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Thegeneralized Kronecker roduct

Let k(x,y) be a map from ; x Qs to V, where

Q1 > Qo ={(z,y) : x € Q1,y € Qa} and Q1,Q9, V are some sets.
For tv.» matrices A — (&, )nxm With entries from €2; and

B =: (b.y)~»: Wit cntries from (25, define their generalized

1

Krcnecker product, dencted by é), as tollows
A ® B = (k(aij, buv))nsxmt = (k(aij, B))1<i<ni<i<m, (@)

k
vihere each submatrix k(a;;, B) = (k(aij, buv))sxt Of A @ B is
obtained by operating a;; to each entry of B under the map

k(x,y).
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The atomic difference matrix

If a difference matrix D(\p, m;p) exists, it can always be
constructed so that only one of its rows and one of its columns
contain the zero element of G. Deleting this column from

D(A\p, m;p), we obtain a difference matrix, denoted by
D°(\p,m — 1;p), called an atom of difference matrix D (\p, m; p) or
an atomic difference matrix. Without loss of generality, the matrix
D(A\p,m: ) can be written ac

L

0 0
D(A\p,m; p) = - = (0 D'Op,m—1;p). (2

The property is important for the following discussions.
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Thenormal Kronecker sum

If the 21,25 and V' are additive (or abelian) groups G, G5 of
order \p, p and a row-vector space of m-dimensions
resnectively, and if k(, ) is the (ip + j + 1)th row of
D°(A\p,m -- 1;p) @ p)(i.e., the usual Kronecker sum @ of the
atomic differeiice matrix D°(\p, m — 1;p) and (p) (Shrikhande

1964)), the generalizea Kronecker productg IS really denoted by
(Ap) g (p) = D°(A\p, m — 1;p) @ (p), namely normal Kronecker sum.
Such as (2) é (2) = DY(2,1;2) @ (2),

() @ (2) = D°(4,3:2) & (2), (3) © (3) = D°(3,2:3) & (3),

(6) & (3) = D°(6,5:3) & (3).
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Thearray product

There Is an orthogonal array

K k1 ko :
((3) @ 06,03 ® (6)) ® (3) = ({(3) ®06) ® (3), (03 % (6)) ® (3)), if

define K = {k1,k2} and

( 0 0 0 0 0 \
/0 ()\ 0 1 1 2 2
]{] k2 1 2 0 1 2
3) @) =1 2 [&@3), (6) 3 3)= B (3)
1 0 2 2 1
2 1) 2 1 2 1 0
\ 2 2 1 0 1 /

The array product is an essential operation of the generalized
Kronecker product for constructing asymmetrical arrays.
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Matrix Images (M)

Let /1 be an orthogonal array of strength 1, i.e.,

A=(a1,...,am) = (T1(0., & P1)),---, Tn(0r D (Pm))),

where r;p; = n,T; IS a permutation matrix forany : =1,...,m.
The jollovang nroiection matrix,

A; =Tj(Pr, @ 1,)T5 ©)

IS called the marix image (MI) of the jth column a; of A, denoted
by m(a;) = A;for j =1,...,n. In general,the Ml of a subarray
of A is defined as the sum of th2 MI’s o1 all its columns. In
particular, we denote the Ml of A by m(A).
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Basic Theorems

Let D°(A\p, m — 1;p) be an atom of difference matrix

D(Ap,m;p). Then D°(Ap,m — 1: ) & {(p) is an orthogonal

array whose Ml is less than or equal to 7, ® 7, where

Taxp = I/\p — P)\T 2i1d Tp = ]p — 1Dp.

Supesse that Ly, = [Ly, (p7"), .-, Ln, (p¥#)] and

Ly, = [Ln,(qi"), ..., Ln,(q/")] are two orthogonal arrays.
K

Then the array product of L,,, and L,,, , i.e., L, ® Ly, IS

also orthogonal array whose Ml is less than or equal to
M (L, ) @ m(Ln,).
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Basic Corollaries

(Two-factor method ) Let !, 22, Ll and 2 be

orthogonal arrays.Then (L, & 04,0, & L;, L. ® LZ)isan
orthogonal array.

