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ABSTRACT: 
 
The rational polynomial coefficients (RPC) model is a generalized sensor model that is used as an alternative solution for the 
physical sensor model for IKONOS of the Space Imaging. As the number of sensors increases along with greater complexity, and the 
standard sensor model is needed, the applicability of the RPC model is increasing. The RPC model has the advantages in being able 
to substitute for all sensor models, such as the projective, the linear pushbroom and the SAR. 
This report aimed to generate a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and 
aerial photography. The KOMSAT-1 collects 510∼730 nm panchromatic imagery with a ground sample distance (GSD) of 6.6 m and 
a swath width of 17 km by pushbroom scanning. The iterative least square solution was used to estimate the RPC. In addition, data 
normalization and regularization were applied to improve the accuracy and minimize noise. 
This study found that the RPC model is suitable for both KOMSAT-1 and aerial photography. 
 
 

1. INTERODUCTION 
 
To acquire a 3-D position from 2-D imagery, sensor models are 
required to determine the functional relationships between the 
image space and the ground space. There are many types of 
sensors, and the imagery from each sensor has to be processed 
by a different physical sensor model for a geometric correction. 
With increasing availability of the new sensor types, it is 
necessary to develop a general sensor model that can be applied 
to all sensor models. In addition, recent satellite sensor models 
are not open to the public. (e.g. IKONOS) 
A RPC model that is generic and has an expressive form for 
various sensor models, has been used as an alternative to the 
physical sensor model. The RPC model forms the coordinates 
of the image point at ratios of the third degree polynomials in 
the coordinates of the world point. A set of images is given to 
determine the set of polynomial coefficients in the RPC model 
in order to minimize error. In this paper, an algorithm that 
solves the RPC model estimation problem by applying a least 
square minimization process is proposed. The RPC we 
generated from a physical sensor model of KOMPSAT-1 and 
aerial photography. In addition, the accuracy of the test was 
evaluated based on the 2-D image coordinates. 
 
 
2. RATIONAL POLYNOMIAL COEFFICIENTS MODEL 
 
The RFM uses a ratio of two polynomial functions to compute 
the image coordinate. The RPC form between the image 
coordinates (x, y) and the world coordinates (X, Y, Z) can be 
presented below. 
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The power of each world coordinate and the total power of all 
world coordinates are limited to 3. Therefore, each polynomial 
has 20 terms: i.e. 
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Equations (1), and (2) can be rewritten as follows; 
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The distortions caused by the optical projection can generally 
be represented by the ratios of first order terms, and the 
corrections such as the curvature of the earth, atmospheric 
refraction, can be approximated by the second order terms. 
Other unknown distortions can be modeled with the third order 
terms. 
 
 

3. SOLUTION TO RPC MODEL  
 
A given set of image to world correspondences 

was assumed. The corresponding 
points were extracted from the physical sensor model. The task 
was to compute the polynomial coefficients from the 
correspondence points. To accomplish this, a linear method 
based on the linear least-square minimization was used. 

),,(),( ZYXyx →

 
3.1 Extraction of Corresponding Points 
 
The basic scheme of this algorithm is to build a virtual space 
reflecting the physical sensor model and obtain the RPC that 
fits to the virtual space. The image to the world corresponding 
points was extracted to build the virtual space.  
Initially, m by m grid points on the image coordinates need to 
be determined. The world grid points corresponding to each 
image grid point can then computed. The physical sensor model 
was used to compute the point position of the world 
coordinates. In addition, about each image point, n world points 
with different elevations were obtained. N elevation layers 
were distributed uniformly. 
 
 

 

 
Figure 1. Extraction of the corresponding points 

 
3.2 Linear Estimation of The RPC Model 
 
A pair of equations was obtained from equations (4) and (5)  
by cross multiplication. 
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The above equations are non-linear in X, Y, Z, but they are 
linear in the coefficients of the polynomials. Since each 
correspondence gives a pair of equations, and there are a total 
of 58 unknown parameters. Therefore, at least 29 
correspondences are needed to solve for the polynomial 
coefficients. An equation with more than 29 points is solved by 
least-square techniques.  
An error equation of n correspondence points can be written as 
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where v = error 
 
Equation (8) can be rewritten briefly as 
 
 

LAXV −=                   (9) 
 
 
The normal equation of the above equation is  
 
 

0=− LAAXA TT .    (10) 
 
 
Therefore, the coefficients matrix, I, can be solved as follows : 
 
 

LAAAX TT 1)( −=     (11) 
 
 
3.3 Data Normalization 
 
In order to improve the numerical stability of the computation, 
the two image coordinates and three world coordinates are each 
offset and scaled to fit the range –1.0~+1.0. It is essential to 
normalize the data with scale factors and offsets prior to 
running the linear algorithm in order to compute the parameters. 
 
 

x

o

x

o

y
yy

y
x

xx
x

−
=

−
= ','      (12) 

x

o

x

o

x

o

Z
ZZ

Z
Y

YY
Y

X
XX

X
−

=
−

=
−

= ',','  (13) 

 



 
where = the offset value for the image coordinates oo yx ,
 = the scale value for the image coordinates ss yx ,
 = the offset value for the world ooo ZYX ,,

 coordinates 
 = the scale value for the world sss ZYX ,,

 coordinates 
 
Without prenormalization, each term of the equations has a 
wide range. Therefore, the equation matrix will be poorly 
conditioned. 
 
