Orthogonal Arrays Obtained By Generalized Kronecker Product

Yingshan Zhang

Department of Statistics, East China Normal University, Shanghai,200062, P.R.China. Email: ysh_zhang@163.com

The generalized Kronecker product

Let $k(x, y)$ be a map from $\Omega_{1} \times \Omega_{2}$ to V, where
$\Omega_{1} \times \Omega_{2}=\left\{(x, y): x \in \Omega_{1}, y \in \Omega_{2}\right\}$ and $\Omega_{1}, \Omega_{2}, V$ are some sets.
For iv. matrices $\hat{A}-\left(w_{i j}\right)_{n \times m}$ with entries from Ω_{1} and $B=\left(b_{i, v}\right)_{x \times i}$ witii sntries from Ω_{2}, define their generalized

Krcneckel' produst, deriated by $\ddot{\otimes}$, ás toiiuwis

$$
\begin{equation*}
A \stackrel{k}{\otimes} B=\left(k\left(a_{i j}, b_{u v}\right)\right)_{n s \times m t}=\left(k\left(a_{i j}, B\right)\right)_{1 \leq i \leq n, 1 \leq j \leq m}, \tag{1}
\end{equation*}
$$

v/here each submatrix $k\left(a_{i j}, B\right)=\left(k\left(a_{i j}, b_{u v}\right)\right)_{s \times t}$ of $A \stackrel{k}{\otimes} B$ is ()btained by operating $a_{i j}$ to each entry of B under the map $k(x, y)$.

The atomic difference matrix

If a difference matrix $D(\lambda p, m ; p)$ exists, it can always be constructed so that only one of its rows and one of its columns contain the zero element of G. Deleting this column from $D(\lambda p, m ; p)$, we obtain a difference matrix, denoted by $D^{0}(\lambda p, m-1 ; p)$, called an atom of difference matrix $D(\lambda p, m ; p)$ or an atomic difference matrix. Without loss of generality, the matrix $D(\lambda p, m ; n)$ can be written as

$$
D(\lambda p, m ; p)=\left(\begin{array}{cc}
0 & 0 \tag{2}\\
0 & A
\end{array}\right)=\left(\begin{array}{ll}
0 & D^{0}(\lambda p, m-1 ; p)
\end{array}\right) .
$$

The property is important for the following discussions.

The normal Kronecker sum

If the Ω_{1}, Ω_{2} and V are additive (or abelian) groups G_{1}, G_{2} of order $\lambda p, p$ and a row-vector space of m-dimensions resnectively, and if $k(i, j)$ is the ($i p+j+1$)th row of $D^{0}(\lambda p, m-1 ; p) \oplus\left(p^{2}\right)$ (i.e., the usual Kronecker sum \oplus of the atomic differsics matrix $D^{0}(\lambda p, m-1 ; p)$ and (p) (Shrikhande 1964) ${ }^{\prime}$, the generalizéa Kronecker product $\stackrel{k}{\otimes}$ is really denoted by $(\lambda p) \stackrel{k}{\otimes}(p)=D^{0}(\lambda p, m-1 ; p) \oplus(p)$, namely normal Kronecker sum. Such as $(2) \stackrel{k}{\otimes}(2)=D^{0}(2,1 ; 2) \oplus(2)$,
$(4) \stackrel{k}{\otimes}(2)=D^{0}(4,3 ; 2) \oplus(2),(3) \stackrel{k}{\otimes}(3)=D^{0}(3,2 ; 3) \oplus(3)$,
$(6) \stackrel{k}{\otimes}(3)=D^{0}(6,5 ; 3) \oplus(3), \cdots$

The array product

There is an orthogonal array
$\left.\left((3) \oplus 0_{6}, 0_{3} \oplus \prime(6)\right) \stackrel{K}{\otimes}(3)=\left(f(3) \oplus 0_{6}\right) \stackrel{k_{1}}{\otimes}(3),\left(0_{3} \bigoplus_{\mathcal{G}}(6)\right) \stackrel{k_{2}}{\otimes}(3)\right)$, if define $K=\left\{k_{1}, k_{2}\right\}$ and
(3) $k_{1}(3)=\left(\begin{array}{ll}0 & 0 \\ 1 & 2 \\ 2 & 1\end{array}\right) \oplus(3),(0), k_{2}(3)=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 2 \\ 1 & 2 & 0 & 1 & 2 \\ 1 & 0 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 & 0 \\ 2 & 2 & 1 & 0 & 1\end{array}\right) \oplus(3)$.

