Geometric Meanings of Curvatures in Finsler Geometry

Zhongmin Shen

October 24-28, 2011

Chern Centenial Conference Chern Institute of Mathematics, Tianjin

Riemannian Metrics and Finsler Metrics

Riemannian metrics are *quadratic* metrics

 $F(x,y) = \sqrt{g_{ij}(x)y^i y^j},$

where $y = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$.

Finsler metrics are in general *non-quadratic* metrics,

 $F(x,y) = \sqrt{g_{ij}(x,y)y^iy^j},$ where $g_{ij}(x,y) = \frac{\partial^2}{\partial y^i \partial y^j} [\frac{1}{2}F^2(x,y)].$

Finsler Metrics

A Finsler metric F on a manifold M is a family of Minkowski norms F_x on tangent spaces T_xM .

Finsler metric: $F: TM \to [0, \infty)$

- (i) F is C^{∞} on $TM \{0\}$
- (ii) $F_x := F|_{T_xM}$ is a Minkowski norm on T_xM :

$$F(x, \lambda y) = \lambda F(x, y), \, \forall \lambda > 0,$$

the fundamental tensor is positive definite,

 $(g_{ij}(x,y)) > 0,$ where $g_{ij}(x,y) := \frac{\partial^2}{\partial y^i \partial y^j} [\frac{1}{2}F^2(x,y)].$

F induces an *inner product* on $T_x M$ for each $y \neq 0$.

$$g_y(u,v) := g_{ij}(x,y)u^i v^j.$$

	÷	2		
	-		è	
ł		J	,	

Examples:

Let $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ be a Riemannian metric and $\beta = b_i(x)y^i$ be a 1-form on a manifold M.

(a) (Randers metrics):

$$F := \alpha + \beta.$$

(b) (Square metrics)

$$F := \frac{(\alpha + \beta)^2}{\alpha}.$$

(c) (mth-root metrics)

$$F := \{a_{i_1 \cdots i_m}(x) y^{i_1} \cdots y^{i_m}\}^{1/m}.$$

Geodesics

Geodesics (locally minimizing curves):

$$\ddot{x}^i + 2G^i(x, \dot{x}) = 0,$$

where $G^i = G^i(x, y)$ are given by

$$G^{i} = \frac{1}{4}g^{il}\left\{\frac{\partial g_{jl}}{\partial x^{k}} + \frac{\partial g_{lk}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{l}}\right\}y^{j}y^{k}.$$

Fact: For a Riemannian metric $g_{ij} = g_{ij}(x)$, thus

$$G^{i} = \frac{1}{2}\Gamma^{i}_{jk}(x)y^{j}y^{k}$$
 are quadratic in y .

Berwald Metrics

Finsler metrics are called *Berwald metrics* if

$$G^i = \frac{1}{2} \Gamma^i_{jk}(x) y^i y^j.$$

The following are equivalent.

- (a) F is a Berwald metric,
- (b) $\exp_x T_x M \to M$ is C^{∞} at the origin $0 \in T_x M$,
- (c) (T_xM, F_x) are all linearly isometric via parallel translation along geodesics.

Z.I. Szabo proved that any Berwald metric is geodesically equivalent to a Riemannian metric. Then he classified the local structure of Berwald metrics.

Examples of Berwald Metrics

- $F = \alpha + \beta$ is a Berwald metric if and only if $\nabla^{\alpha} \beta = 0$.
- Define $F: T(M_1 \times M_2) \to [0, \infty)$ by

$$F := \sqrt{f([\alpha_1(x_1, y_1)]^2, [\alpha_2(x_2, y_2)]^2)},$$

where $x = (x_1, x_2) \in M$ and $y = y_1 \oplus y_2 \in T_{(x_1, x_2)}(M_1 \times M_2) \cong T_{x_1} M_1 \oplus T_{x_2} M_2.$

Douglas Metrics

Finsler metrics are called $Douglas \ metrics$ if

$$G^i = \frac{1}{2}\Gamma^i_{jk}(x)y^iy^j + P(x,y)y^i.$$

If a Finsler metric has the same geodesics as a Riemannian metric, then it is a Douglas metric.

