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1 Introduction and Examples

• The saturated design is a design where the num-

ber of observations (or estimators) is equal to the

number of parameters of interest, typically the

contrasts of population means in 2k (fractional)

factorial design, and there is no degree of freedom

left for the nuisance parameter, the population

variance.

– screen many potentially important variables,

factors or effects

– used in early stages of experiments

– used in screening experiments

• For a saturated design, if the estimators of param-



eters of interest are independent, or equivalently,

the contrasts are orthogonal under normality as-

sumptions, then we have an orthogonal saturated

design.

• Difficulty: The traditional estimator for the vari-

ance (MSE) is no longer available. It is challeng-

ing to make inferences on parameters of interest.

• The sparsity of effects principle: in most of sys-

tems, responses are driven largely by a limited

number of main effects and lower-ordered inter-

actions and only few of the effects are nonzero.

Therefore, those estimators with mean zero can

be used to estimate the variance.



• Examples

– Example 1. (23 full factorial design) Consider

a three-way anova with 2 levels for each fac-

tor. There are 8 treatments and from each

treatment one measurement is collected. Write

the factor effect model in a regression setting,
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= Xβ + ε.

• The parameters of interest: α1, . . . , (αβγ)111, seven of them.

The effect sparsity says that most of them are zero. The

nuisance parameters: µ..., σ
2.

• The data: the l.s.e., µ̂..., . . . , ˆ(αβγ)111, eight of them, are

independent since the covariance matrix is diagonal. No

MSE for σ2.



• Example 2. (The 12-run Plackett-Burman De-

sign) Twelve observations are obtained to esti-

mate the overall mean and the main effects of

11 factors each at two levels under a first-order

model. The design matrix is as follows.

X =




1 1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 1 −1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1 1
1 1 1 1 −1 1 1 −1 1 −1 −1 −1
1 −1 1 1 1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 1 1 −1 1 1 −1 1
1 1 −1 −1 −1 1 1 1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1 1 −1 1 1
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1




(1)



2 Formulations and Motivation

• Consider a linear model

Yi = β0+β1xi1+· · ·+βkxik+εi, εi ∼ iid N(0, σ2)

(2)

for 1 ≤ i ≤ M for unknown β0, . . . , βk and σ2
ε .

• The parameters of interest: β1, . . . , βk

• Data: the independent l.s.e {β̂i}k
i=1.

• Difficulties: M=k+1. Thus no degrees of freedom

left for the nuisance parameter σ2.

• Effect sparsity: Most of βi’s are zero. But do not

know how many and which βi’s are zero.

• Motivation: Detect the first jump in the ordered

list of |β̂i|2.



• Goal: use simultaneous tests to identify active

effects.

– Control the experimentwise error rates at α.

– Use the data adaptively.

• Two sets of null hypotheses:

– Step-down:

A = {H0,I = {βi = 0 : ∀i ∈ I} : I ⊂ {1, ..., k}}

– Step-up: let N be the number of β′is being

zero.

B = {H0,m = {N ≥ m} : ν + 1 ≤ m ≤ k}

∗ H0,i ⊂ H0,j if i ≥ j.

– Both sets are closed under the intersection.



3 The Previous Results

• Step-down procedures

– Voss (1988) test for A

∗ control the experimentwise error rates, but

not use data adaptively.

– Ventel and Steel (1998) test for B.

∗ don’t know whether to control the exper-

imentwise error rates.

∗ The zero effects are contaminated with the

nonzero effects.

– Voss and Wang (2006) test for A

∗ control the experimentwise error rates.

∗ use data adaptively.

∗ the estimator(s) with nonzero mean may

be used to estimate the variance.

– Holm, Mark and Adolfsson iterative step-down



tests (2005)

∗ use data adaptively and control the error

rates

∗ use the data iteratively, i.e., if an effect is

shown significantly large, it won’t be used

in the next step to estimate σ.

• Step-up procedures

– Ventel and Steel (1998) test for B

∗ don’t know whether to control the exper-

imentwise error rates.



