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The generalized Kronecker product

Let k(x, y) be a map from Ω1 × Ω2 to V , where

Ω1 × Ω2 = {(x, y) : x ∈ Ω1, y ∈ Ω2} and Ω1,Ω2, V are some sets.

For two matrices A = (aij)n×m with entries from Ω1 and

B = (buv)s×t with entries from Ω2, define their generalized

Kronecker product, denoted by
k
⊗, as follows

A
k
⊗ B = (k(aij , buv))ns×mt = (k(aij , B))1≤i≤n,1≤j≤m, (1)

where each submatrix k(aij , B) = (k(aij , buv))s×t of A
k
⊗ B is

obtained by operating aij to each entry of B under the map

k(x, y).
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The atomic difference matrix

If a difference matrix D(λp,m; p) exists, it can always be

constructed so that only one of its rows and one of its columns

contain the zero element of G. Deleting this column from

D(λp,m; p), we obtain a difference matrix, denoted by

D0(λp,m − 1; p), called an atom of difference matrix D(λp,m; p) or

an atomic difference matrix. Without loss of generality, the matrix

D(λp,m; p) can be written as

D(λp,m; p) =





0 0

0 A



 = (0 D0(λp,m − 1; p)). (2)

The property is important for the following discussions.
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The normal Kronecker sum

If the Ω1,Ω2 and V are additive (or abelian) groups G1, G2 of

order λp, p and a row-vector space of m-dimensions

respectively, and if k(i, j) is the (ip + j + 1)th row of

D0(λp,m − 1; p) ⊕ (p)(i.e., the usual Kronecker sum ⊕ of the

atomic difference matrix D0(λp,m − 1; p) and (p) (Shrikhande

1964)), the generalized Kronecker product
k
⊗ is really denoted by

(λp)
k
⊗ (p) = D0(λp,m− 1; p)⊕ (p), namely normal Kronecker sum.

Such as (2)
k
⊗ (2) = D0(2, 1; 2) ⊕ (2),

(4)
k
⊗ (2) = D0(4, 3; 2) ⊕ (2), (3)

k
⊗ (3) = D0(3, 2; 3) ⊕ (3),

(6)
k
⊗ (3) = D0(6, 5; 3) ⊕ (3), · · ·
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The array product

There is an orthogonal array

((3) ⊕ 06, 03 ⊕ (6))
K
⊗ (3) = (((3) ⊕ 06)

k1

⊗ (3), (03 ⊕ (6))
k2

⊗ (3)), if

define K = {k1, k2} and

(3)
k1

⊗ (3) =











0 0

1 2

2 1











⊕(3), (6)
k2

⊗ (3) =

















0 0 0 0 0

0 1 1 2 2

1 2 0 1 2

1 0 2 2 1

2 1 2 1 0

2 2 1 0 1

















⊕(3).

The array product is an essential operation of the generalized

Kronecker product for constructing asymmetrical arrays.
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Matrix Images (MI)

Let A be an orthogonal array of strength 1, i.e.,

A = (a1, . . . , am) = (T1(0r1
⊕ (p1)), . . . , Tm(0rm

⊕ (pm))),

where ripi = n, Ti is a permutation matrix for any i = 1, . . . ,m.

The following projection matrix,

Aj = Tj(Prj
⊗ τpj

)T T
j , (3)

is called the matrix image (MI) of the jth column aj of A, denoted

by m(aj) = Aj for j = 1, . . . ,m. In general,the MI of a subarray

of A is defined as the sum of the MI’s of all its columns. In

particular, we denote the MI of A by m(A).
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Basic Theorems

Let D0(λp,m − 1; p) be an atom of difference matrix

D(λp,m; p). Then D0(λp,m − 1; p) ⊕ (p) is an orthogonal

array whose MI is less than or equal to τλp ⊗ τp, where

τλp = Iλp − Pλp and τp = Ip − Pp.

Suppose that Ln1
= [Ln1

(px1

1 ), . . . , Ln1
(pxs

s )] and

Ln2
= [Ln2

(qy1

1 ), . . . , Ln2
(qyt

t )] are two orthogonal arrays.

Then the array product of Ln1
and Ln2

, i.e., Ln1

K
⊗ Ln2

, is

also orthogonal array whose MI is less than or equal to

m(Ln1
) ⊗ m(Ln2

).
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Basic Corollaries

(Two-factor method ) Let L1
p, L

2
p, L

1
q and L2

q be

orthogonal arrays.Then (L1
p ⊕ 0q, 0p ⊕ L1

q , L
2
p

K
⊗ L2

q) is an

orthogonal array.

