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ABSTRACT:

We present a set of algorithms that recovers detailed building surface structures from multiple images taken under normal urban conditions,
where severe occlusions and lighting variations occur and are difficult to be modeled effectively. An iterative weighted-average algorithm is
designed to recover high-quality consensus texture of the wall facades. A generic algorithm is developed to extract the 2D microstructures.
Depth is estimated and combined with 2D structures to obtain 3D structures, facilitating urban site model refinement and visualization.

1 INTRODUCTION

Extracting and rendering detailed 3D urban environments is an im-
portant problem in computer vision and computer graphics because
of its numerous applications. The main bottleneck of this problem
lies in the need for human intervention in current systems, prevent-
ing them from being scalable to large datasets (Teller, 1998). A
large body of research has been made for automating some of the
processes, including reconstruction of coarse 3D geometric mod-
els, mainly at the level of buildings (Collins et al., 1998; Coorg and
Teller, 1999; Firschein and Strat, 1996). Detailed analysis of facade
texture and substructures has been very limited (Mayer, 1999).

Real-world texture and detailed structure are important because they
provide high visual realism as well as cultural and functional infor-
mation of the urban site. However, it becomes increasingly difficult
when the information of concern is detailed to the degree of microc-
structure (surface structures such as windows that possess few sup-
porting pixels due to insufficient image resolution). Figure 1(a2, b2,
c2, d) shows some sample (rectified) images of a real-world building
facade captured from different viewpoints. Large portions of useful
texture are either occluded by other objects or degraded due to sig-
nificant lighting variations. Some occlusions are caused by regular
structures, such as other buildings, which could be modeled using ex-
isting techniques; some others are caused by irregular objects, such
as trees, which are very difficult to be modeled effectively.

In summary, a detailed analysis of such images poses a difficult prob-
lem due to various factors that affect image quality, including (1)
varying resolution due to perspective effects, (2) noise introduction
during acquisition, (3) non-uniform illumination caused by lighting
variations and complex environmental settings, (4) occlusions caused
by modeled objects, such as other buildings, (5) occlusions caused by
unmodeled objects, such as trees, utility poles, and cars. A system
must be capable of dealing with all these coexisting factors in order
to facilitate a detailed analysis. In addition, interactive methods are
not preferable because of the large number of pixels and structures
present in many situations (e.g. more than a thousand windows for
four or five buildings).

We develop an automated method for effectively recovering high-
quality facade texture and its microstructure pattern from multiple
images. Input to our method is a set of images annotated with camera
intrinsic parameters and reasonably accurate (but not exact) camera
pose, as well as a coarse geometric model, mainly the facade planes
of buildings in the urban site.

The information required as input to our method is available using
existing techniques developed in the City Scanning Project (Teller,
1998). Image acquisition is performed by a semi-autonomous robot
(Bosse et al, 2000), which is a movable platform mounted with a dif-
ferential GPS sensor, a relative motion sensor, and a rotative CCD
camera. The robot acquires thousands of images from different lo-
cations (called nodes) on the ground surface, annotating the images
with metadata such as time and pose estimation. Spatial positions of
the nodes are refined using feature correspondences across images
(Antone and Teller, 2000). A set of facades, each corresponding to a
wall surface of a building, is then extracted from the original images
using a priori constraints (such as vertical surfaces and horizontal
lines) to establish the geometric model of the urban site (Collins et
al., 1998; Coorg and Teller 1999).

Section 2 describes an iterative, weighted-average approach to high-
quality facade texture recovery. Sections 3 and 4 introduce 2-D and
3-D methods for microstructure extraction. Section 5 concludes the
paper with discussions.