4 The iterative step-down tests (Voss and Wang,

2005)

• The idea of iterative tests

– Let [1], . . . , [k] be the random indices such that

|β̂[1]| < · · · < |β̂[k]|. Let Xi = |β̂[i]|2. Starting

from the largest value Xk, if Xk is significantly

large, declare β[k] to be active.

– Now consider a data set of X1, ..., Xk−1, the

original data set excluding Xk, and see whether

β[k−1] is active. Repeat this until we reach a

zero effect.

• Consider test statistics

Ti =
Xi

gi(X1, . . . , Xi)
, 2 ≤ i ≤ k, (3)

where each gi(t1, . . . , ti) (2 ≤ i ≤ . . . , k) is a

positive function with the following properties: i)

scale invariant; ii) monotone. Obtain the critical



value ci (i = 2, . . . , k) as the upper-α quantile of

the distribution of Ti at

(β1, ..., βk) = (0, .., 0,∞, ...,∞) with i zeros.

• Iterative step-down test

– Step 1: If Tk > ck then assert β[k] 6= 0 and

continue; else stop.

– Step 2: If Tk−1 > ck−1 then assert β[k−1] 6= 0 and

continue; else stop.

– If. . .

Theorem 1 The above iterative step-down test

strongly controls the probability of making any false

assertions to be at most α under all parameter

configurations β = (β1, . . . , βk) and for all σ.

• For different choice of gi, one may obtain differ-

ent iterative step-down tests. For example, tests



corresponding to Zahn (1975ab) and Venter and

Steel (1998), Voss (1988), Voss and Wang (2006),

Langsrud and Naes’ (1998), and others.



5 The step-up tests, (Wu and Wang, 2006, AOS)

• Test for B.

• For each hypothesis (in B) H0,m : N ≥ m, let

βm = (β1, ..., βk) = (0, ..., 0,∞, ..,∞) (m zeros).

Theorem 2 For any 0 < α < 1, the following

rejection region

Rm−1,m = {Sm−1 < dm−1,mXm}, (4)

defines a level-α test for H0,m, where Sm−1 = ∑m−1
i=1 Xi

and dm−1,m is given by

Pβm
(
Sm−1

Xm
< dm−1,m) = α.

• There is a jump at Xm.

• Since H0,m decreases, we want Rm−1,m increasing

as m goes large.



To test all hypotheses in B, let

R∗
m−1,m = ∪m

i=ν+1{Si−1 < d∗i−1,iXi} = ∪m
i=ν+1{Sν < Qi}

(5)

where Qi = d∗i−1,iXi − (Si−1 − Sν) and d∗i−1,i is de-

termined iteratively as follows:

• d∗ν,ν+1 = dν,ν+1.

• For ν + 2 ≤ m ≤ k − 1, suppose d∗ν,ν+1 through

d∗m−2,m−1 are given. Then d∗m−1,m is determined

by

m∑

i=ν+1
Pβm

(max{Sν, {Qj}i−1
j=ν} < Qi) = α. (6)

• d∗k−1,k is given by

Pβk
(R∗

k−1,k) = α. (7)



– R∗
m−1,m increases and is level-α for a single

H0,m.

Theorem 3 For testing all hypotheses in B,

assert not H0,m if R∗
m−1,m is true.

Then the experimentwise error rate is controlled

at α.

The step-up tests procedure:

• Step 1: If R∗
ν,ν+1 is true, then conclude that β[ν+1]

through β[k] are the k − ν active effects (= H ∩
HA,ν+1), and stop; otherwise go to step 2.

• Step 2: If R∗
ν,ν+2 is true, then conclude that β[ν+2]

through β[k] are the k − ν − 1 active effects (=

H0,ν+1 ∩HA,ν+2) and stop; o/w go to step 3.

• ...



• Step k − ν: If R∗
ν,k is true, then conclude that

β[k] is the only active effect (= H0,k−1 ∩ H0,k),

and stop; o/w conclude no active effect and stop.

6 Discussion

–The stepwise tests are more powerful than the single-

step tests

– The step-up tests seem more powerful to detect the

first jump than the step-down tests.

– A better step-up tests procedure may exist by de-

termining the constants d∗m−1,m as follows:

Pβm
(R∗

m−1,m) = α.

– A much more challenging problem is to make in-

ferences in nonorthogonal designs.
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