(Three-factor method) Let n = prq and let

Lpr, Lrq and Lq be orthogonal arrays of run sizes pr, rq and

q, respectively. If there exist orthogonal arrays L
(−)
pr ,L(=)

pr and

L
(−)
rq such that m(L

(−)
pr ),m(L

(=)
pr ) ≤ τp ⊗ Ir and

m(L
(−)
rq ) ≤ Ir ⊗ τq, then [Lpr ⊕ 0q, 0p ⊕ L

(−)
rq , L

(=)
pr

K
⊗ Lq] and

[L
(−)
pr ⊕ 0q, 0p ⊕ Lrq, L

(=)
pr

K
⊗ Lq] are orthogonal arrays.
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Constructions of OA’s with Run Size 72

L72(· · · 4
1) = [L

(−)
36 (· · · ) ⊕ 02, 018 ⊕ (4), L

(=)
36 (234)

k
⊗ (2)]

where m(L
(−)
36 (· · · )),m(L

(=)
36 (234)) ≤ τ18 ⊗ I2, such as

L72(2
613141) = [L

(−)
36 (22731) ⊕ 02, 018 ⊕ (4), L

(=)
32 (234) ⊕ (2)]

L72(· · · 6
1) = [L

(−)
36 ⊕ 02, 012 ⊕ (6), L

(=)
36 (228)

k
⊗ (2)]where

m(L
(−)
36 (· · · )),m(L

(=)
36 (228)) ≤ τ12 ⊗ I3, such as

L72(2
2831161121) =

[L
(−)
36 (311121) ⊕ 02, 012 ⊕ (6), L

(=)
36 (228) ⊕ (2)]

L72(· · · 12
1) = [L

(−)
36 ⊕ 02, 06 ⊕ (12), L

(=)
36 (228)

k
⊗ (2)]where

m(L
(−)
36 (· · · )),m(L

(=)
36 (218)) ≤ τ6 ⊗ I6, such as

L72(2
183762121) = [L

(−)
36 (3762)⊕ 02, 06 ⊕ (12), L

(=)
36 (218)⊕ (2)]
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Constructions of OA’s with Run Size 96

Step 1. There is an orthogonal decomposition of the

projection matrix τ96 as follows:

τ96 = I24 ⊗ τ4 + τ24 ⊗ P8 =

3
∑

i=1

Mi(P3⊗τ4⊗I2⊗τ4)M
T
i +(I2⊗τ4⊗P3⊗τ4+τ24⊗P4), (4)

where Mi = (I2 ⊗ Ti)K(8, 12) for i = 1, 2, 3;

T1 = diag(I2 ⊗ N2, N2 ⊗ I2, N2 ⊗ N2,K(3, 3) ⊗ I4),

T2 = diag(N2 ⊗ I2, N2 ⊗ N2, I2 ⊗ N2, [diag(I3, N3, N
2
3 )K(3, 3)] ⊗ I4)

T3 = diag(N2 ⊗ N2, I2 ⊗ N2, N2 ⊗ I2, [diag(I3, N
2
3 , N3)K(3, 3)] ⊗ I4)
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Constructions of OA’s with Run Size 96

Step 2. There is an orthogonal array L32(2
345) such that

m(L32(2
345)) = τ4 ⊗ I2 ⊗ τ4,where

L32(2
345) = [02 ⊕ (2) ⊕ 02 ⊕ (2) ⊕ 02, (2) ⊕ 08 ⊕ (2),(2) ⊕

(2) ⊕ (2) ⊕ (2) ⊕ (2),D(8, 5; 4) ⊕ (4)],

D(8, 5; 4) =

























0 0 0 0 0

0 1 3 3 2

1 3 3 2 1

1 2 0 1 3

2 2 1 3 3

2 3 2 0 1

3 1 2 1 2

3 0 1 2 0

























.
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Constructions of OA’s with Run Size 96

Step 2. There are the following orthogonal arrays L
(−)
96 (· · · )

such that m(L
(−)
96 (· · · )) ≤ (I2 ⊗ τ4 ⊗ P3 ⊗ τ4 + τ24 ⊗ P4).

1. L
(−)
96 (45241) = [M0(03 ⊕ L32(4

523)), (24) ⊕ 04] where

M0 = K(8, 12).

2. L
(−)
96 (2947121) = [K(8, 12)(03 ⊕ (8)

k
⊗ (4)), L

(−)
24 (29121) ⊕

04]whereL24(2
12121) = [(2) ⊕ L4(2

3) ⊕ 03, (L
(−)
24 (29121)].

3. L
(−)
96 (21748) = [K(8, 12)(03 ⊕ (8)

k
⊗ (4)), L

(−)
24 (21741) ⊕

04]whereL24(2
2041)) = [(2) ⊕ L4(2

3) ⊕ 03, L
(−)
24 (21741)].

4. L
(−)
96 (2103148) = [K(8, 12)(03 ⊕ (8)

k
⊗ (4)), L

(−)
24 (2103141)⊕

04]whereL24(2
133141)) = [(2)⊕L4(2

3)⊕03, L
(−)
24 (2103141)].
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Constructions of OA’s with Run Size 96

Step 2.There are the following orthogonal arrays L
(−)
96 (· · · )

such that m(L
(−)
96 (· · · )) ≤ (I2 ⊗ τ4 ⊗ P3 ⊗ τ4 + τ24 ⊗ P4).