Examples of Douglas Metrics

Let $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ be a Riemannian metric and $\beta = b_i(x)y^i$ be a 1-form on a manifold M.

- $F = \alpha + \beta$ is a Douglas metric if and only if $d\beta = 0$.
- (B.Li-Y.Shen-Z.S.) $F = (\alpha + \beta)^2 / \alpha$ is a Douglas metric if

$$b_{i|j} = 2\tau \{ (1+2b^2)a_{ij} - 3b_i b_j \},\$$

where $\tau = \tau(x)$ is a scalar function.

Riemann Curvature

Extend $y \in T_x M$ to a vector field Y on $U \subset M$ so that the integral curves of Y are geodesics. Let

$$\hat{g}_p := g_{ij}(p, Y_p) dx^i \otimes dx^j, \qquad p \in U$$

be a Riemann metric induced by Y. Let \hat{R} denote the Riemann curvature tensor of \hat{g} on U. Set

$$\mathbf{R}_y(\cdot) := \hat{R}(\cdot, y)y : T_x M \to T_x M.$$

Flag Curvature

Flag curvature $\mathbf{K} = \mathbf{K}(P, y)$

$$\mathbf{K} = \frac{g_y(\mathbf{R}_y(u), u)}{g_y(y, y)g_y(u, y) - [g_y(y, u)]^2},$$

where $P = \operatorname{span}\{y, u\} \subset T_x M$.

For a Finsler metric on a manifold of dimension $n \ge 3$,

$$\mathbf{K}(P,y) = \sigma(x) \Longleftrightarrow \quad \mathbf{K}(P,y) = constant.$$

For a Riemannian metric,

$$\mathbf{K}(P, y) = \mathbf{K}(P).$$

Examples: (Funk metric) Let $\phi = \phi(y)$ be a Minkowski norm on \mathbb{R}^n and $\Omega := \{\phi(y) < 1\}$. Define $\Theta = \Theta(x, y) > 0$ by

$$x + \frac{y}{\Theta(x,y)} \in \partial\Omega, \qquad y \in T_x\Omega \approx R^n.$$

It satisfies

$$\Theta_{x^i}(x,y) = \Theta(x,y)\Theta_{y^i}(x,y).$$

 Θ is projectively flat with $\mathbf{K} = -1/4$.

Using Θ , one can construct two important metrics

(i) (Hilbert) projectively flat with $\mathbf{K} = -1$

$$F = \frac{1}{2} \{ \Theta(x, y) + \Theta(x, -y) \},\$$

(ii) (Z.S.) projectively flat with $\mathbf{K} = 0$

$$F = \Theta(x, y) \{ 1 + \Theta_{y^i}(x, y) x^i \}.$$

Finsler Manifolds with $\mathbf{K} \leq \mathbf{0}$

Theorem (Auslander-Cartan-Hadamard) Let (M, F) be a forward complete Finsler manifold. If $\mathbf{K} \leq 0$, then the universal cover $\tilde{M} \approx \mathbb{R}^n$.

Ricci Curvature

Ricci curvature $\operatorname{Ric} : TM \to R$,

$$\operatorname{\mathbf{Ric}}(x,y) := \sum_{i=1}^{n} g_y(\mathbf{R}_y(e_i), e_i) = R^m_{\ m}(x,y),$$

where $\{e_i\}$ is a g_y -orthonormal basis for $T_x M$.

Einstein metrics

$$\operatorname{\mathbf{Ric}}(x,y) = (n-1)\sigma(x)F^2(x,y).$$

Open Problem: Is $\sigma(x) = constant$ when $n \ge 3$?

Ricci Curvature

Theorem (Auslander-Bonnet-Myers) If (M, F) is forwarded complete with $\operatorname{Ric} \geq (n-1)F^2$, then $\operatorname{Diam}(M) \leq \pi$. In particular, $\pi_1(M)$ is finite.

