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ABSTRACT: 
 
In this paper we present a new classification technique for segmenting remotely sensed images, based on cluster analysis and machine 
learning. Traditional segmentation techniques which use clustering require human interaction to fine-tune the clustering algorithm 
parameters and select good clusters. Our technique applies inductive learning techniques using C4.5 to learn the parameters and pick 
good clusters automatically. The techniques are demonstrated on level 1 of RAIL, a hierarchical road recognition system we have 
developed. 
 
 

                                                                 
* A preliminary version of this paper (Chen, 2002) was presented at ICML2002, Machine Learning in Computer Vision Workshop. 

1. INTRODUCTION 

Road detection and recognition from remotely sensed imagery is 
an important process in the acquisition and update of 
Geographical Information Systems (GIS). Recent research has 
tended towards automatic approaches such as snakes, and has 
combined additional image information like multiple scales 
(Baumgartner et al,  1999; Baumgartner et al, 2000; Laptev et al, 
2000) and image bands (Desachy et al, 1999). See (Laptev et al, 
2000) for an extensive summary of current road extraction work. 
 
In our previous papers (Teoh et al, 2000a; Teoh et al 2000b; 
Trinder et al, 1999) we described the RAIL/Recoil/KBRoad 
system, which is a semi-automatic, multi-level, adaptive and 
trainable edge-based road recognition system. RAIL is intended 
to demonstrate the use of various Artificial Intelligence 
approaches in road extraction, particularly for choosing 
parameters. These methods are relevant for most applications, 
even though we only demonstrate them on the RAIL system. 
 
Recently, we have developed a new learning technique designed 
to automatically combine different algorithms in the best way 
for a given image - inductive clustering. This uses inductive 
learning to improve the results obtained from clustering, by 
learning the optimal clustering parameters for any situation. 
 
The details of this inductive clustering method are presented in 
this paper. Section 2 gives a brief overview of RAIL, inductive 
learning and clustering. In Section 3, we introduce the framework 
that combines inductive learning with clustering, and discuss the 
experimental components of that framework. Finally, in Section 
4 we present some results from evaluating the framework. 
 

2. BACKGROUND INFORMATION 

Our research builds upon the existing RAIL system, which 
includes components for inductive learning and clustering 
algorithms, amongst other features. RAIL has been used for 
many experiments in the past, including preliminary trials of 
Artificial Intelligence techniques in road-detection; a new 
junction recognition algorithm (Teoh et al, 2000a); and as part of 
an expert system written in PROLOG (Trinder et al, 1998). 
 
RAIL works by classifying images using different techniques, 
such as inductive learning or various clustering methods 
(described below). Classification is the process of sorting image-
level features (e.g. edges) into different classes based on their 
attributes. Our classification systems are designed to arrange all 
the road edges into one class. 
 
2.1 RAIL 

RAIL is a multi-level edge-based road-extraction program, where 
straight edges are detected from a single-spectrum image using 
VISTA's implementation of the Canny operator (Pope et al, 
1994). Level 1 joins pairs of opposite edges together, whilst 
Level 2 links the edge pairs together to make road sections. 
Levels 3 and 4 relate to intersection detection and integration, 
respectively. At each level, a different classification technique 
can be applied. 
 
At level 1, the objective is to join matching edges into edge pairs, 
or road segments. A road segment can be thought of as a pair of 
edges which are part of a road, and oppose each other. The 
attributes, or properties, of such a road segment at RAIL Level 
1 are listed in Table 1. 
 



Attributes / Relations Road Property Addressed 
Average Enclosed 

Intensity inside segment 
Roads generally have high gray-

scale intensities 
Width – Average distance 

between edges 
Road widths usually fall within 

a certain range 
Difference in spatial 

direction between edges 
Roads generally appear as pairs 
of spatially parallel boundaries 

Difference in gradient 
direction between edges 

Road boundaries have opposite 
gradient directions 

Intensity difference 
(between inside and 
outside the segment) 

Road appears brighter than its 
surroundings 

 
Table 1. Description of Road Segment Attributes 

 
Initial tests on our sample data set using cluster analysis 
revealed that the last three attributes do not usefully distinguish 
between different road segments. Since these attributes were 
ineffective, they were not used in clustering. 
 
2.2 Inductive Learning 

Inductive learning is the process of generating a decision tree by 
having the computer "learn" rules, based on pre-classified 
examples provided to it. The resulting decision tree can then be 
used to classify new examples. One example application of an 
inductive learner to road recognition is to calculate thresholds, 
used for selecting edges that match road-sides. Traditionally 
these thresholds would be determined by human experts, but 
inductive learning can provide a more customized and locally 
applicable result. 
 