L
(−)
96 (286148) = [K(8, 12)(03 ⊕ (8)

k
⊗ (4)), L

(−)
24 (284161) ⊕

04]whereL24(2
116141)) = [(2) ⊕ L4(2

3) ⊕ 03, L
(−)
24 (284161)]

and (8)
k
⊗ (4) = D0(8, 7; 4) ⊕ (4) =

























0 0 0 0 0 0 0

0 1 1 3 2 3 2

1 3 2 1 3 0 2

1 2 3 2 1 3 0

2 2 0 3 3 1 1

2 3 1 0 1 2 3

3 1 2 2 0 1 3

3 0 3 1 2 2 1

























⊕ (4).
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Constructions of OA’s with Run Size 96

Step 2.There are the following orthogonal arrays L
(−)
96 (· · · )

such that m(L
(−)
96 (· · · )) ≤ (I2 ⊗ τ4 ⊗ P3 ⊗ τ4 + τ24 ⊗ P4).

L
(−)
96 (2114481121) = [L

(=)
96 (224481), L

(=)
24 (29121) ⊕ 04]where

L24(2
12121) = [(2)⊕[04, (2)⊕02, 02⊕(2)]⊕03, L

(=)
24 (29121)]

and L
(=)
96 (224481) =

[((2)⊕048)⋄(02⊕(2)⊕06⊕(2)⊕02)⋄((2)⊕02⊕(2)⊕06⊕(2)),

((2) ⊕ (2) ⊕ 024) ⋄ (04 ⊕ (2) ⊕ 03 ⊕ (2) ⊕ 02),

((2) ⊕ 02 ⊕ (2) ⊕ 012) ⋄ (02 ⊕ (2) ⊕ 012 ⊕ (2)),

((2) ⊕ (2) ⊕ 06 ⊕ (2) ⊕ (2)) ⋄ (02 ⊕ (2) ⊕ (2) ⊕ 06 ⊕ (2)),

((2) ⊕ (2) ⊕ 012 ⊕ (2)) ⋄ (02 ⊕ (2) ⊕ (2) ⊕ 03 ⊕ (2) ⊕ 02),

02 ⊕ (2) ⊕ 06 ⊕ (2) ⊕ (2), 04 ⊕ (2) ⊕ 03 ⊕ (2) ⊕ (2)].
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Constructions of OA’s with Run Size 96

Step 2.There are the following orthogonal arrays L
(−)
96 (· · · )

such that m(L
(−)
96 (· · · )) ≤ (I2 ⊗ τ4 ⊗ P3 ⊗ τ4 + τ24 ⊗ P4).

L
(−)
96 (2194581) = [L

(=)
96 (224481), L

(=)
24 (21741) ⊕ 04]where

L24(2
2041)) = [(2)⊕[04, (2)⊕02, 02⊕(2)]⊕03, L

(=)
24 (21741)].

L
(−)
96 (212314581) = [L

(=)
96 (224481), L

(=)
24 (2103141)⊕04]where

L24(2
133141)) =

[(2) ⊕ [04, (2) ⊕ 02, 02 ⊕ (2)] ⊕ 03, L
(=)
24 (2103141)].

L
(−)
96 (210456181) = [L

(=)
96 (224481), L

(=)
24 (284161) ⊕ 04]where

L24(2
116141)) =

[(2) ⊕ [04, (2) ⊕ 02, 02 ⊕ (2)] ⊕ 03, L
(=)
24 (284161)].

The L
(−)
24 (· · · ) and L

(=)
24 (· · · ) due to Zhang et al (2001).
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Constructions of OA’s with Run Size 96

Step 3. We lay out the new orthogonal arrays

L96(2
12420241) = [M1(03 ⊕ L32(2

345)), M2(03 ⊕ L32(2
345)),

M3(03 ⊕ L32(2
345)), L

(−)
96 (· · · )], such as

L96(2
12420241) = [M1(03 ⊕ L32(2

345)),M2(03 ⊕

L32(2
345)),M3(03 ⊕ L32(2

345)),

M0(03 ⊕ L32(2
345)), (24) ⊕ 04].

L96(2
18422121) = [M1(03 ⊕ L32(2

345)),M2(03 ⊕

L32(2
345)),M3(03 ⊕ L32(2

345)), L
(−)
96 (2947121)].

L96(2
26423), L96(2

1931423), L96(2
1742361),

L96(2
2041981121), L96(2

2842081), L96(2
213142081),

L96(2
194206181), · · ·
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The normal mixed difference matrix

A new difference matrix D(24, 20; 4) can be drawn out from

the orthogonal array L96(2
12420241) over above Abelian

group G = {0, 1, 2, 3} which was observed by Zhang (2003).

A normal mixed difference matrix

[D(24, 20; 4),D1(12, 4; 2)⊕02,D2(12, 4; 2)⊕02,D3(12, 4; 2)⊕(2)]

also can be drawn out from the orthogonal array

L96(2
12420241) over above Abelian group G = {0, 1, 2, 3}

which was observed by Pang, Zhang and Liu (2004).
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Thanks !
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