3.4 Regularization 
 
In practice, the input data are not distributed evenly. 
Consequently, the matrix  of the equation (9) can become ill 
conditioned and the matrix  in the equation (10) can 
become singular. Therefore, the regularization was applied 
using the Tikhonov method.  

A
AAT

This method is the most widely used technique for regularizing 
the discrete ill-posed problems. It yields a unique solution by 
adding a constraint condition. The solution to this least square 
problem can be obtained by solving the normal equations. 
 
 

0)( 2 =−+ LAXIAA TT λ     (14) 
 
 
where I = the identity matrix 

λ = the regularization parameter 
 

Parameter λ  can be determined experimentally. 
 
 

4. TEST DATA 
 
In this study, the panchromatic image of the KOMPSAT-1 

EOC(Electro-Optical Camera) and aerial photography was 
used for the test. 

 
4.1 KOMPSAT-1 Data 
 
The test image of KOMPSAT-1 is a 17km×17km full scene of 
southern Seoul, Korea as shown in Figure 2. Basic information 
about the scene is listed below. 
 
 

Table1. Basic information of the KOMPSAT-1 data 
 

Sensor EOC(Electro-Optical Camera) 
Ground Resolution 6.6m(Nadir) 

Swath 17km 
Altitude 685km 

Band Swath 0.51µm ~0.73µm(panchromatic) 
Scanner System Pushbroom 

Focal Length 1045mm 
Scene Center Time 2001/03/18 01:55:29.745 
Image Pixel Size 2592×2798 pixel 

In order to extract the corresponding points in this data, we 

acquired 144(12×12) image grid points equally in the entire 
scene. In addition, 41 evaluation layers(3840000m~3860000m 
from equator) were applied uniformly to each image grid point. 
Therefore, total 5904 points were used as the corresponding 
points. Furthermore, 100 check points were extracted randomly 
at the target virtual space to estimate the accuracy. 
 
 

 
 

Figure 2. KOMPSAT-1 EOC scene of Seoul 
 
4.2 Airphoto Data 
 
Additional data using this test was abtained from aerial 
phtographs of Sungnam, Korea. A summary of the information 
and scene are shown below. 
 
 

Table 2. Basic information of the airphoto 
 

Scale 1/5,000 
Altitude 885m 

Focal Length 153.59mm 
Time of Acquisition 1999/12/11 13:00 

Image Pixel Size 11908×11908 pixel 
 
 

 
 

Figure 2. Aerial photograph of Sungnam 
In this data, a total 4464 corresponding points were extracted. 



144(12×12) image grid points were extracted and 31 evaluation 
layers(-50m~250m from datum) were applied equally. One 
hundred check points for an accuracy evaluation were also 
obtained. 
 
 

5. RESULTS AND EVALUATION 
 

λ  was determined to be 0.002 from the results of many tests 
for various regularization parameters. Therefore, the following 
results were calculated by 002.0=λ . 
The RPCs generated ranged from –0.01 to +2.0 and trended to 
decrease with the higher order terms. However, there was only 
a weak correlation.  
In order to evaluate the fitting accuracy of the RPC model, the 
error was calculated based on the image coordinates when each 
point was applied for both the physical sensor model and the 
RPC model. In addition, the root mean square error(RMSE) 
and the maximum error of the corresponding points and check 
points are listed at Table 3 and Table 4, respectively. 
 
 

Table 3. Error of corresponding points 
 

 KOMPSAT-1 Airphoto 

x 51079.4 −×  51058.4 −×  RMSE 
(pixel) y 51068.2 −×  51003.4 −×  

x 41092.1 −×  41092.1 −×  Max. Error 
(pixel) y 41016.1 −×  41095.1 −×  

 
 

Table 3. Error of check points 
 

 KOMPSAT-1 Airphoto 

x 51002.4 −×  51099.3 −×  RMSE 
(pixel) y 51030.2 −×  51055.3 −×  

x 41018.1 −×  41020.1 −×  Max. Error 
(pixel) y 51074.4 −×  51023.7 −×  

 
As shown in the above tables, the error between the physical 
sensor model and the RPC model are negligible, for both the 
KOMPSAT-1 and the aerial photographs. Furthermore, there 
were no remarkable differences between the KOMPSAT-1 and 
the aerial photographs. However, there was a little difference 
between the row and column error of the KOMSAT-1 images. 
 
 

6. CONCLUSION 
 

In this study, a least-squares solution to the generation of the 
RPC model from the physical sensor model was proposed. In 
addition, a regularization method was applied to solve the 
singular problem. 
The tests showed that the RPC model was able to approximate 
the physical sensor model of the KOMPSAT-1 pushbroom and 
aerial photographic data. Therefore, it is expected that the RPC 
model can be used as an alternative sensor model for the 
diverse physical sensor model. It is meaningful from the point 
of view that recent satellite sensors are becoming increasingly 
complex and diverse. 
A future study will attempt to obtain a more correct range of 
elevation layers and the number of layer will be defined. 

Furthermore, the result can be improved by minimizing the 
coefficients of the nonlinear terms in order to generate a more 
realistic model on the points outside the data set. 
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