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Riemannian Metrics
and Finsler Metrics

Riemannian metrics are quadratic metrics

F (x, y) =
√

gij(x)yiyj,

where y = yi ∂
∂xi |x ∈ TxM .

Finsler metrics are in general non-quadratic metrics,

F (x, y) =
√

gij(x, y)yiyj ,

where gij(x, y) = ∂2

∂yi∂yj [
1
2F

2(x, y)].
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Finsler Metrics

A Finsler metric F on a manifold M is a family of

Minkowski norms Fx on tangent spaces TxM .

Finsler metric: F : TM → [0,∞)

(i) F is C∞ on TM − {0}

(ii) Fx := F |TxM is a Minkowski norm on TxM :

F (x, λy) = λF (x, y), ∀λ > 0,

the fundamental tensor is positive definite,

(gij(x, y)) > 0,

where gij(x, y) := ∂2

∂yi∂yj [
1
2F

2(x, y)].

F induces an inner product on TxM for each y 6= 0.

gy(u, v) := gij(x, y)uivj .
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Examples:

Let α =
√

aij(x)yiyj be a Riemannian metric and β =

bi(x)yi be a 1-form on a manifold M .

(a) (Randers metrics):

F := α + β.

(b) (Square metrics)

F :=
(α + β)2

α
.

(c) (mth-root metrics)

F := {ai1···im(x)yi1 · · · yim}1/m
.
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Geodesics

Geodesics (locally minimizing curves):

ẍi + 2Gi(x, ẋ) = 0,

where Gi = Gi(x, y) are given by

Gi =
1

4
gil{

∂gjl

∂xk
+

∂glk

∂xj
−

∂gjk

∂xl
}yjyk.

Fact: For a Riemannian metric gij = gij(x), thus

Gi =
1

2
Γi

jk(x)yjyk are quadratic in y.
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Berwald Metrics

Finsler metrics are called Berwald metrics if

Gi =
1

2
Γi

jk(x)yiyj.

The following are equivalent.

(a) F is a Berwald metric,

(b) expx TxM → M is C∞ at the origin 0 ∈ TxM ,

(c) (TxM, Fx) are all linearly isometric via parallel trans-

lation along geodesics.
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Z.I. Szabo proved that any Berwald metric is geodesi-
cally equivalent to a Riemannian metric. Then he clas-

sified the local structure of Berwald metrics.
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Examples of Berwald Metrics

• F = α+β is a Berwald metric if and only if ∇αβ = 0.

• Define F : T (M1 × M2) → [0,∞) by

F :=
√

f([α1(x1, y1)]2, [α2(x2, y2)]2),

where x = (x1, x2) ∈ M and y = y1⊕y2 ∈ T(x1,x2)(M1×
M2) ∼= Tx1

M1 ⊕ Tx2
M2.
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Douglas Metrics

Finsler metrics are called Douglas metrics if

Gi =
1

2
Γi

jk(x)yiyj + P (x, y)yi.

If a Finsler metric has the same geodesics as a Rieman-

nian metric, then it is a Douglas metric.
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Examples of Douglas Metrics

Let α =
√

aij(x)yiyj be a Riemannian metric and β =

bi(x)yi be a 1-form on a manifold M .

• F = α + β is a Douglas metric if and only if dβ = 0.

• (B.Li-Y.Shen-Z.S.) F = (α+β)2/α is a Douglas met-

ric if

bi|j = 2τ{(1 + 2b2)aij − 3bibj},
where τ = τ (x) is a scalar function.
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Riemann Curvature

Extend y ∈ TxM to a vector field Y on U ⊂ M so that

the integral curves of Y are geodesics. Let

ĝp := gij(p, Yp)dxi ⊗ dxj , p ∈ U

be a Riemann metric induced by Y . Let R̂ denote the

Riemann curvature tensor of ĝ on U . Set

Ry(·) := R̂(·, y)y : TxM → TxM.
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Flag Curvature

Flag curvature K = K(P, y)

K =
gy(Ry(u), u)

gy(y, y)gy(u, y) − [gy(y, u)]2
,

where P = span{y, u} ⊂ TxM .

For a Finsler metric on a manifold of dimension n ≥ 3,

K(P, y) = σ(x) ⇐⇒ K(P, y) = constant.

For a Riemannian metric,

K(P, y) = K(P ).
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Examples: (Funk metric) Let φ = φ(y) be a Minkowski

norm on Rn and Ω := {φ(y) < 1}. Define Θ = Θ(x, y) >
0 by

x +
y

Θ(x, y)
∈ ∂Ω, y ∈ TxΩ ≈ Rn.

It satisfies

Θxi(x, y) = Θ(x, y)Θyi(x, y).

Θ is projectively flat with K = −1/4.