The array product is an essential operation of the generalized Kronecker product for constructing asymmetrical arrays.

Matrix Images (MI)

Let A be an orthogonal array of strength 1, i.e.,

$$
A=\left(a_{1}, \ldots, a_{m}\right)=\left(T_{1}\left(0_{r_{1}} \oplus\left(p_{1}\right)\right), \ldots, T_{m}\left(0_{r_{m}} \oplus\left(p_{m}\right)\right)\right),
$$

where $r_{i} p_{i}=n, T_{i}$ is a permutation matrix for any $i=1, \ldots, m$.
The follovilis projection matrix,

$$
\begin{equation*}
A_{j}=T_{j}\left(P_{r_{j}} \otimes \tau_{p_{j}}\right) T_{j}^{T}, \tag{3}
\end{equation*}
$$

is called the matrix image (iNI) of tire j th column a_{j} of A, denoted by $n\left(a_{j}\right)=A_{j}$ for $j=1, \ldots, m$. In gerieral, the MI of a subarray of A is defined as the sum of the Ml's oi all its columns. In particular, we denote the MI of A by $m(A)$.

Basic Theorems

Let $D^{0}(\lambda p, m-1 ; p)$ be an atom of difference matrix $D(\lambda p, m ; p)$. Then $D^{0}(\lambda p, m-1 ; p) \bar{\oplus}(\hat{p})$ is an orthogonal array whose Ml is less than or equal to $\tau_{\lambda p} \otimes \tau_{p}$, where $\tau_{\lambda p}=I_{\lambda p}-P_{\lambda p}$ औid $\tau_{p}=I_{p}-\Gamma_{p}$.
\square Suppose that $L_{n_{1}}=\left[L_{n_{1}}\left(p_{1}^{x_{1}}\right), \ldots, L_{n_{1}}\left(p_{s}^{x_{s}}\right)\right]$ and $L_{n_{2}}=\left[L_{n_{2}}\left(q_{1}^{y_{1}}\right), \ldots, L_{n_{2}}\left(q_{t}^{y_{t}}\right)\right]$ are two orthogonal arrays.
Then the array product of $L_{n_{1}}$ and $L_{n_{2}}$, i.e., $L_{n_{1}} \stackrel{K}{\otimes} L_{n_{2}}$, is also orthogonal array whose Ml is less than or equal to $m\left(L_{n_{1}}\right) \otimes m\left(L_{n_{2}}\right)$.

Basic Corollaries

- (Two-factor method) Let $L_{p}^{1} L_{p}^{2}, L_{q}^{1}$ and L_{q}^{2} be orthogonal arrays. Then $\left(L_{p}^{1} \oplus 0_{q}, 0_{p} \oplus L_{q}^{1}, L_{p}^{2} \stackrel{K}{\otimes} L_{q}^{2}\right)$ is an orthogonal array.
(Three-factor method) Let $n=p r q$ and let $L_{p r}, L_{r q}$ and L_{q} be orthogonal arrays of run sizes $p r, r q$ and q, respectively. If thsie exict nrthosgnnal arrays $L_{p r}^{(-)}, L_{p r}^{(=)}$and $L_{r q}^{(-)}$such that $m\left(L_{p r}^{(-)}\right), m\left(L_{p r}^{(-)}\right) \leq \tau_{p} \in I$, arut $m_{u^{\prime}}^{\prime}\left(I_{r q}^{(-)}\right) \leq I_{r} \otimes \tau_{q}$, theri $\left[L_{p r} \oplus U_{q}, \bar{U}_{p} \uplus \tilde{L}_{r q}^{-1-j}, L_{p r}^{(=)} \stackrel{K}{\otimes} L_{q}\right]$ and $\left[L_{p r}^{(-)} \oplus 0_{q}, 0_{p} \oplus L_{r q}, L_{p r}^{(-)} \stackrel{K}{\otimes} L_{q}\right]$ are orthogonal arrays.

