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1. Introduction

Professor Chern recruited geometers, physicists and combina-

torists to work at Nankai Institute of Mathematics (now Chern

Institute of Mathematics).

This fact might give some indications on his deep insight on the

connections among geometry, physics, and combinatorics.



A proper subtitle of my talk might be

Chern classes, Chern characters, moduli spaces, symmetric func-

tions, and integrable hierarchies.

It reflects on Chern’s influence on my researches on enumerative

algebraic geometry of moduli spaces and some related problems

in string theory.

I hope to provide a humble testimony to the statement that

Chern’s work has penetrated all fields of mathematics.



For a complex vector π : E → X,

ck(E) = ek(x1, . . . , xr),

chk(E) =
1

k!
pk(x1, . . . , xr) =

1

k!
(xk1 + · · ·+ xkr),

where x1, . . . , xr are formal Chern roots of E, and ek, pk are the

elementary symmetric polynomial and the Newton power poly-

nomial respectively.

These identities already demonstrate the connection of Chern

classes and Chern characters to the theory of symmetric func-

tions.

We will show that one can go very far from this connection.



Five themes have emerged in the studies of moduli spaces in

algebraic geometry:

Theme 1. Mumford’s principle : The cohomology ring of a mod-

uli space is often generated by the Chern classes of tautologically

defined vector bundles.

Theme 2. Relationship with the theory of symmetric functions :

The topology of moduli spaces are often related to theory of

symmetric functions.



Theme 3. Relationship with the theory of integrable hierarchies :

Generating functions of intersection numbers on moduli spaces

are often tau-functions of integrable hierarchies.

Theme 4. Localization techniques : Consider the fixed point

contributions from natural actions on moduli spaces.

This method has its root deep in Chern’s work on Gauss-Bonnet

theorem and characteristic classes.

Theme 5. Relationship with the theory of modular forms.

We will focus on the first four themes today.



Because the theory of symmetric functions is closely related to

the representation theory and to the theory of integerable hier-

archies, we have roughly the following picture:

Moduli spaces

��

// Modular forms

��

Symmetric functions
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Integrable hierarchies Representation theory



We will present three types of examples:

1. Grassmannians and flag manifolds

2. Moduli spaces of algebraic curves

3. Hilbert schemes of points in algebraic surfaces

Other theories on moduli problems like Donaldson theory or

Gromov-Witten theory share similar features.



2. A classical enumerative problem and its solution

Question. How many lines in C3 intersect 4 given lines in general

position?

Answer. 2 .

To find this answer, we consider the space of all lines in C3.

This space is not compact, so we projectivize the picture.



Grassmannian as moduli space

First C3 is compactify to become the projective space P3, the
space of all complex lines through the origin in C4.

In this projective picture, a line in C3 corresponds to

(a) a rational curve of degree 1 in P3; or

(b) a plane in C4 through the origin.

Denote by M0,0(P3; 1) the moduli space of all rational curves of
degree 1 in P3.

By the equivalence between (a) and (b), M0,0(P3; 1) ∼= Gr2(C4),
the Grassmannian manifold of complex 2-subspaces of C4.



From intersections to integrals

Now Gr2(C4) is a 4-dimensional compact complex manifold.

On Gr2(C4) there is a tautological rank 2 holomorphic vector
bundle π : ξ → Gr2(C4). Take its Chern classes c1 := c1(ξ) and
c2 := c2(ξ).

Fixing a line L in P3, the space of all lines passing through it
form a 3-dimensional submanifold C(L) of Gr2(C4).

It turns out that C(L) is an example of a Schubert cell and is
the Poincaré dual of −c1(ξ).

Therefore

C(L1) ∩ C(L2) ∩ C(L3) ∩ C(L4) =
∫
Gr2(C4)

c1(ξ)
4.



Torus actions and equivariant cohomological setting

To evaluate the integral to get the number 2, we notice that
there is a natural T := T4-action on C4:

(eiθ1, . . . , eiθ4) · (z1, . . . , z4) = (eiθ1z1, . . . , e
iθ4z4).

It induces natural T -actions on Gr2(C4) and the vector bundle ξ.

So one can consider the equivariant cohomology H∗
T (Gr2(C

4))
and the equivariant Chern classes ci(ξ)T of ξ.

For dimension reasons,∫
Gr2(C4)

c1(ξ)
4 =

∫
Gr2(C4)

c1(ξ)
4
T .

The latter can be computed by the Atiyah-Bott localization for-
mula.