Every Finsler metric F on a manifold M induces a Riemannian metric \hat{g} on $TM\setminus\{0\}$ of Sasaki type

$$\hat{g} = g_{ij}(x, y)dx^i \otimes dx^j + g_{ij}\delta y^i \otimes \delta y^j,$$

where $\delta y^i := dy^i + \frac{\partial G^i}{\partial y^j} dx^j$. Then it induces the Riemannian metric \dot{g} on the unit tangent sphere bundle SM.

Theorem: (Green-Dazord) Let (M, F) be a closed Finsler space of dimension n. Suppose that the conjugate radius $\mathbf{c}_M \geq \pi$. Then

$$\frac{\int_{\mathrm{SM}} \operatorname{\mathbf{Ric}}(y) dV_{\dot{g}}}{\operatorname{Vol}_{\dot{g}}(\mathrm{SM})} \le (n-1).$$
(1)

The equality holds if and only if F has constant curvature $\mathbf{K} = 1$.

Non-Riemannian Quantities

(1) **Cartan Torsion**: $\mathbf{C} = C_{ijk}(x, y)dx^i \otimes dx^j \otimes dx^k$,

$$C_{ijk}(x,y) = \frac{1}{4} \frac{\partial^3 [F^2]}{\partial y^i \partial y^j \partial y^k}(x,y) = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}.$$

Geometric Meaning: F is Riemannian iff $\mathbf{C} = 0$.

(2) **Distortion**: $\mu = \mu(x, y)$.

$$\mu(x,y) := \ln \frac{\sqrt{\det(g_{ij}(x,y))}}{\sigma_F(x)},$$

where $dV = \sigma_F(x)dx^1 \cdots dx^n$ is the Busemann-Hausdorff volume form.

Geometric Meaning: $I_i := g^{jk}C_{ijk}$ is also given by

$$I_i := \frac{\partial \mu}{\partial y^i}.$$

F is Riemannian iff $\mu=0.$

Non-Riemannian Quantities

The **S-curvature** $\mathbf{S} = \mathbf{S}(x, y)$ is defined by

$$\mathbf{S} = \frac{d}{dt} [\mu(c(t), \dot{c}(t))]|_{t=0},$$

c = c(t) is a geodesic with c(0) = x and $\dot{c}(0) = y$.

Define $\Xi = \Xi_i dx^i$ and $H = H_{ij} dx^i \otimes dx^j$ by

$$\Xi_i := \mathbf{S}_{\cdot i|m} y^m - \mathbf{S}_{|i},$$

$$H_{ij} := \frac{1}{2} \mathbf{S}_{\cdot i \cdot j|m} y^m = \frac{1}{4} \{ \Xi_{i \cdot j} + \Xi_{j \cdot i} \},$$

where "." and "|" denote the vertical and horizontal covariant derivatives, respectively, with respect to the Chern connection.

Some Important Identities

$$\Xi_{i} = -\frac{1}{3} \{ 2R^{m}_{i \cdot m} + R^{m}_{m \cdot i} \} = I_{i|p|q} y^{p} y^{q} + I_{m} R^{m}_{i}.$$
$$H_{ij} = -\frac{1}{6} \{ R^{m}_{i \cdot m \cdot j} + R^{m}_{j \cdot m \cdot i} + R^{m}_{m \cdot i \cdot j} \}.$$

Volume Comparison

Theorem (Z.S.): Let (M, F) be an *n*-dimensional forwarded complete Finsler space. Assume that

$$\operatorname{Ric} \ge (n-1)\lambda, \qquad \mathbf{S} \ge -(n-1)\delta.$$

Then the quotient

$$\frac{\operatorname{Vol}(B(p,t))}{\int_0^t \left[e^{\delta s} \operatorname{sn}_{\lambda}(s) ds\right]^{n-1}}$$

is non-increasing, where $\operatorname{sn}_{\lambda}$ is the function satisfying

$$\operatorname{sn}_{\lambda}^{\prime\prime}(t) + \lambda \operatorname{sn}_{\lambda}(t) = 0,$$

 $sn_{\lambda}(0) = 0$ and $sn'_{\lambda}(0) = 1$.