Constructions of OA's with Run Size 72

- $L_{72}\left(\cdots 4^{1}\right)=\left[L_{36}^{(-)}(\cdots) \oplus 0_{2}, 0_{18} \oplus(4), L_{36}^{(=)}\left(2^{34}\right) \otimes^{k}(2)\right]$ where $m\left(L_{36}^{(-)}(\cdots)\right), m\left(L_{36}^{(=)}\left(2^{34}\right)\right) \leq \tau_{18} \otimes I_{2}$, such as $L_{72}\left(2^{61} 3^{1} 4^{1}\right)=\left[L_{36}^{(-)}\left(2^{27} 3^{1}\right) \oplus 0_{2}, 0_{18} \oplus(4), L_{32}^{(=)}\left(2^{34}\right) \oplus(2)\right]$
- $L_{72}\left(\cdots 6^{1}\right)=\left[L_{36}^{(-)} \oplus 0_{2}, 0_{12} \oplus(6), L_{36}^{(-)}\left(2^{28}\right) \stackrel{k}{\otimes}(2)\right]$ where $m\left(L_{36}^{(-)}(\cdots)\right), m\left(L_{36}^{(-)}\left(2^{28}\right)\right) \leq \tau_{12} \otimes I_{3}$, such as $L_{72}\left(2^{28} 3^{11} 6^{1} 12^{1}\right)=$
$\left[L_{36}^{(-)}\left(3^{11} 12^{1}\right) \oplus 0_{2}, 0_{12} \oplus(6), L_{36}^{(=)}\left(2^{28}\right) \oplus(2)\right]$
- $L_{72}\left(\cdots 12^{1}\right)=\left[L_{36}^{(-)} \oplus 0_{2}, 0_{6} \oplus(12), L_{36}^{(=)}\left(2^{28}\right) \otimes_{\otimes}^{k}(2)\right]$ where $m\left(L_{36}^{(-)}(\cdots)\right), m\left(L_{36}^{(=)}\left(2^{18}\right)\right) \leq \tau_{6} \otimes I_{6}$, such as $L_{72}\left(2^{18} 3^{7} 6^{2} 12^{1}\right)=\left[L_{36}^{(-)}\left(3^{7} 6^{2}\right) \oplus 0_{2}, 0_{6} \oplus(12), L_{36}^{(=)}\left(2^{18}\right) \oplus(2)\right]$

Constructions of OA's with Run Size 96

\square Step 1. There is an orthogonal decomposition of the projection matrix τ_{96} as follows:

$$
\begin{gather*}
\tau_{96}=I_{24} \otimes \tau_{4}+\tau_{24} \otimes P_{8}= \\
\sum_{i=1}^{3} M_{i}\left(P_{3} \otimes \tau_{4} \otimes I_{2} \otimes \tau_{4}\right) M_{i}^{T}+\left(I_{2} \otimes \tau_{4} \otimes P_{3} \otimes \tau_{4}+\tau_{24} \otimes P_{4}\right), \tag{4}
\end{gather*}
$$

where $M_{i}=\left(I_{2} \otimes T_{i}\right) K(8,12)$ for $i=1,2,3$;

$$
\begin{aligned}
& T_{1}=\operatorname{diag}\left(I_{2} \otimes N_{2}, N_{2} \otimes I_{2}, N_{2} \otimes N_{2}, K(3,3) \otimes I_{4}\right), \\
& T_{2}=\operatorname{diag}\left(N_{2} \otimes I_{2}, N_{2} \otimes N_{2}, I_{2} \otimes N_{2},\left[\operatorname{diag}\left(I_{3}, N_{3}, N_{3}^{2}\right) K(3,3)\right] \otimes .\right. \\
& T_{3}=\operatorname{diag}\left(N_{2} \otimes N_{2}, I_{2} \otimes N_{2}, N_{2} \otimes I_{2},\left[\operatorname{diag}\left(I_{3}, N_{3}^{2}, N_{3}\right) K(3,3)\right] \otimes .\right.
\end{aligned}
$$

