D(r + 1, r + 1; p) =

(
0 0
0 A

)
=

(
0 0
0 (aij)r×r

)
=

(
0 0 · · · 0
0 a1 · · · ar

)
are difference matrices with entries from two additive groups Gr =
{0, 1, . . . , r − 1} and Gp = {0, 1, . . . , p − 1}, respectively. For any dij ∈ Gr,
define a permutation matrix σ(dij) as follows

σ(dij) · (r) = dij + (r). (2)

Set F = (σ(dij)A)1≤i≤r,1≤j≤r. Then the following array

D(r(r + 1), r(r + 1); p) =

(
0 A⊕ 0T

r

A⊕ 0r F

)
.

is a difference matrix.

http://www.amss.ac.cn
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Lemma 3. If D = [D(m, k; p), D(m, k1; s1), . . . , D(m, kn; sn)] is a normal
mixed difference matrix based on a normal orthogonal array Lp(s1 · · · sn) =
(C1, . . . , Cn), then D is still an normal mixed difference matrix after performing
the following operations:
(1) adding an i (i ∈ {0, 1, . . . , p − 1}) to any column of D(m, k; p) or adding
an ij (ij ∈ Gj) to any column of D(m, kj; sj).
(2) adding an i (i ∈ {0, 1, . . . , p − 1}) to a row of D(m, k; p) and adding φj(i)
to the same row of D(m, kj; sj) for j = 1, . . . , n.

http://www.amss.ac.cn
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Theorem 3. Under the conditions of Lemma 2, suppose that [D(r + 1, k +
1; p), D1(r + 1, k1; s1), . . . , Dm(r + 1, km; sm)] is a normal mixed difference
matrix based on a normal orthogonal array Lp(s1 · · · sm) = (C1, . . . , Cn) and
that D(r, r; r) is a difference matrix. Then we can obtain a larger normal mixed
difference matrix

[D(r(r+1), k(k+1); p), D1(r(r+1), k1(r+k+1); s1), . . . , Dm(r(r+1), km(r+k+1); sm)]

based on the array Lp(s1 · · · sm).

http://www.amss.ac.cn


Introduction

Construction method . . .

Examples

Discussion

Home Page

Title Page

JJ II

J I

Page 23 of 36

Go Back

Full Screen

Close

Quit

Proof. From Lemma 3, we assume that

[D(r + 1, k + 1; p), D(r + 1, kt; st)]

=

(
0 0
0 H

)
=

(
0 0
0 (hij)r×rt

)
=

(
0 0 · · · 0
0 h1 · · · hrt

)
,

where rt = k + kt and H = (Ar×k, Br×kt
). And set F = (σ(dij)H)1≤i≤r,1≤j≤rt

,
where σ(dij) is as in (2). Then we construct the following matrix K as follows

K =

(
0 H ⊕ 0T

rt

H ⊕ 0r F

)
.

And in the K, set K0 =

(
0

H ⊕ 0r

)
and Kj =


hj ⊕ 0T

rt

σ(d1j)H
· · ·

σ(drj)H

 for j = 1, . . . , rt.

http://www.amss.ac.cn
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Moreover, if hj is a p-level column i.e. a column of Ar×k, we take Kj as follows

Kj =


hj ⊕ 0T

k , φt(hj)⊕ 0T
kt

σ(d1j)(A, B)
· · ·

σ(drj)(A, B)

 .

If hj is a st-level column i.e. a column of Br×kt
, we take Kj as follows

Kj =


hj ⊕ 0T

rt

σ(d1j)(φt(A), B)
· · ·

σ(drj)(φt(A), B)

 .

Through some column permutation, K can be written as

K = [D(r(r + 1), k(k + 1); p), Dt(r(r + 1), kt(r + k + 1); st)].

It easily follows from Lemma 2 that all the p-level columns of K constitute a
difference matrix D(r(r + 1), k(k + 1); p).

http://www.amss.ac.cn
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Now we prove that [φt(D(r(r+1), k(k +1); p)), Dt(r(r+1), kt(r+k +1); st)]
is a difference matrix based on the group Gt.

Let [φt(D(r + 1, k + 1; p)), Dt(r + 1, kt; st)] =

(
0 0 0
0 φt(A) B

)
.

By using D(r, r; r) and Lemma 3, we can construct an st-level difference matrix

Kφt
= [D(r(r + 1), k(k + 1) + kt(r + k + 1); st)]

=

(
0 (φt(A), B)⊕ 0T

rt

(φt(A), B)⊕ 0r σ(dij)(φt(A), B)

)
.

http://www.amss.ac.cn
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On the other hand, through some column permutation, we just have that Kφt
can

be written as

Kφt
= [φt(D(r(r + 1), k(k + 1); p)), Dt(r(r + 1), kt(r + k + 1); st)].