2.3 Clustering 

Clustering is the process of automatically grouping a given set of 
data into separate clusters such that data points with similar 
characteristics will belong to the same cluster. While there are 
many different algorithms for clustering, in this paper we focus 
on the KMeans and kNN algorithms. Here we describe these 
algorithms briefly (see Weiss et al, 1991 for further details). 
 
The clustering data set in RAIL is made up of points described 
by level 1 attributes, where each point represents an edge pair. 
This data set is to be segmented into n clusters. Each cluster 
centre is initialized with a random point from the data set, and 
each remaining point is then grouped into the closest cluster, one 
at a time. 
 
KMeans measures the distance between the point and the centre 
of every cluster, eventually placing the point in the closest 
cluster. After all the data points are clustered, the centre is re-
evaluated for each cluster, then the data points are clustered 
again iteratively. The kNN algorithm differs in that, when 
grouping the data points, it looks at the k nearest neighbours 
(i.e. the closest points from existing clusters), and the data point 
is placed in the cluster containing the most neighbours. We also 
used the modification suggested by (Barandela et al, 2001) to 
improve kNN’s performance. 

Once the clusters have been formed, clusters of interest are 
identified by visual inspection.  In road extraction, clustering can 
be used, for example, to create a group of edges (or other image-
level objects) that have similar shape, intensity, and so on, and 
hence form part of a road. 
 
A large number of experiments need to be run with different 
parameters in order to find the setting that produces the best 
result for a given problem. This whole clustering process 
requires a lot of hand tuning, to find a suitable algorithm, select 
the associated parameters, and finally pick out the useful 
clusters. In this paper we will suggest ways to automate this 
laborious process by applying inductive learning techniques to 
each of these stages 
 

3. INDUCTIVE CLUSTERING 

Our inductive clustering framework has been designed to learn 
from cluster descriptions what constitutes a good road cluster, 
and apply the learned knowledge to perform clustering 
automatically. The ultimate goal is to allow the system to take a 
new image and deduce, from the characteristics of the image, the 
optimal algorithm and parameters to use. It will then 
automatically identify the road cluster for the user.  
 
This framework uses a multi-level learning strategy to tackle the 
process systematically at the following three stages (Figure 2):  
 

 
 

Figure 2. Inductive Clustering Framework Overview 
 
Parameter Learning: Learn the parameters that will give the 
best result for a given algorithm and image type. Parameters 
include n (the number of clusters) and k, in kNN clustering. 
 
Algorithm Learning: Learn which algorithm is most suitable 
for a given image type. The previous stage determines the 
parameters to use for each algorithm. 
 
Cluster Learning: We then learn to identify the road clusters 
by comparing their characteristics to known road and non-road 
clusters. 
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Inductive learning methods are used to derive rules at each level. 
These rules are combined at the end to allow a single step 
clustering process for extracting road clusters. We currently use 
the attribute-value learning program C4.5 (Quinlan, 1996) for 
the inductive learning process. 
 
To train our system we have to run a large number of 
experiments for each level. In order to automate each of these 
experiments we used a reference model for each data set, so that 
the evaluation of the results could be done automatically for 
each experiment.  
 
Since we used edge-based recognition algorithms, we were able 
to store the goal state as a simple set of edges. This reference 
model (or set) of edges was chosen by an experienced human 
operator. The quality of a cluster could then be measured by 
comparing the number of reference edges that have been chosen 
correctly. When compared with our old method of visually 
inspecting the image, this provides an objective (i.e. observer-
independent) and quantifiable measure of the result. 
 
However there are still problems with this reference model 
system. The model deals with different objects than those 
created by the levels of RAIL, which leads to false positives. 
Moreover, this reference format models what the computer 
detects, not what is actually there in the real world. In 
consequence, our stated accuracies are mildly optimistic, at the 
least. A more suitable reference model would involve storing the 
actual shape of the road (e.g. its centerline and width). However, 
we have not yet implemented such a model. 
 
The measures we use to quantify our results are taken from 
(Harvey, 1999). They are percentage values, given by:  
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where  TP = Number of True Positive’s 
 size = Number of edges in that image. 
 
High completeness means that the cluster has covered the road 
edges well, whereas high correctness implies that the cluster 
does not contain many (incorrect) non-road edges. There is 
usually a trade off between the two measures, since a complete 
cluster is more likely to contain spurious non-road edges, and 
hence be less correct. 
 