Using Θ, one can construct two important metrics

(i) (Hilbert) projectively flat with K = −1

F =
1

2
{Θ(x, y) + Θ(x,−y)},

(ii) (Z.S.) projectively flat with K = 0

F = Θ(x, y){1 + Θyi(x, y)xi}.
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Finsler Manifolds with K ≤ 0

Theorem (Auslander-Cartan-Hadamard) Let (M, F ) be

a forward complete Finsler manifold. If K ≤ 0, then the
universal cover M̃ ≈ Rn.
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Ricci Curvature

Ricci curvature Ric : TM → R,

Ric(x, y) :=
n∑

i=1
gy(Ry(ei), ei) = Rm

m(x, y),

where {ei} is a gy-orthonormal basis for TxM .

Einstein metrics

Ric(x, y) = (n − 1)σ(x)F 2(x, y).

Open Problem: Is σ(x) = constant when n ≥ 3?
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Ricci Curvature

Theorem (Auslander-Bonnet-Myers) If (M, F ) is for-

warded complete with Ric ≥ (n−1)F 2, then Diam(M) ≤
π. In particular, π1(M) is finite.
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Every Finsler metric F on a manifold M induces a Rie-
mannian metric ĝ on TM \ {0} of Sasaki type

ĝ = gij(x, y)dxi ⊗ dxj + gijδy
i ⊗ δyj,

where δyi := dyi + ∂Gi

∂yj dxj . Then it induces the Rieman-

nian metric ġ on the unit tangent sphere bundle SM .

Theorem: (Green-Dazord) Let (M, F ) be a closed Finsler

space of dimension n. Suppose that the conjugate radius

cM ≥ π. Then
∫
SM Ric(y)dVġ

Volġ(SM)
≤ (n − 1). (1)

The equality holds if and only if F has constant curvature

K = 1.
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Non-Riemannian Quantities

(1) Cartan Torsion: C = Cijk(x, y)dxi ⊗ dxj ⊗ dxk,

Cijk(x, y) =
1

4

∂3[F 2]

∂yi∂yj∂yk
(x, y) =

1

2

∂gij

∂yk
.

Geometric Meaning: F is Riemannian iff C = 0.

(2) Distortion: µ = µ(x, y).

µ(x, y) := ln

√
det(gij(x, y))

σF (x)
,

where dV = σF (x)dx1 · · · dxn is the Busemann-Hausdorff

volume form.

Geometric Meaning: Ii := gjkCijk is also given by

Ii :=
∂µ

∂yi
.

F is Riemannian iff µ = 0.
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Non-Riemannian Quantities

The S-curvature S = S(x, y) is defined by

S =
d

dt
[µ(c(t), ċ(t))]|t=0,

c = c(t) is a geodesic with c(0) = x and ċ(0) = y.

Define Ξ = Ξidxi and H = Hijdxi ⊗ dxj by

Ξi : = S·i|mym − S|i,

Hij : =
1

2
S·i·j|mym =

1

4
{Ξi·j + Ξj·i},

where “·′′ and “|′′ denote the vertical and horizontal co-
variant derivatives, respectively, with respect to the Chern

connection.
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Some Important Identities

Ξi = −
1

3
{2Rm

i·m + Rm
m·i} = Ii|p|qy

pyq + ImRm
i .

Hij = −1

6
{Rm

i·m·j + Rm
j·m·i + Rm

m·i·j}.

20



Volume Comparison

Theorem (Z.S.): Let (M, F ) be an n-dimensional for-

warded complete Finsler space. Assume that

Ric ≥ (n − 1)λ, S ≥ −(n − 1)δ.

Then the quotient

Vol(B(p, t))
∫ t
0 [eδssnλ(s)ds]

n−1

is non-increasing, where snλ is the function satisfying

sn′′
λ(t) + λsnλ(t) = 0,

snλ(0) = 0 and sn′
λ(0) = 1.
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Theorem (Mo-Z.S.) Let (M, F ) be an n-dimensional

closed Finsler manifold (n ≥ 3). Suppose that

K(P, y) = σ(x, y) ≤ −1.

Then F is a Randers metric.

Theorem (Z.S.) Let (M, F ) be an n-dimensional closed
Finsler manifold (n ≥ 3) with S = (n + 1)cF (c =

constant). Suppose that

K(P, y) < 0.

Then F is a Riemannian metric.
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Finsler Metrics
of Constant Flag Curvature

Theorem (Arkbar-Zadeh) : Let (M, F ) be a compact
Finsler manifold of constant flag curvature K = k. Then

(a) If k < 0, then F is Riemannian

(b) If k = 0, then F is locally Minkowskian.