Localization formula

Let M be a compact T -manifold, α ∈ H∗
T (M), then one has

(Atiyah-Bott): ∫
M
α =

∑
F

∫
F

α|F
eT (ν(F/M))

,

where F runs through fixed point components of the T -action,

ν(F/M) is the normal bundle of F in M ,

eT : equivariant Euler class.



In our case, we get 6 isolated fixed points on Gr2(C4) and∫
Gr2(C4)

c1(ξ)
4
T

=
1

2

∑
σ: permutation of {a,b,c,d}

σ

(
(a+ b)4

(a− c)(a− d)(b− c)(b− d)

)
= 2 .

At a fixed point:

c1(ξ)T = a+ b,

eT (N(F/Gr2(C4))) = (a− c)(a− d)(b− c)(b− d).



3. Intersections on general Grassmannians and flag manifolds

The Grassmannian Grk(Cn) is the moduli space of k-dimensional

subspaces of Cn.

Let π : ξ → GRk(Cn) be the tautological vector bundle and η :=

Cn/ξ.

Let cj := cj(ξ
∗) and dj = cj(η

∗). They are related by

dj =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 · · · cj
1 c1 c2 · · · cj−1
0 1 c1 · · · cj−2
... ... ... · · · ...
0 0 0 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣



The cohomology ring of Grassmannian has the following presen-

tation:

H∗(Grk(Cn)) = Z[c1, . . . , ck]/(dk+1, . . . , dn).

Hence one can obtain an additive basis of H∗(Grk(Cn)) by poly-

nomials cµ = eµ1 · · · eµl in e1, . . . , ek, where k ≥ µ1 ≥ µ2 · · · ≥ µl ≥
0.



It has another additive basis given by Schubert cycles.

Fix a complete flag:

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn

Given a partition µ = (µ1, . . . , µl), such that

n− k ≥ µ1 ≥ · · · ≥ µl ≥ 0, l ≤ k,

define Σµ to be the set of k-planes W such that for i = 1, . . . , l,

dim(W ∩ Vn−k+i−µi) = i, dim(W ∩ Vn−k+i−µi−1) = i− 1.

Then PD(Σµ’s provide an additive basis of H∗(Grk(Cn)).



One has

cj = PD(Σ(1,...,1)), dj = PD(Σ(j))

and the Giambelli formula:

PD(Σµ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cµt1
cµt1+1 cµt1+2 · · · cµt1+n−k−1

cµt2−1 cµt2
cµt2+1 · · · cµt2+n−k−2

cµt3−21 cµt2−1 cµt2
· · · cµt2+n−k−3

... ... ... ...
cµtn−k−n+k+1 cµtn−k−n+k+2 cµtn−k−n+k+3 · · · cµtn−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This establishes relationship between {cµ} and {sµ} of H∗(Grk(Cn)).



The relationship to the symmetric polynomials is as follows:

cj 7→ ej(x1, . . . , xk),

PD(Σµ) 7→ sµ(x1, . . . , xk).



Some observations on intersection numbers on Grassmannians

(Z.):

∫
Gr2(Cn)

c2m1 cn−2−m
2 =

(2m)!

m!(m+ 1)!
(Catalan numbers!)∫

Gr3(Cn)
c3m1 cn−3−m

3 = Sequence A151334,

Sequence A151334 from The On-Line Encyclopedia of Integer

Sequences: Number of walks within the first quadrant of Z2

starting and ending at (0,0) and consisting of 3m steps taken

from {(−1,0), (0,1), (1,−1)}.



For intersection numbers of Chern characters,∫
Gr2(C4)

(2! ch2)
2 + tc21 · 2! ch2 +t2c41 = 2 + 2t2,∫

Gr2(C5)
(2! ch2)

3 + tc21(2! ch2)
2 + t2c41 · 2! ch2 +t3c61

= −3 + t+ t2 + 5t3,∫
Gr2(C6)

(2! ch2)
4 + tc21(2! ch2)

3 + t2c41(2! ch2)
2 + t3c61 · 2! ch2 +t4c81

= 6 + 2t2 + 4t3 + 14t4,∫
Gr2(C7)

(2! ch2)
5 + tc21(2! ch2)

4 + t2c41(2! ch2)
3 + t3c61(2! ch2)

2

+t4c81 · 2! ch2 +t5c10
1 = −10 + 2t+ 2t2 + 6t3 + 14t4 + 42t5.

No nice stability as in the case of Chern classes.



The relationship to integrable hierarchy was discovered much

later by Sato: One takes n = 2k and k → ∞, and the Plücker

relations correspond to the Hirota bilinear relations for KP hier-

archy.



One can also consider K-theoretical intersection numbers on

Grassmannian and flag varieties.