2 TEXTURE RECOVERY

Facade texture recovery is itself an important task for computer
graphics applications; it is even more important when microstruc-
ture is of concern, because a high-fidelity texture representation is
key to the success of detailed image analysis. Multi-view methods
have been proposed for texture fusion/recovery, such as interpola-
tion methods (Debevec et al., 1996), reflectance models (Sato et al.,
1997), and inpainting techniques (Bertalmio et al., 2000). The main
drawback of these methods is that they do not handle occlusions au-
tomatically. A system introduced by (Wang and Hanson, 2001) is
capable of determining occlusions caused by regular, modeled struc-
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Figure 1: Texture recovery. (a) environment mask [a1: camera position, a2: LNF image, a3: mask]; (b) obliqueness mask [b1: camera position, b2: LNF
image, b3: mask]; (c) correlation mask [c1: a version of CTF image, c2: LNF image, c3: mask]; (d) sample original facade images of this wall; (e) initial CTF
image without deblurring; (f) CTF image after iterative deblurring.

tures, but not unmodeled ones. A median-based technique developed
by (Coorg and Teller, 1999) repairs unmodeled occlusions; however,
the method may cause blurred or disrupted boundaries of structures.

We describe a new method to obtain a realistic facade texture map,
removing occlusions and effects of illumination variations. This
method takes as input a coarse geometric model of buildings and a set
of images taken from nodes at different locations and associated with
reasonably accurate, but not exact, camera pose information. We as-
sume that the light source for the urban images are normal sunlight
(i.e. nearly white) and thus only the luminance in the color space is
considered in this paper. We also assume that the building facades
are close to the Lambertian surface model (Foley et al., 1990).

As a preprocessing step, the input images are rectified into facade
images, i.e. images under orthographic projection of a facade. This
happens only to a subset of the input images in which the facade
is (at least partially) visible. For each image, the facade visibility
and rectification is calculated based on the camera geometry at the
node where the image is taken. Figure 1(d) shows some sample fa-
cade images in our experiments. To facilitate texture fusion for re-
moving degradation effects (e.g. occlusions), the facade images are
normalized by linear gray-level stretching; the resulting luminance-
normalized facade images (or LNF images) have the same average
luminance and thus are comparable to one another.

2.1 Weighted Averaging

The core of our method is a weighted-average algorithm that gen-
erates a consensus texture facade image (or CTF image) for each
facade. The luminance value of pixel [i, j] in the CTF image of a
facade is a weighted average of all LNF images of that facade:

YCTF[i, j] =
∑

τ

Y τ
LNF[i, j] ∗ wτ [i, j], (1)

∑

τ

wτ [i, j] = 1, (2)

in which Y τ
LNF is LNF image τ , YCTF is the fused CTF image, and

wτ is the weight factor determined by three masks described below.
A mask is an image whose pixel value indicates the relative impor-
tance of the corresponding pixel in the LNF image. The three masks
measure three different physical attributes.

Environment Mask is a binary mask that specifies whether a pixel is
occluded by a modeled object (Figure 1(a)). It is computed using the
camera geometry and the 3D coarse model: Mτ

E [i, j] is set to 0 if
pixel [i, j] is occluded; otherwise, it is set to 1.

Obliqueness Mask is a grey-scale mask that represents the oblique-
ness of a facade as seen from the camera (Figure 1(b)), also computed
from the geometry:

Mτ
O[i, j] = cos θτ (i, j), (3)

in which θτ (i, j) is the camera viewing angle at [i, j] on the facade
measured from the normal of the facade.

Correlation Mask is a grey-scale mask intended to deweight the ef-
fects of unmodeled occlusions and local illumination variations. To
compute this mask, an initial CTF image is needed, and the mask is
calculated using a standard linear correlation between the LNF image
and the initial CTF image (Figure 1(c)):

Mτ
C [i, j] =

Covi,j [Y
τ

LNF, YCTF]

Vari,j [Y τ
LNF]Vari,j [YCTF]

, (4)

in which Covi,j and Vari,j are based in an image window, centered
at [i, j], of a predetermined size (8 × 8 in our experiments). In prac-
tice, the weighted-average algorithm is carried out iteratively (Sec-
tion 2.2), and in each iteration a new CTF image is used to calculate
Mτ

C. The initial CTF image is obtained by the first iteration, in which
only Mτ

E and Mτ
O are used.