It is computationally easier if there is only one criterion to 
distinguish between clusters. At Level 1 of RAIL, completeness 
is more important than correctness since we do not want to 
remove any information at this lower level. Hence our weighted 
filtering criterion is: 

 correctcompletecxc ×= 3  (2) 

 
 
Clearly, this measure is biased towards completeness. We also 
used a threshold to ensure that the cluster reached a minimum 
stage of completeness. These two tests can be expressed 
together as:  
 
 
 %80≥complete and 61095 ×≥cxc  (3) 

 
 
The thresholds in Equation (3) are based upon empirical 
observations.  
 
3.1 Parameter Learning 

In the parameter learning stage we want to deduce rules for the 
value of n (the number of clusters) to use on a given algorithm 
and image.  
 

Name Description Value 
Size Number of edge pairs. Continuous 

Algorithm Clustering algorithm used. KMeans, 
kNN 

n Number of clusters. [2, 30) 
Classes Whether attributes produce a 

good road cluster. 
Good, Bad 

 
Table 3. Parameter Learning Attributes 

 

 
 

Figure 4. Parameter Learning Experimental Design 
 
The attributes that we use to learn clustering parameters are 
described in Table 3. This includes image characteristics, along 
with the clustering parameters we need to determine. Each set of 
attributes is classified as either “Good” or “Bad”. We then 
classify each setting as capable of generating good or bad road 
clusters by evaluating the best cluster produced against Eq (3).  
 
There are two phases in the parameter learning process, as 
shown in Figure 4. In the training phase, Level 1 RAIL 
attributes of the given image are calculated and used to cluster 
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with different parameters. The clusters generated are evaluated 
against the reference model to determine which ones are "Good". 
The inductive learner is then used to generate rules for choosing 
n in other, unseen, images. 
 
The purpose of the Testing/Application phase is obvious: we 
simply apply the generated rules on a new image to obtain the 
values of n to use for a given algorithm on that image. 
 
3.2 Algorithm Learning 

The purpose of algorithm learning is to learn which algorithm to 
use for a given image. The learning attributes here are image 
characteristics, and also the algorithm used (see Table 5). For 
each algorithm, the optimal n deduced from parameter learning 
was used. The algorithm that gives the best result on an image is 
classified as “Good”, with the others being labeled “Bad”. 
 

Name Description Value 
Size Number of edge pairs. Continuous 

Algorithm Clustering algorithm used. KMeans, 
kNN 

Classes Whether the algorithm 
produced a good road cluster. 

Good, Bad 

 
Table 5. Algorithm Learning Attributes 

 

 
 

Figure 6. Algorithm Learning Experimental Design 
 
Algorithm learning has two phases of inductive learning, as 
shown in Figure 6. The details of algorithm learning are similar 
to those of parameter learning.  First, level 1 RAIL attributes of 
the given image were calculated and used to cluster with 
different algorithms. The clusters generated were evaluated 
against the reference model, and the algorithm producing the best 
road cluster was classified as “Good”, with the other algorithm 
being labelled as “Bad”. The learning attributes (see Table 5) 
together with the classification of each run were used to generate 
a decision tree for application on new images. 
 

3.3 Cluster Learning 

In cluster learning we want to deduce rules for identifying the 
road cluster of each clustering experiment. The learning 
attributes we have identified in Table 7 are cluster characteristics 
and image characteristics. We can classify each cluster as 
“Good” or “Bad” by evaluating it against the reference model.  
 

Name Description Value 
Size Number of edge pairs Continuous 

Aspect 
ratio maxmax HeightWidth  Continuous 

Area maxmax HeightWidth ×  Continuous 

Centroid centre of the cluster. Continuous 

Classes 
Whether the cluster contains 

road edges. 
Good, Bad 

 
Table 7. Cluster Learning Attributes 

 
Clustering experiments with different algorithms and parameters 
were run. All the clusters generated were evaluated against the 
reference model and classified based on the evaluation. The 
learning attributes from Table 7 together with the classification 
of each run were used in the inductive learner. This process is 
shown in Figure 8. 
 

 
 

Figure 8. Cluster Learning Experimental Design 
 

4. RESULTS 

The inductive clustering framework was initially tested on two 
digital aerial images of a suburban area of France. These images 
have a ground resolution of 0.45m/pixel. One image contains 
1956 edges (Figure 9), and the other contains 6481 edges (Figure 
10). 
 