This establishes a connection with the representation theory of

unitary groups via Borel-Weil-Bott theory.

Let H ⊂ G be compact connected Lie groups such that rankG =

rankH.

By a theorem of Wang, there is a structure of homogeneous

complex manfold on G/H.

For a representation of ρ : H → GL(V ) of H, let Eρ := G×ρ V .



One can define two G-equivariant elliptic operators associated

to Eρ:

∂̄ ⊗ Eρ : Ω0,even(G/H,Eρ) → Ω0,odd(G/H,Eρ),

(d+ d∗)⊗ Eρ : Ωeven(G/G,Eρ) → Ωodd(G/H,Eρ).

Define virtual characters:

Ind∂̄(ρ) := ker ∂̄ ⊗ Eρ − coker ∂̄ ⊗ Eρ,

Indd+d∗(ρ) := ker(d+ d∗)⊗ Eρ − coker(d+ d∗)⊗ Eρ.

This defines maps:

Ind∂̄ : R(H) → R(G),

Indd+d∗ : R(H) → R(G).



One can apply Lefschetz formula to these operators.

For H = T , ρ given by a dominant weight, one gets the irreducible

representation associated with ρ (Borel-Weil) and its character is

given by applying the Lefschetz formula to ∂̄⊗Eρ (Atiyah-Bott).

For G = U(n), H = U(k) × U(n − k), applying Lefschetz for-

mula to (d+ d∗) ⊗ Eρ, one can show that R̃(•) = ⊕n≥0R̃(U(n))

is a Hopf algebra (Z.), where R̃(U(n)) is the representation ring

of polynomial representations, with multiplication map defined

by m := Indd+d∗ : R̃(U(k)) ⊗ R̃(U(n − k)) → R̃(U(n)), and co-

multiplication given by the restriction ∆ = Res : R̃(U(n)) →
R̃(U(k))⊗ R̃(U(n− k)). (Z.)



Conjecture 1 (Z.) Let π : ξ → Grk(Cn) be the tautological bun-

dle on the Grassmannian. For a partition µ of length ≤ k, denote

by ξµ the vector bundle constructed from ξ by the Young sym-

metrizer associated to µ. Then one has

χ(Grk(Cn), ξ∗µ)(t1, . . . , tn) = sµ(t1, . . . , tn).

In particular,

χ(Grk(Cn),Λuξ∗)(t1, . . . , tn) =
n∏

j=1

(u+ tj),

χ(Grk(Cn), Suξ∗)(t1, . . . , tn) =
n∏

j=1

1

u− tj
.



These results can serve as paradigm for studies of other moduli

spaces.



4. Moduli spaces of curves

Let Mg,n be the Deligne-Mumford moduli space of stable curves

of arithmetic genus g, with n marked points.

They are smooth orbifolds of dimension 3g − 3 + n.

There are naturally defined holomorphic vector bundles on Mg,n:

cotangent line bundles L1, . . . , Ln and the Hodge bundle E.

Li|[(C;x1,...,xn)]
∼= T ∗xiC,

E|[(C;x1,...,xn)]
∼= H0(C,ωC).

Define

ψi = c1(Li), λj = cj(E).



Intersection numbers of such classes are called Hodge integrals:

〈τa1 · · · τan〉g,n :=
∫
Mg,n

ψ
a1
1 · · ·ψann .

Witten-Kontsevich Theorem. The generating series of such cor-

relators is a tau-function of the KdV hierarchy.



Denote by Hg,µ the Hurwitz number of almost simple ramified

cover of P1 with ramification type µ and genus g. By Burnside

formula, Hg,µ can be expressed in terms of representations of Sn.

ELSV formula:

Hg,µ =
1

|Aut(µ)|

l(µ)∏
i=1

µ
µi
i

µi!

∫
Mg,l(µ)

Λ∨g (1)∏l(µ)
i=1(1− µiψi)

,

where Λ∨g (1) =
∑g
i=0(−1)iλi.

There are many ways to derive Witten-Kontsevich Theorem from

this formula.



A more general formula is the Mariño-Vafa formula (proved by
Liu-Liu-Z. and Okounkov-Pandharipande).

It was conjectured by physicists based on duality between topo-
logical string theory with Chern-Simons theory (colored HOM-
FLY polynomials).

Mariño-Vafa formula —–Chern-Simons link invariants of the un-
knot

2-partition Hodge integral formula (conjectuted by Z. and proved
by Liu-Liu-Z.) ——Chern-Simons link invariants of the Hopf link

Such formulas can be used to establish some relationship be-
tween Hodge integrals and KP hierarchy and Toda hierarchy
(Z.).