Constructions of OA's with Run Size 96

Step 2. There is an orthogonal array $L_{32}\left(2^{3} 4^{5}\right)$ such that $m\left(L_{32}\left(2^{3} 4^{5}\right)\right)=\tau_{4} \otimes I_{2} \otimes \tau_{4}$, where $L_{32}\left(2^{3} 4^{5}\right)=\left[0_{2} \oplus(2) \oplus 0_{2} \oplus(2) \oplus 0_{2},(2) \oplus 0_{8} \oplus(2),(2) \oplus\right.$ $(2) \oplus(2) \oplus(2) \oplus(2), D(8,5 ; 4) \oplus(4)]$,

$$
D(8,5 ; 4)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 3 & 2 \\
1 & 3 & 3 & 2 & 1 \\
1 & 2 & 0 & 1 & 3 \\
2 & 2 & 1 & 3 & 3 \\
2 & 3 & 2 & 0 & 1 \\
3 & 1 & 2 & 1 & 2 \\
3 & 0 & 1 & 2 & 0
\end{array}\right)
$$

Constructions of OA's with Run Size 96

\square Step 2. There are the following orthogonal arrays $L_{96}^{(-)}(\cdots)$ such that $m\left(L_{96}^{(-)}(\cdots)\right) \leq\left(I_{2} \otimes \tau_{4} \otimes P_{3} \otimes \tau_{4}+\tau_{24} \otimes P_{4}\right)$. 1. $L_{96}^{(-)}\left(4^{5} 24^{1}\right)=\left[M_{0}\left(0_{3} \oplus L_{32}\left(4^{5} 2^{3}\right)\right),(24) \oplus 0_{4}\right]$ where $M_{0}=K(8,12)$.
2. $L_{96}^{(-)}\left(2^{9} 4^{7} 12^{1}\right)=\left[K(8,12)\left(0_{3} \oplus(8) \stackrel{k}{\otimes}(4)\right), L_{24}^{(-)}\left(2^{9} 12^{1}\right) \oplus\right.$ $\left.0_{4}\right]$ where $L_{24}\left(2^{12} 12^{1}\right)=\left[(2) \oplus L_{4}\left(2^{3}\right) \oplus 0_{3},\left(L_{24}^{(-)}\left(2^{9} 12^{1}\right)\right]\right.$.
3. $L_{96}^{(-)}\left(2^{17} 4^{8}\right)=\left[K(8,12)\left(0_{3} \oplus(8) \stackrel{k}{\otimes}(4)\right), L_{24}^{(-)}\left(2^{17} 4^{1}\right) \oplus\right.$ $\left.0_{4}\right]$ where $\left.L_{24}\left(2^{20} 4^{1}\right)\right)=\left[(2) \oplus L_{4}\left(2^{3}\right) \oplus 0_{3}, L_{24}^{(-)}\left(2^{17} 4^{1}\right)\right]$.
4. $L_{96}^{(-)}\left(2^{10} 3^{1} 4^{8}\right)=\left[K(8,12)\left(0_{3} \oplus(8) \stackrel{k}{\otimes}(4)\right), L_{24}^{(-)}\left(2^{10} 3^{1} 4^{1}\right) \oplus\right.$ $\left.0_{4}\right]$ where $\left.L_{24}\left(2^{13} 3^{1} 4^{1}\right)\right)=\left[(2) \oplus L_{4}\left(2^{3}\right) \oplus 0_{3}, L_{24}^{(-)}\left(2^{10} 3^{1} 4^{1}\right)\right]$.

Constructions of OA's with Run Size 96

\square Step 2.There are the following orthogonal arrays $L_{96}^{(-)}(\cdots)$ such that $m\left(L_{96}^{(-)}(\cdots)\right) \leq\left(I_{2} \otimes \tau_{4} \otimes P_{3} \otimes \tau_{4}+\tau_{24} \otimes P_{4}\right)$.