Proof: Bianchi identities imply that

Ii|p|qy
pyq + kF 2Ii = −1

3
{2Rm

i·m + Rm
m·i} = Ξi = 0.

If k = −1, then I = 0, hence F is Riemannian.
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The Positive Constant Flag
Curvature Case

(a) There are non-Riemannian Randers metrics on Sn

with K = 1 and S = 0.

(b) (Bryant) Determine the structure of projectively flat
metrics on Sn with K = 1. They are not reversible.

(c) (Kim) Every reversible Finsler metric on Sn (n ≥ 3)

with K = 1 must be Riemannian.
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Navigation Representation of
Randers Metrics

F = α + β can be expressed as

α =

√
[1 − (hijV iV j)2](hijyiyj)2 + (hijyiV j)2

1 − (hijV iV j)2

β = − hijy
iV j

1 − (hijV iV j)2 ,

where h =
√

hij(x)yiyj is a Riemannian metric and V =
V i(x) ∂

∂xi is a vector field.

We call (h, V ) the navigation data of F = α + β.
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Randers Metrics of Constant
Flag Curvature

Theorem (Bao, Robles, Z.S.) Let F = α + β be ex-
pressed by a navigation data (h, V ). F is of constant

flag curvature K = σ if and only if

(a) Kh = µ

(b) Vi;j + Vj;i = −4chij .

In this case, σ = µ − c2 and cµ = 0.
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Einstein Metrics of Randers Type

Theorem (Bao, Robles) Let F = α + β be expressed by

a navigation data (h, V ). F is Einstein,

Ric = (n − 1)σ(x)F 2,

if and only if

(a) Rich = (n − 1)µ(x)h2

(b) Vi;j + Vj;i = −4chij .

In this case, σ = µ − c2 and cµ = 0.
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(α, β)-metrics

• A Randers metric F = α + β can be written as

F = α(1 + s), s =
β

α
.

• A square-metric F = (α + β)2/α can be written as

F = α(1 + s)2, s =
β

α
.

• (Cheng-Z.S.-Tian) For any polynomial metric of non-
Randers type

F = α
n∑

i=0
kis

i, s = β/α,

it is Einstein if and only if it is Ricci flat.
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Ricci-flat (α, β)-metrics of
Douglas Type

(E. Sevim, Z.S. and L. Zhao, Y. Cheng and Y. Tian) Let

α =
√

aij(x)yiyj and β = bi(x)yi. For an (α, β)-metric of

Douglas type on an n-manifold (n ≥ 3) with φ(0) = 1:

F = αφ(s), s =
β

α
,

Ric = 0 if and only if

αRic = −
4

25
τ 2{[25k2(b

2k1 + 1)

+3(k1 + 4k3)(k1 − k3)][(n − 2)β2 + b2α2]

+5(n − 1)[5k1(b
2k1 + 1) + 3(k1 − k3)]α

2},
bi|j = 2τ (x){(1 + k1b

2)aij + (k2b
2 + k3)bibj},

φ(s) =
1 + (4k1 + k3)s

2/5
√

1 + (3k1 + 2k3)s2/5
+ εβ,

where ε2 = 4
5(k1−k3), 25k2 = (2k1 +3k3)(3k1 +2k3), and

τxi(x) = −4
5τ (x)2(k1 − k3)bi.
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The Finsler metric can be written as

F =
α2 + (4k1 + k3)β

2/5
√

α2 + (3k1 + 2k3)β2/5
+ εβ.

where ε := ±2
√

k1−k3

5 .

Note that for the function φ, k1 ≥ k3. If k1 = k3, then

F is Riemannian. If k1 > k3, let

α̃ :=

√√√√α2 +
3k1 + 2k3

5
β2, β̃ := ±

√√√√k1 − k3

5
β.

Then

F =
(α̃ + β̃)2

α̃
.

Ric = 0 if and only if

α̃Ric = −4τ 2{ − 6[(n − 2)β̃2 + b̃2α̃2]

+(n − 1)[(1 + 2b̃2) + 3]α̃2},
b̃i|j = 2τ{(1 + 2b̃2)ãij − 3b̃ib̃j},

where τxi = −4τ 2b̃i.
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Ricci-flat Square-metrics of
Douglas Type

(B. Chen, Z.S. and L. Zhao) For non-Berwaldian square-
metric of Douglas type on M :

F =
(α + β)2

α

Ric = 0 if and only if locally, M = R × M̆ and

α2 = dt ⊗ dt + (ϕ′(t))2ᾰ2,

β =
1

10
ϕ(t)−3/5ϕ′(t)dt

where

ϕ′′ = 20ϕ1/5 +
2

5
ϕ−1(ϕ′)2

R̆ic = (n − 2)λᾰ2

where λ = 400(1 − b2)ϕ2/5 is a constant.
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