Once the three masks are determined for each LNF image of a facade,
the weight wτ at pixel [i, j] of LNF image τ is computed by:

W τ [i, j] = Mτ
E [i, j]Mτ

O[i, j]Mτ
C [i, j], (5)

wτ [i, j] =
W τ [i, j]∑
τ

W τ [i, j]
. (6)

2.2 Iterative Deblurring

The CTF image thus obtained may look blurred (Figure 1(e)) because
the LNF images may not be perfectly registered due to errors in cam-
era parameters. (Note that our algorithm do not require precise input
camera parameters; that is, any two versions of LNF images may not
align accurately to each other.) A deblurring process is used that re-
warps the source LNF images to align with the CTF image, similar
to that of (Szeliski, 1996):

[ u, v, 1 ]T ∼= P [ u′, v′, 1 ]T , (7)

which warps pixel [u′, v′] to [u, v] using P . Our goal is to find a warp
P that best registers the two images. We use the following constraint
functions in our method:

ECTF =
∑

u,v

[e(u, v)]2, (8)

[e(u, v)]2 = W τ [u′, v′](YCTF[u, v] − Y τ
LNF[u

′, v′])2. (9)

Note that the overall weight mask W τ is used, reflecting the de-
gree of confidence we have for each pixel of Y τ

LNF. The Levenberg-
Marquardt algorithm (Press et al., 1992) is employed to solve the
constrained minimization problem. It is an iterative process (starting
from the identity matrix); in each iteration, P is incremented by

∆p = −(H + λI)−1g, (10)

where

g =
∑

u,v

e(u, v) [ ∂e(u, v)/∂p ], (11)

H =
∑

u,v

[ ∂e(u, v)/∂p ][ ∂e(u, v)/∂p ]T , (12)

in which p is a 8 × 1 vector representation of P (note only 8 param-
eters are needed to describe P ), and λ is a parameter reduced to 0 as
the procedure converges. After a new P is calculated, the LNF im-
ages are rewarped and the weighted-average algorithm (Section 2.1)
is rerun using the rewarped LNF images to compute for a new CTF
image. Figure 1(f) shows such a CTF image with deblurring.

The deblurring process is also executed in an recursive manner. Re-
call that the correlation mask MC is dependent on an initial CTF im-
age. After deblurring, the new CTF image is used to compute a more
accurate MC, which then again updates the CTF image and triggers
another round of deblurring. The convergence of the recursion is en-
sured by stopping when the difference between two successive CTF
images is sufficiently small.

2.3 Experiments

Experiments were carried out to test the consensus texture generation
algorithm against an image dataset acquired at Technology Square,
an office park of four buildings located on the MIT campus. About
4,000 images were captured using the movable platform (Section 1)

Figure 2: CTF textured model.

at 81 nodes in this site. At each node, 47 images were acquired with
distinct rotations. LNF images were extracted for each facade.

Figure 1(f) shows the CTF result of the iterative weighted-average
algorithm on a facade, for which 28 LNF images were extracted from
the database and used to generate the CTF image. Most occlusions
caused by modeled/unmodeled objects were satisfactorily removed;
the luminance is also reasonably consistent across the entire CTF
image. Figure 2 shows a perspective view of the resulting textured
model of this site.

Our experiments also show that only about a dozen original facade
images, with quality shown in Figure 1(d), are needed for texture re-
covery with a satisfactory result. In addition, the iterative deblurring
is a very stable process; only a couple of iterations are necessary to
reach the image quality as shown in Figure 1(f), under the condition
of up to 5-pixel mis-alignment of LNF images due to input camera
pose error. Therefore, the halting of the iterations can be simplified
as to a certain number of iterations, instead of complex criteria.

3 MICROSTRUCTURE DETECTION

In the area of urban site reconstruction, a large body of research
has been focusing on methods of establishing geometric models for
large-scale structures, especially buildings, whose structural features
(corners, edges, etc.) typically possess sufficient image cues to sup-
port direct and reliable 3D reconstruction from the images (Firschein
and Strat, 1996; Mayer, 1999). In this paper, we emphasize the im-
portance of microstructures because they provide rich information of
the buildings and result in added realism for visualization.

Two pieces of evidence are used for microstructure extraction: the
relative 3D depth of the structures and their 2D appearances. The
relative depth of a surface microstructure is typically very small (see
Section 4). Thus directly extracting these structures from noisy 3D
depth data may be beyond the state-of-the-art of current computer
vision algorithms without a priori knowledge. In this section, we use
a 2D-based strategy to detect the locations of microstructures in the
CTF images generated in Section 2.