(Three-factor method) Let n = prq and let

L,., L., and L, be orthogonal arrays of run sizes pr, rq and

q, respectively. If thcie exict nrincgnnal arrays LZ(;),LE) and

L,f«q) such that m(Lé,,«)),m/LLr\) <7, T anc

' K
nb/Lin)) < I © 1, thei [Lpr ® Uy, Up @ L;q’, L}ﬁ ® L] and
[Léf,«) D 0g,0p @ Ly, Lz(y,a) ® L,| are orthogonal arrays.
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Constructions of OA’'swith Run Size 72

Loo(- -4 = [L5 (- ) 3 0.0 4). L) (234) & (2
72( ) = [Lsg (- ) @ 02,018 @ (4), L3’ (2°%) ® (2)]
where m(ng)(. ), m(Lég)(Z?"l)) < 118 ® I3, such as

L7(2013'41) = [LE5) (22731) @ 02,015 @ (4), L (2%4) @ (2)]

Lua(-+-61) = [L5) @ 02,012 @ (6), L5 (2%) © (2)]where
(LS (), m(L$) (228)) < 112 ® I3, such as
L75(22%316'121) =

L5 (311121) & 05,012 & (6), L§g) (2%) & (2)

_ _ k
Lya(---121) = [L$) @ 04,06 @ (12), L) (228) ® (2)]where
(LS (), m(L) (218)) < 16 ® I, such as
L79(2183762121) = [L'-)(3762) @ 04,06 @ (12), L) (2!8) & (2)]
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Constructions of OA’swith un Size 96

Step 1. There is an orthogonal decomposition of the
projection matrix o as follows:

Tog = lo4 @ T4 + To4 @ Py =

3

Y Mi(Ps@n@Lom)M +(Len@Ps@1+124®F)), (4)
1=1

where M; = (Io ® T;) K (8,12) fori = 1,2, 3;

Ty = diag(ls ® No, No ® I3, No ® No, K(3,3) ® 1),
Ty, = diag(N2 ® I2, No ® Ny, I, ® Ny, [diag(I3, N3, N5)K(3,3)] @
Ty = diag(Ny ® Np, I ® Np, Np ® I, [diag(l3, N5, N3) K (3,3)] @

Orthogonal Arrays Obtained By Generalized Kronecker Product — p. 10/??



-
-

Constructions of OA’'swith Run Size 96

Step 2. There is an orthogonal array Ls»(234°) such that
m(L32(2°4°)) = 74 ® I ® 14,Where

L32(2°4°) = [02 @ (2) © 02 ® (2) © 02, (2) ® 03 © (2),(2) ©
(2) @ (2) @ (2) ®(2),D(8,54) & (4)],

[

D(8,5;4) =

W W NN =R = O O
S O W NN W = O
— N N = O W W O
N B O W = DN W O
S N = W W = N O

/
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Constructions of OA’swith un Size 96

Step 2. There are the following orthogonal arrays L( )(- .+)
such that m(L{: () < (I, ® 4 ® Ps ® 74 + 724 ® Py).
1. L) (45241) = [M(03 @ L32(4522)), (24) & 04] where
My = K(8, 12).
2. L§3)(2947121) = [K(8,12)(03 & (8) & (4)), L§;><29121> o
04)where Lo, (212121) = [(2) @ L4( 3) @ 03, (LS, (29121)).

3. LG (2V74%) = [K(8,12)(03 & (8) & (4)), L <2”41>@
04]WhereLyy(22041)) = [(2) @ L4(23) @03, 00 (21741)).

4. L5)(2193148) — [K(8,12)(0s @ (8) @ (4)), L$}) (2193141) &
04]WhereL24(2133141)) (2) L4 (23) D05, Lg4><2103141)].

° ° °
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Constructions of OA’swith un Size 96

Step 2.There are the following orthogonal arrays ng>(. .- )
such that m(L{: () < (I, ® 74 ® Ps ® 74 + 724 ® Py).