Theorem (Mo-Z.S.) Let (M, F) be an *n*-dimensional closed Finsler manifold $(n \ge 3)$. Suppose that

$$\mathbf{K}(P, y) = \sigma(x, y) \le -1.$$

Then F is a Randers metric.

Theorem (Z.S.) Let (M, F) be an *n*-dimensional closed Finsler manifold $(n \ge 3)$ with $\mathbf{S} = (n+1)cF$ (c = constant). Suppose that

$$\mathbf{K}(P, y) < 0.$$

Then F is a Riemannian metric.

Finsler Metrics of Constant Flag Curvature

Theorem (Arkbar-Zadeh) : Let (M, F) be a compact Finsler manifold of constant flag curvature $\mathbf{K} = k$. Then

- (a) If k < 0, then F is Riemannian
- (b) If k = 0, then F is locally Minkowskian.

Proof: Bianchi identities imply that

$$I_{i|p|q}y^{p}y^{q} + kF^{2}I_{i} = -\frac{1}{3}\{2R^{m}_{i\cdot m} + R^{m}_{m\cdot i}\} = \Xi_{i} = 0.$$

If k = -1, then $\mathbf{I} = 0$, hence F is Riemannian.

The Positive Constant Flag Curvature Case

- (a) There are non-Riemannian Randers metrics on S^n with $\mathbf{K} = 1$ and $\mathbf{S} = 0$.
- (b) (Bryant) Determine the structure of projectively flat metrics on S^n with $\mathbf{K} = 1$. They are not reversible.
- (c) (Kim) Every reversible Finsler metric on S^n $(n \ge 3)$ with $\mathbf{K} = 1$ must be Riemannian.

Navigation Representation of Randers Metrics

 $F=\alpha+\beta$ can be expressed as

$$\begin{split} \alpha &= \frac{\sqrt{[1 - (h_{ij}V^iV^j)^2](h_{ij}y^iy^j)^2 + (h_{ij}y^iV^j)^2}}{1 - (h_{ij}V^iV^j)^2}\\ \beta &= -\frac{h_{ij}y^iV^j}{1 - (h_{ij}V^iV^j)^2}, \end{split}$$

where $h = \sqrt{h_{ij}(x)y^iy^j}$ is a Riemannian metric and $V = V^i(x)\frac{\partial}{\partial x^i}$ is a vector field.

We call (h, V) the *navigation data* of $F = \alpha + \beta$.

Randers Metrics of Constant Flag Curvature

Theorem (Bao, Robles, Z.S.) Let $F = \alpha + \beta$ be expressed by a navigation data (h, V). F is of constant flag curvature $\mathbf{K} = \sigma$ if and only if

- (a) $\mathbf{K}_h = \mu$
- (b) $V_{i;j} + V_{j;i} = -4ch_{ij}$.

In this case, $\sigma = \mu - c^2$ and $c\mu = 0$.

Einstein Metrics of Randers Type

Theorem (Bao, Robles) Let $F = \alpha + \beta$ be expressed by a navigation data (h, V). F is Einstein,

$$\mathbf{Ric} = (n-1)\sigma(x)F^2,$$

if and only if

- (a) $\operatorname{Ric}_{h} = (n-1)\mu(x)h^{2}$
- (b) $V_{i;j} + V_{j;i} = -4ch_{ij}$.

In this case, $\sigma = \mu - c^2$ and $c\mu = 0$.

(α,β) -metrics

• A Randers metric $F = \alpha + \beta$ can be written as

$$F = \alpha(1+s), \qquad s = \frac{\beta}{\alpha}.$$

• A square-metric $F = (\alpha + \beta)^2 / \alpha$ can be written as

$$F = \alpha (1+s)^2, \qquad s = \frac{\beta}{\alpha}.$$

• (Cheng-Z.S.-Tian) For any polynomial metric of non-Randers type

$$F = \alpha \sum_{i=0}^{n} k_i s^i, \qquad s = \beta/\alpha,$$

it is Einstein if and only if it is Ricci flat.