- $L_{96}^{(-)}\left(2^{8} 6^{1} 4^{8}\right)=\left[K(8,12)\left(0_{3} \oplus(8) \stackrel{k}{\otimes}(4)\right), L_{24}^{(-)}\left(2^{8} 4^{1} 6^{1}\right) \oplus\right.$ $\left.0_{4}\right]$ where $\left.L_{24}\left(2^{11} 6^{1} 4^{1}\right)\right)=\left[(2) \oplus L_{4}\left(2^{3}\right) \oplus 0_{3}, L_{24}^{(-)}\left(2^{8} 4^{1} 6^{1}\right)\right]$
and $(8) \stackrel{k}{\otimes}(4)=D^{0}(8,7 ; 4) \oplus(4)=$

$$
\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 3 & 2 & 3 & 2 \\
1 & 3 & 2 & 1 & 3 & 0 & 2 \\
1 & 2 & 3 & 2 & 1 & 3 & 0 \\
2 & 2 & 0 & 3 & 3 & 1 & 1 \\
2 & 3 & 1 & 0 & 1 & 2 & 3 \\
3 & 1 & 2 & 2 & 0 & 1 & 3 \\
3 & 0 & 3 & 1 & 2 & 2 & 10
\end{array}\right) \oplus(4) .
$$

Constructions of OA's with Run Size 96

\square Step 2. There are the following orthogonal arrays $L_{96}^{(-)}(\cdots)$ such that $m\left(L_{96}^{(-)}(\cdots)\right) \leq\left(I_{2} \otimes \tau_{4} \otimes P_{3} \otimes \tau_{4}+\tau_{24} \otimes P_{4}\right)$.

- $L_{96}^{(-)}\left(2^{11} 4^{4} 8^{1} 12^{1}\right)=\left[L_{96}^{(=)}\left(2^{2} 4^{4} 8^{1}\right), L_{24}^{(=)}\left(2^{9} 12^{1}\right) \oplus 0_{4}\right]$ where

$$
\begin{aligned}
& L_{24}\left(2^{12} 12^{1}\right)=\left[(2) \oplus\left[0_{4},(2) \oplus 0_{2}, 0_{2} \oplus(2)\right] \oplus 0_{3}, L_{24}^{(=)}\left(2^{9} 12^{1}\right)\right] \\
& \text { and } L_{96}^{(=)}\left(2^{2} 4^{4} 8^{1}\right)= \\
& {\left[\left((2) \oplus 0_{48}\right) \diamond\left(0_{2} \oplus(2) \oplus 0_{6} \oplus(2) \oplus 0_{2}\right) \diamond\left((2) \oplus 0_{2} \oplus(2) \oplus 0_{6} \oplus(2)\right),\right.} \\
& \left((2) \oplus(2) \oplus 0_{24}\right) \diamond\left(0_{4} \oplus(2) \oplus 0_{3} \oplus(2) \oplus 0_{2}\right), \\
& \left((2) \oplus 0_{2} \oplus(2) \oplus 0_{12}\right) \diamond\left(0_{2} \oplus(2) \oplus 0_{12} \oplus(2)\right), \\
& \left((2) \oplus(2) \oplus 0_{6} \oplus(2) \oplus(2)\right) \diamond\left(0_{2} \oplus(2) \oplus(2) \oplus 0_{6} \oplus(2)\right), \\
& \left((2) \oplus(2) \oplus 0_{12} \oplus(2)\right) \diamond\left(0_{2} \oplus(2) \oplus(2) \oplus 0_{3} \oplus(2) \oplus 0_{2}\right), \\
& \left.0_{2} \oplus(2) \oplus 0_{6} \oplus(2) \oplus(2), 0_{4} \oplus(2) \oplus 0_{3} \oplus(2) \oplus(2)\right] .
\end{aligned}
$$

Constructions of OA's with Run Size 96

\square Step 2. There are the following orthogonal arrays $L_{96}^{(-)}(\cdots)$ such that $m\left(L_{96}^{(-)}(\cdots)\right) \leq\left(I_{2} \otimes \tau_{4} \otimes P_{3} \otimes \tau_{4}+\tau_{24} \otimes P_{4}\right)$. - $L_{96}^{(-)}\left(2^{19} 4^{5} 8^{1}\right)=\left[L_{96}^{(=)}\left(2^{2} 4^{4} 8^{1}\right), L_{24}^{(=)}\left(2^{17} 4^{1}\right) \oplus 0_{4}\right]$ where $\left.L_{24}\left(2^{20} 4^{1}\right)\right)=\left[(2) \oplus\left[0_{4},(2) \oplus 0_{2}, 0_{2} \oplus(2)\right] \oplus 0_{3}, L_{24}^{(=)}\left(2^{17} 4^{1}\right)\right]$.