The CTF images provide a good texture representation of the facade,
free from effects of occlusions and local illumination variations if
enough views are provided. However, symbolic extraction of win-
dows is still difficult due to the existence of noise. One type of noise
is the global illumination variation on the facade. It happens in Fig-
ure 2 that the lower part of the walls is universally darker than their
upper part (sometimes even darker than upper windows). This is
because lower parts of buildings typically receive less sunlight than
upper parts in a densely urbanized area. The pixel-based weighted-
average algorithm is unable to remove global illumination variations,
because the lower part is darker on the majority of LNF images. A
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Figure 3: Oriented region growing (ORG). (a) one iteration of region grow-
ing; (b) determining the location of the grown boundary.

global thresholding algorithm is not useful for detecting microstruc-
tures in such images.

3.1 Oriented Region Growing (ORG)

We apply an oriented region growing (ORG) algorithm to the CTF
images for window structure extraction (Wang and Hanson, 2001).
This algorithm detects a generic class of objects that exhibit a regular
size, pattern, and orientation. One of its major advantages is that it
deals with global illumination variations and other types of noise. It
requires that a window be on average darker than the wall locally but
not necessarily globally.

In the current system, the symbolic microstructures are represented
as a set of disjoint 2-D rectangles, each having two vertical and two
horizontal edges. A large number of windows in urban areas fit well
into this representation. Window extraction is performed on the CTF
images, on which windows appear as dark, rectangular blobs on the
brighter wall surface.

Details of the ORG algorithm are shown in Figure 3(a) in the facade
image space. It runs iteratively, starting from a smaller rectangle
(called a seed) and growing outward into a larger one that best fits
the window blob. The growing processes are performed only in the
two vertical and horizontal directions. In each direction, a search
strip, e.g. s in 3(a), is established based on the seed. A zero second-
order derivative criterion, shown in 3(b), is applied to the intensity
profile, h(s), of the strip for determining the grown boundary. A
new rectangle is fit to the four boundaries, found in the four strips, to
form a larger rectangle, which is then treated as a new seed to initiate
another iteration of oriented growing. The iteration halts when the
region ceases to grow; the resulting rectangular region is taken as a
window candidate.

The ORG module requires only two user-provided parameters, the
lower and upper bounds of window size. It attempts to find all win-
dows of any size between the two bounds.

3.2 Periodic Pattern Fixing (PPF)

The ORG algorithm is a purely bottom-up process and may result in
missing candidates due to image noise. A top-down module (Fig-
ure 4) is designed to fix the missing candidates by applying a high-
level constraint about the microstructure pattern. This constraint
states that microstructures of similar size have a periodic pattern in
horizontal and vertical directions on the facade. Based on this con-
straint, a periodic pattern fixing (PPF) module is designed for re-
pairing periodic microstructure patterns. Structures of similar size
are grouped together; the horizontal and vertical periods of a mi-
crostructure group are then found using clustering algorithms based
on their neighboring distances. Missing candidates are then hypoth-
esized using interpolation or extrapolation.

In reality, the periodic pattern constraint may not always be strictly

find a 
pattern
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a line−pattern

find a period
and complete
the line−pattern

fill in 
the gaps

initial windows

remove overlapping
windows in initial
windows

loop until
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Figure 4: Periodic pattern fixing (PPF).

satisfied on all buildings. To ensure that missing candidate hypothe-
ses are only filled in for windows that exist, a “bottom-up verifica-
tion” test is used to verify their existence in the LNF images before
interpolation/extrapolation. On each LNF image, a vertical and hori-
zontal edge detection algorithm is performed at locations of missing
candidates (if they are visible). A missing candidate is accepted for
filling in only if there are sufficiently many LNF images that support
the hypothesis.

3.3 Experiments

Ten facade images, representing the major buildings in Technology
Square, were used to test the symbolic window extraction algorithm.
Figure 5(a) shows a CTF image (512 × 256), where there are two
types of windows on the facade: twenty small ones aligned on the top
floor and 192 windows in a matrix pattern. The image is noisy: the
lower part of the facade has significantly less luminance and contrast
than the upper part; windows have different local background condi-
tions and different degrees of blurriness on their edges. In addition,
there are structures on the bottom floor with irregular reflectance.