Hence, To take t = 1, . . . ,m, respectively, we can get a normal mixed difference
matrix

[D(r(r+1), k(k+1); p), D1(r(r+1), k1(r+k+1); s1), . . . , Dm(r(r+1), km(r+k+1); sm)]

based on the normal orthogonal array Lp(s1 · · · sm).
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When the difference matrix D(r, r, , r) in Theorem 3 does not exist but an or-
thogonal array exists, we state the following theorem.
Theorem 4. Under the conditions of Lemma 2, suppose that [D(r + 1, k +
1; p), D1(r + 1, k1; s1), . . . , Dm(r + 1, km; sm)] is a normal mixed difference
matrix based on a normal orthogonal array Lp(s1 · · · sm) = (C1, . . . , Cm)
and that there exists an orthogonal array Lr2(rx+1) = [(r) ⊗ 1r, Q1(1r ⊗
(r)), · · · , Qx(1r ⊗ (r))] where Qj = diag(σ1j, · · · , σrj) is a permutation ma-
trix satisfying Qj((r) ⊗ 1r) = (r) ⊗ 1r. Then we can obtain a normal mixed
difference matrix

[D(r(r + 1), k(k + 1); p), D1(r(r + 1), y1; s1), . . . , Dm(r(r + 1), ym; sm)]

based on the normal orthogonal array Lp(s1 · · · sm), where

yt =

{
kt(2k + kt + 1) if x ≥ k + kt

kt(k + 1) + (x− k)(k + kt) if k ≤ x < k + kt

If x < k, the above normal mixed difference matrix becomes

[D(r(r+1), k(x+1); p), D1(r(r+1), k1(x+1); s1), . . . , Dm(r(r+1), km(x+1); sm)].

http://www.amss.ac.cn
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3 Examples
Example 3. Construction of two normal mixed difference matrices

[D0(132, 30; 6), D1(132, 42; 3), D2(132, 102; 2)]

and
[D0(132, 20; 6), D1(132, 112; 3), D2(132, 112; 2)].
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By Lemma 3, we can make the normal mixed difference matrix
[D0(12, 6; 6), D1(12, 3; 3), D2(12, 6; 2)] in Wang (1996) have the following
form (

0 0
0 H

)
.

Then using the difference matrix D(11, 11; 11) and Theo-
rem 3, we can construct a normal mixed difference matrix
[D0(132, 30; 6), D1(132, 42; 3), D2(132, 102; 2)].
Similarly by using [D0(12, 5; 6), D1(12, 7; 3), D2(12, 7; 2)] in Wang
(1996), we can obtain a larger normal mixed difference matrix
[D0(132, 20; 6), D1(132, 112; 3), D2(132, 112; 2)].
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Remark In theorem 3, if r(r + 1) − 1 is a prime or prime power, then we can
use the method again to construct a new normal mixed difference matrix.
For instance, by continuing to use difference matrix D(131, 131; 131)
in Example 3 and Theorem 3, we can construct a normal
mixed difference matrix [D0(131 × 132, 19 × 20; 6), D1(131 ×
132, 112 × (131 + 20); 3), D2(131 × 132, 112 × (131 + 20); 2)] =
[D0(17292, 380; 6), D1(17292, 16912; 3), D2(17292, 16912; 2)].

http://www.amss.ac.cn


Introduction

Construction method . . .

Examples

Discussion

Home Page

Title Page

JJ II

J I

Page 31 of 36

Go Back

Full Screen

Close

Quit

Example 4. Construction of normal mixed difference matrix [D0(23 ×
24, 380; 4), D1(23× 24, 172; 2), D2(23× 24, 172; 2), D3(23× 24, 172; 2)]

By Lemma 3, we can make the [D0(24, 20; 4), D1(24, 4; 2), D2(24, 4; 2),
D3(24, 4; 2)] in Pang et al.(2004b) have the following form(

0 0
0 H

)
.

Then using the difference matrix D(23, 23; 23) and Theorem 3, we can
construct a normal mixed difference matrix [D0(23 × 24, 380; 4), D1(23 ×
24, 172; 2), D2(23× 24, 172; 2), D3(23× 24, 172; 2)].
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Introduction

Construction method . . .

Examples

Discussion

Home Page

Title Page

JJ II

J I

Page 32 of 36

Go Back

Full Screen

Close

Quit

4 Discussion
How can we generalize the normal orthogonal array to any orthogonal array?
Lp(s1 · · · sn) = (C1, . . . , Cn) is an orthogonal array, then there exists a map
φl such that φl(C0) = Cl. Can we find a mixed difference matrix D =
[D0, D1, . . . , Dn] such that [C0 ⊕D0, C1 ⊕D1, . . . , Cn ⊕Dn] constitute an or-
thogonal array? How?
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