£)(286148) = [K(8,12)(03 @ (8) @ (4)), LS, (284161) @

04]WhereL24(2116141)) (2) @ La(23) @ 03, LS, (284161)]
and (8) ® (4) = DY%(8,7:4) ® (4) =
( 0 000 0 0 O

o 1 1 3 2 3 2

1 3 2 1 3 0 2

1 2 3 2 1 3 0 o (4)

2 2 0 3 3 1 1

2 3 1 0 1 2 3

3 1 2 2 0 1 3



Constructions of OA’swith un Size 96

Step 2.There are the following orthogonal arrays ng>(. .- )

such that m(L{: () < (I, ® 74 ® Ps ® 74 + 724 ® Py).

- L8 (211448112Y) = [L{2)(22448Y), L) (2°121) & 04]where
L24(212121) = [(2) @[04, (2)©02, 026 (2)] @05, LS’ (29121)]
and L) (224481) =
[((2)B048)0(02B(2) D06 D (2) R02)o((2)B02B(2) D0 B (2)),

((2) ®(2) ®024) 0 (04D (2) 03D (2) D 02),

((2) 02 @ (2) B 012) © (02 ® (2) & 012 B (2)),

(2) B (2) 0D (2) D (2)) ¢ (02D (2) D (2) B 06 D (2)),
((2)©(2) 2012 (2)) ¢ (02D (2) ® (2) @03 D (2) @ 02),
0y B

2D (2) P06 ®(2) D (2), 04 (2) D03 D (2) B (2)].



Constructions of OA’swith un Size 96

Step 2.There are the following orthogonal arrays ng>(. )
such that m(L{: () < (I, ® 74 ® Ps ® 74 + 724 ® Py).
L5 (2194581) = [L{Z)(22448Y), L' (21741) & 04]where
L54(2%041)) = [(2)@[04, (2) @02, 02(2)] @05, LS, (21741)].
L5 (212314581) = [L{Z)(22448Y), L) (2193141) g 0,]where
L24(2133141)) —
[(2) @ [04, (2) B 09,02 & (2)] & 03, LS, (2103141)].
L) (210456181) = L) (22448Y), L) (284161) & 04)where
Log(2M16'41)) =
[(2) & [04, (2) B 02,02 & (2)] @ 03, ng)(284161)].
The Lél)(- .- ) and Léj)(- --) due to Zhang et al (2001).
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Constructions of OA’swith un Size 96

Step 3. We lay out the new orthogonal arrays
Log(212429241) = [M7(03 ® L32(234°)), M5(03 & L32(234°)),
M3(03 @ L3o(234°)), ng>(. .-)], such as
Lo (21242924Y) = [ M7 (03 ® L32(2°4°)), M3(03 @
L3(2°4%)), M3(03 @ L32(2°4°)),
Mo(03 © L32(2°4%)), (24) @ 04].
Log(21%4%2121) = [M;(03 ® L32(234°)), M2 (03 @
32(234%)), M5(03 @ L3 (2345)), Liz)(2°47121)).
(226423) (21931423)’ L96(21742361),
(
(

-
RO

-
>

9

-

96 22041981121) L (22842081), L96(2213142081),
96 2194206181>

™~
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The normal mixed difference matrix

A new difference matrix D(24,20;4) can be drawn out from
the orthogonal array Lgg(21242°24%) over above Abelian
group G = {0, 1, 2,3} which was observed by Zhang (2003).

A normal mixed difference matrix
[D(24,20;4), D1(12,4;2)@02, D2(12, 4;2)@02, D3(12, 4; 2)®(2)]

also can be drawn out from the orthogonal array
Log(212429241) over above Abelian group G = {0,1,2, 3}
which was observed by Pang, Zhang and Liu (2004).
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Thanks!
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