In the experiments, the lower/upper bounds of window size are set
to 3 and 100 pixels, respectively, for both height and width. Fig-
ure 5(b) shows the results of the ORG algorithm. The majority of
the windows are extracted correctly; some windows are missing due
mainly to extremely low contrast in the CTF image; there are some
false extractions caused by the irregular reflectance on the bottom
floor. Figure 5(c) shows the PPF results, in which missing windows
are correctly filled in and irregular structures are properly removed.

Table 1 lists the extraction results in the experiments. Among the
1146 windows on the ten facades, 1119 of them have been extracted
correctly. Only 27 are missing, accounting for 2.4% of the actual
windows. Among the 1133 extracted structures, about 98.8% are
correct windows and only 1.2% (14 extracted structures) are false
positives. An examination of the images shows that the missing win-
dows are mainly caused by low contrast of the windows and their
blurred edges. The false positives are mostly due to the complex in-
tensity patterns caused by rectangular structures on the wall surfaces
that look like windows but are not.

The PPF module is based on the assumption that the windows pos-
sess a periodic pattern. This strong assumption did not cause signif-
icant false positives because of the bottom-up verification process.
However, it is worth noting that PPF is an optional module highly
dependent on a priori knowledge of the domain, scene, and/or spe-
cific object. For urban sites where windows do not show periodic
patterns on buildings, this option may not be used.
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Figure 5: Symbolic window extraction. (a) CTF image; (b) results of ORG;
(c) results of PPF.

4 DEPTH ESTIMATION

The goal of depth estimation is to recover the relative depth of mi-
crostructures on the facade surfaces. Accurate depth recovery from
images is very difficult in the context of the City Scanning Project,
mainly due to the small ratio of the depth of microstructures (on the
order of centimeters) to the camera-to-wall distance (on the order of
tens of meters).

Stereo analysis (Faugeras, 1993) is widely used to recover depth
from multiple images. There are some shortcomings in the pure
form of stereo analysis when applied to the problem of urban site mi-
crostructure extraction. First, the analysis (e.g. epipolar matching)
typically takes place on two images whereas many more facade im-
ages are available in our application. Second, geometric constraints
(such as that microstructures are shallow structures on a largely pla-
nar surface) is not easily incorporated into stereo processes. Third,
other knowledge, such as that of occlusions (both modeled and un-
modeled) is not readily applicable in stereo analysis.

Fua and Leclerc developed a method that generates a 3D mesh to rep-
resent the 3D structures on a surface (Fua and Leclerc, 1994). This
approach has a number of advantages over the pure form of stereo
analysis. It is correlation-based and makes use of any number of im-
ages. It uses a minimization function in which geometric constraints
can be added. In particular, the minimization process starts from a
plane, addressing the planar constraint of the facades.

In this section, surface microstructures are recovered using a hy-
brid method that combines the 2D information obtained in Section 3
and the 3D information obtained using a revised version of Fua and
Leclerc’s method.

Facade Actual Extracted Correct False neg. False pos.
7 301 303 300 1 3
17 18 17 17 1
18 54 54 54
19 18 11 6 12 5
24 192 192 192
25 82 72 72 10
26 212 211 211 1
27 72 72 72
44 144 150 144 6
45 53 51 51 2
Total 1146 1133 1119 27 14

Table 1: Window extraction results

4.1 3D Mesh Generation

The facade surface S is represented by a mesh, which is a hexag-
onally connected set of vertices organized into triangular elements
called facets. The algorithm starts with a planar surface and deforms
it by iteratively minimizing objective function E(S):

E(S) = λDED(S) + λSES(S) + λGEG(S), (13)

λD + λS + λG = 1, (14)

in which ED is a planar surface constraint that controls the amount
the surface is allowed to deviate from a plane, ES(S) is a correlation-
based stereo constraint attempting to minimize the appearance differ-
ences of each facet of the mesh across all the images, and EG(S) is
a geometric constraint. Details for these components and the mini-
mization scheme can be found elsewhere (Fua and Leclerc, 1994).