- $L_{96}^{(-)}\left(2^{12} 3^{1} 4^{5} 8^{1}\right)=\left[L_{96}^{(=)}\left(2^{2} 4^{4} 8^{1}\right), L_{24}^{(=)}\left(2^{10} 3^{1} 4^{1}\right) \oplus 0_{4}\right]$ where
$\left.L_{24}\left(2^{13} 3^{1} 4^{1}\right)\right)=$
$\left[(2) \oplus\left[0_{4},(2) \oplus 0_{2}, 0_{2} \oplus(2)\right] \oplus 0_{3}, L_{24}^{(=)}\left(2^{10} 3^{1} 4^{1}\right)\right]$.
- $L_{96}^{(-)}\left(2^{10} 4^{5} 6^{1} 8^{1}\right)=\left[L_{96}^{(=)}\left(2^{2} 4^{4} 8^{1}\right), L_{24}^{(=)}\left(2^{8} 4^{1} 6^{1}\right) \oplus 0_{4}\right]$ where
$\left.L_{24}\left(2^{11} 6^{1} 4^{1}\right)\right)=$
$\left[(2) \oplus\left[0_{4},(2) \oplus 0_{2}, 0_{2} \oplus(2)\right] \oplus 0_{3}, L_{24}^{(=)}\left(2^{8} 4^{1} 6^{1}\right)\right]$.
The $L_{24}^{(-)}(\ldots)$ and $L_{24}^{(=)}(\ldots)$ due to Zhang et al (2001).

Constructions of OA's with Run Size 96

\square Step 3. We lay out the new orthogonal arrays
$L_{96}\left(2^{12} 4^{20} 24^{1}\right)=\left[M_{1}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right), M_{2}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right)\right.$,
$\left.M_{3}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right), L_{96}^{(-)}(\cdots)\right]$, such as

- $L_{96}\left(2^{12} 4^{20} 24^{1}\right)=\left[M_{1}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right), M_{2}\left(0_{3} \oplus\right.\right.$
$\left.L_{32}\left(2^{3} 4^{5}\right)\right), M_{3}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right)$,
$\left.M_{0}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right),(24) \oplus 0_{4}\right]$.
- $L_{96}\left(2^{18} 4^{22} 12^{1}\right)=\left[M_{1}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right), M_{2}\left(0_{3} \oplus\right.\right.$
$\left.\left.L_{32}\left(2^{3} 4^{5}\right)\right), M_{3}\left(0_{3} \oplus L_{32}\left(2^{3} 4^{5}\right)\right), L_{96}^{(-)}\left(2^{9} 4^{7} 12^{1}\right)\right]$.
- $L_{96}\left(2^{26} 4^{23}\right), L_{96}\left(2^{19} 3^{1} 4^{23}\right), L_{96}\left(2^{17} 4^{23} 6^{1}\right)$,
$L_{96}\left(2^{20} 4^{19} 8^{1} 12^{1}\right), L_{96}\left(2^{28} 4^{20} 8^{1}\right), L_{96}\left(2^{21} 3^{1} 4^{20} 8^{1}\right)$,
$L_{96}\left(2^{19} 4^{20} 6^{1} 8^{1}\right), \cdots$

The normal mixed difference matrix

A new difference matrix $D(24,20 ; 4)$ can be drawn out from the orthogonal array $L_{96}\left(2^{12} 4^{20} 24^{1}\right)$ over above Abelian group $G=\{0,1,2,3\}$ which was observed by Zhang (2003).
. A normal mixed difference matrix
$\left[D(24,20 ; 4), D_{1}(12,4 ; 2) \oplus 0_{2}, D_{2}(12,4 ; 2) \oplus 0_{2}, D_{3}(12,4 ; 2) \oplus(2)\right]$
also can be drawn out from the orthogonal array $L_{96}\left(2^{12} 4^{20} 24^{1}\right)$ over above Abelian group $G=\{0,1,2,3\}$ which was observed by Pang, Zhang and Liu (2004).

Thanks !