Ricci-flat (α, β) -metrics of Douglas Type

(E. Sevim, Z.S. and L. Zhao, Y. Cheng and Y. Tian) Let $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and $\beta = b_i(x)y^i$. For an (α, β) -metric of Douglas type on an *n*-manifold $(n \ge 3)$ with $\phi(0) = 1$:

$$F = \alpha \phi(s), \qquad s = \frac{\beta}{\alpha},$$

 $\mathbf{Ric} = 0$ if and only if

$${}^{\alpha}\mathbf{Ric} = -\frac{4}{25}\tau^{2}\{[25k_{2}(b^{2}k_{1}+1) + 3(k_{1}+4k_{3})(k_{1}-k_{3})][(n-2)\beta^{2}+b^{2}\alpha^{2}] + 5(n-1)[5k_{1}(b^{2}k_{1}+1) + 3(k_{1}-k_{3})]\alpha^{2}\},$$

$$b_{i|j} = 2\tau(x)\{(1+k_{1}b^{2})a_{ij} + (k_{2}b^{2}+k_{3})b_{i}b_{j}\},$$

$$\phi(s) = \frac{1+(4k_{1}+k_{3})s^{2}/5}{\sqrt{1+(3k_{1}+2k_{3})s^{2}/5}} + \epsilon\beta,$$

where $\epsilon^2 = \frac{4}{5}(k_1 - k_3)$, $25k_2 = (2k_1 + 3k_3)(3k_1 + 2k_3)$, and $\tau_{x^i}(x) = -\frac{4}{5}\tau(x)^2(k_1 - k_3)b_i$.

The Finsler metric can be written as

$$F = \frac{\alpha^2 + (4k_1 + k_3)\beta^2/5}{\sqrt{\alpha^2 + (3k_1 + 2k_3)\beta^2/5}} + \epsilon\beta.$$

where $\epsilon := \pm 2\sqrt{\frac{k_1-k_3}{5}}$. Note that for the function $\phi, k_1 \ge k_3$. If $k_1 = k_3$, then F is Riemannian. If $k_1 > k_3$, let

$$\tilde{\alpha} := \sqrt{\alpha^2 + \frac{3k_1 + 2k_3}{5}\beta^2}, \qquad \tilde{\beta} := \pm \sqrt{\frac{k_1 - k_3}{5}\beta}.$$

Then

$$F = \frac{(\tilde{\alpha} + \tilde{\beta})^2}{\tilde{\alpha}}.$$

 $\mathbf{Ric} = 0$ if and only if

$$\tilde{}^{\tilde{\alpha}}\mathbf{Ric} = -4\tau^{2} \{ -6[(n-2)\tilde{\beta}^{2} + \tilde{b}^{2}\tilde{\alpha}^{2}]$$

$$+ (n-1)[(1+2\tilde{b}^{2}) + 3]\tilde{\alpha}^{2} \},$$

$$\tilde{b}_{i|j} = 2\tau \{ (1+2\tilde{b}^{2})\tilde{a}_{ij} - 3\tilde{b}_{i}\tilde{b}_{j} \},$$

where $\tau_{x^i} = -4\tau^2 \tilde{b}_i$.

Ricci-flat Square-metrics of Douglas Type

(B. Chen, Z.S. and L. Zhao) For non-Berwaldian squaremetric of Douglas type on M:

$$F = \frac{(\alpha + \beta)^2}{\alpha}$$

 $\mathbf{Ric}=0$ if and only if locally, $M=R\times\breve{M}$ and

$$\alpha^2 = dt \otimes dt + (\varphi'(t))^2 \breve{\alpha}^2,$$

$$\beta = \frac{1}{10} \varphi(t)^{-3/5} \varphi'(t) dt$$

where

$$\varphi'' = 20\varphi^{1/5} + \frac{2}{5}\varphi^{-1}(\varphi')^2$$
$$\breve{Ric} = (n-2)\lambda\breve{\alpha}^2$$

where $\lambda = 400(1 - b^2)\varphi^{2/5}$ is a constant.