In order to take advantage of knowledge obtained in Section 2, we
modified Fua and Leclerc’s algorithm by excluding occlusions from
stereo computation in ES. We define an occlusion-removed facade
image (or ORF image) by

Y τ
ORF[i, j] = Y τ

LNF[i, j]Mτ
E Mτ

C’,

where Mτ
E is the environment mask that represents the modeled oc-

clusion, and Mτ
C’ is a binary version of the correlation mask Mτ

C that
represents the unmodeled occlusion. Thus we use Y τ

ORF rather than
Y τ

LNF to calculate ES, using only unoccluded pixels and focusing on
the visible parts of each facade.

We applied the 3D mesh generation algorithm to all the major fa-
cades in our dataset. In the experiments, we set λD = 0.1, λS = 0.9,
and λG = 0; that is, the geometric constraint EG(S) was not imple-
mented. Figure 6 shows the depth estimation on one of the facades.
These results are noisy, but the general pattern of windows is evident.

4.2 2D/3D Combination

Figure 6 shows that an accurate shape recovery of 3D microstruc-
tures is nearly impossible from depth estimates alone, because the
depth results are very noisy. For a higher-quality reconstruction, we
assume that the facade surface structures can be approximated by
two depth layers only: the wall layer and the window layer. This
assumption is reasonable for normal walls. Non-flat portions on a
wall are normally connections between windows and the wall; these
detailed structures are beyond the scope of our current discussion.

With this assumption, we use the 2D rectangles extracted in Section 3
to represent the shape of the 3D microstructures, and use the average
depth inside the rectangles to represent the depth of the structures.
Figure 7 demonstrates an example of 2D/3D combination results. It
shows that the 3D structures are well represented by combining the
2D symbolic representation and the 3D depth information.



Figure 6: Facade depth estimation.

5 DISCUSSION

We described a suite of algorithms for detailed urban environment
extraction, including texture recovery, microstructure detection, and
depth estimation. An iterative, weighted-average algorithm is ca-
pable of recovering a consensus texture map, nearly free from oc-
clusions (modeled and unmodeled) and local illumination variations.
2D microstructures are extracted using an algorithm that combines
bottom-up and top-down strategies. Finally, the relative depth of 3D
microstructures are estimated, facilitating a combination of 2D and
3D information for a complete representation of surface microstruc-
tures. Combining with previous techniques, these algorithms are ca-
pable of producing realistic, detailed, and texture-mapped 3D models
of urban environments from large sets of real-world images.

The proposed algorithms are effective for solving a generic set of ur-
ban environment extraction and refinement problems, in which the
wall surfaces are largely planar and the microstructures are mainly
rectangular. Many buildings in urban environments satisfy these con-
straints. In addition, practicality is one of the design emphases of the
algorithms. For example, significant efforts have been invested in
the algorithms to deal with inaccuracy and uncertainty of the input
data. The texture deblurring process allows the algorithm to toler-
ate camera pose error that often arises in real applications. The 2D
microstructure module is adapted to extract structures of any size,
requiring from the user only the upper/lower bounds of the structure
size and needing no interactive parameter adjustment.

There are several directions in which the algorithms can be extended
to solve more general problems. First, the extracted 2D microstruc-
tures can provide partial geometric constraints in EG(S) for depth
estimation. How to improve the depth estimation by incorporating
the partial constraints is a topic for future study.

Second, the architecture of iterative texture recovery invites more
information to be utilized for better results. For example, once the
depth of the 3D microstructures are determined, occlusions caused
by these structures on the facade can be computed for each LNF
image. Therefore, the texture recovery algorithm can be rerun to take
into account this additional information (excluding these occlusions
from the CTF computation).

Third, the ORG algorithm is designed to extract a generic class of ob-
jects. Although a large variety of surface microstructures fit into this
class, it has two major limitations: the shape of each microstructure
is approximated by a rectangle, and the luminance of the microstruc-
ture must be relatively uniform. For more special problems, special
object detection modules should be used as a successor of ORG/PPF.

Fourth, the global illumination variation problem has not been solved
in the CTF algorithm. For rendering purposes, a better texture repre-
sentation may be demanded. This problem could be solved using the
heuristics given by the periodic pattern of microstructures. As the
microstructures share the common shape and common period, they
should also share the illumination in normal cases. An illumination
adjustment algorithm could thus be designed for this end.

Figure 7: Microstructure visualization.
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