Since two images are not enough to learn from and test on, we 
divided these images into 5 sub-images, giving us 10 sets of edge 
pairs to experiment on. This subdivision was implemented by 
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forming all possible edge pairs in an image, and calculating the 
RAIL level 1 attributes for those edge pairs. The resultant 
attributes were randomly split into 5 subsets, which were 
treated as independent sets for the purpose of testing. 
 

 
 

Figure 9: Image A 
 

 
 

Figure 10: Image B 
 
Clustering experiments were then run on each subset. Unbiased 
error rates were calculated using 5 fold cross validation (Weiss et 
al, 1991) for each stage of the framework. 
 
4.1 Rules 

The results of inductive clustering are presented in the form of 
rules. These rules can be applied to new data in order to 
determine how to classify it. In this section we present a 
summary of the rules generated by inductive clustering on our 
two images. Note that the inductive clustering framework can be 
adapted to different applications and all sorts of images. 
However, the rules shown below should only be applied to 
images with similar characteristics (e.g. resolution, complexity, 
etc.) to the ones we have used. 
 
Each rule identifies a partition of data via its learning attributes 
and gives a classification for that partition. The percentage after 
the classification indicates the accuracy of this rule when it is 
applied to the training data (note that this accuracy measure is 

optimistically biased). A proper evaluation of the accuracy of 
these rules is given in Section 4.2. 
 
4.1.1 Parameter Learning* 
 
Rule 16: 
     size > 7023 
     size <= 7057 
     algorithm = kmeans 
     n > 10 
 ->  class good  [70.7%] 
Rule 6: 
     size > 1804 
     size <= 1806 
     n > 6 
 ->  class good  [70.2%] 
... etc. ... 
Rule 2: 
     n <= 5 
 ->  class bad  [95.1%] 
      
 
Default class: bad 
 
Summary: For small images use between 5 and 7 clusters. Use 
more than 8 clusters and KMeans for larger images. 
 
4.1.2 Algorithm Learning 
 
Rule 1: 
     algorithm = knn 
 ->  class good  [68.7%] 
Rule 2: 
     algorithm = kmeans 
 ->  class bad  [68.7%] 
 
Default class: good 
 
Summary: kNN generally produces better results than KMeans. 
 
4.1.3 Cluster Learning 
 
Rule 4: 
     size > 8919 
     enclosed_intensity > 142.342 
     area > 1961.34 
 ->  class good  [80.9%] 
Rule 5: 
     aspect_ratio > 1.43097 
 ->  class bad  [99.8%] 
Rule 1: 
     area <= 1961.34 
 ->  class bad  [99.7%] 
Rule 3: 
     enclosed_intensity <= 142.342 
 ->  class bad  [99.0%] 
 
Default class: bad 
 

                                                                 
* To make the results clearer, some rules in the parameter 

learning section have been omitted.  



Summary: Road clusters have an enclosed intensity (measured in 
the range [0, 255]) greater than 142 and area (see Table 7) greater 
than 1961. 
 
4.2 Evaluation 

Table 11 shows the evaluation of the rules presented in the last 
section. We performed 5-fold cross validation on our data, in 
order to determine unbiased error rates. This process involves 
randomly dividing the data into 5 partitions of approximately 
equal sizes. Leaving out one partition at a time, the remaining 
data is used to generate a decision tree, which is tested on the 5th 
partition. Given some assumptions, the average of the 5 error 
rates is then the error rate for the decision tree. This produces an 
unbiased measure. 
 

Learning Param. Algo. Cluster 
Data Size 521 52 4945 

Fold 1 96.8 % 70 % 99.5 % 
Fold 2 91.2 % 88.9 % 98.9 % 
Fold 3 94.1 % 75 % 99.6 % 
Fold 4 95.1 % 90 % 98.9 % 
Fold 5 93.6 % 63.3 % 98.9 % 

Avg Accuracy Rate 94.1 % 77.4% 99.2 % 
 

Table 11. 5-Fold Cross-Validation Results 
 

5. CONCLUSION AND FUTURE WORK 

In this paper we have introduced a way of automating clustering 
for road classification using inductive learning techniques. We 
have implemented and tested this concept on our RAIL system, 
and preliminary results are encouraging. 
 
In the future we hope to improve the accuracy of our testing. 
One avenue for doing this is to develop a better reference model, 
addressing the inherent shortcomings of our current edge based 
one. We plan to train our system using a larger set of images in 
order to generate better rules. The evaluation measures used (cxc 
and complete) are handpicked and their thresholds set 
empirically. Automation of this process is a future goal. We also 
plan to extend this clustering framework to other levels of 
RAIL. 
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