There is a natural Sn-action on Mg,n by permuting the marked

points.

So one expects a relationship with the theory of representation

theory of Sn and hence to the theory of symmetric functions and

integrable hierarchy by exploiting this action.

This has not been extensively studied.

I make a conjecture on the equivariant K-theory intersection

numbers on M0,n.



Conjecture (Z.)

Let µ = (k1k2 · · · kl1m) be a partition of weight n := k1 + · · ·+
kl +m. Suppose that k1 > k2 > · · · > kl > 1 are relatively prime

to each other, then one has

χσµ(M0,n+N ,
n∏
i=1

1

1− qLi
⊗

N⊗
i=1

1

1− qiLn+i
)

=
(1 + mq

1−q +
∑N
i=1

qi
1−qi)

m+N−3

(1− q)m
∏N
i=1(1− qi)

·
l∏

j=1

1 + mq
kj

1−qkj
+
∑N
i=1

q
kj
i

1−q
kj
i

1− qkj
,

where σµ is an element of Sn of cycle type µ.

The l = 1 and l = 2 cases have been proved by Z. by holomorphic

Lefschetz formula.



In the above we have used the following notations:

n∏
i=1

1

1− qLi
:=

∞∑
m=0

qmSm(L1 ⊕ · · · ⊕ Ln).

n⊗
i=1

1

1− qiLi
:=

∑
d1,...,dn≥0

q
d1
1 · · · qdnn

n⊗
i=1

L
di
i .

The above formula generalize the following formula due to Y.-P.

Lee:

χ(M0,n,
n⊗
i=1

1

1− qiLi
) = (1 +

n∑
i=1

qi
1− qi

)n−3
n∏
i=1

1

1− qi
.



5. Hilbert schemes of points

Consider the Hilbert schemes X[n] of points in an algebraic sur-
face X.

For X = C2,

(C2)[n] = {ideal I ⊂ C[z1, z2] : dim(C[z1, z2]/I) = n}

By a theorem of Forgarty, X[n] are nonsingular projective va-
rieties of dimension 2n, and each Hilbert-Chow morphism πn :
x[n] → X(n) to the n-symmetric product X(n) is a resolution of
singularities.

X(n) = Xn/Sn, Sn is the symmetric group formed by permuta-
tions of n objects.



A general phenomenon is that many invariants of S[n] are iden-
tical to the corresponding orbifold invariants of S(n). This leads
to nice expressions for the generating series of these invariants.

For example, for the Betti numbers one has Göttsche’s formula:

∞∑
n=0

Qn
4n∑
i=0

bi(S
[n])(−t)i

=
∞∏

m=0

(1− t2m+1Qm+1)b1(S)(1− t2m+3Qm+1)b3(S)

(1− t2mQm+1)b0(S)(1− t2m+2Qm+1)b2(S)(1− t2m+4Qm+1)b4(S)

=exp
∞∑
n=1

Qn

n(1− t2nQn)

4∑
i=0

(−tn)ibi(S).

By taking t = 1 one gets
∞∑
n=0

Qnχ(S[n]) =
1∏∞

n=1(1−Qn)χ(S)
= exp

∞∑
n=1

1

n

Qn

1−Qn
χ(S).



For the Hodge numbers one has (G ottshce-Soergel):

∞∑
n=0

Qn
2n∑
i=0

hi,j(S[n])(−x)i(−y)j

=exp
∞∑
n=1

Qn

n(1− xnynQn)

∑
0≤i,j≤2

(−xn)i(−yn)jhi,j(S).

By taking x = 0 and y = 1 one gets

∞∑
n=0

Qnχ(S[n],O
S[n]) = exp

∞∑
n=1

Qn

n
χ(S,OS).

By taking y = 1 and change x to y one gets

∞∑
n=0

Qnχ(S[n],Λ−yT
∗S[n]) = exp

∞∑
n=1

Qn

n(1− ynQn)
χ(S,Λ−ynT

∗S).



As noted by Vafa and Witten, these formulas can be understood

as the character formula for some Heisenberg algebra action on⊕
n≥0H

∗(S[n]).

Such actions were constructed geometrically by Nakajima and

Grojnowski.

These results provide a construction of additive basis of H∗(S[n]).

There are several results that relate Hilbert schemes to integrable

hierarchies (Okounkov-Pandhripande, Li-Qin-Wang).



Intersection numbers of cohomology classes on Hilbert schemes?

Not many results.

For Euler characteristics of tautological sheaves on Hilbert schemes:

Some nice formulas.



Let X be a smooth projective or projective k-variety.

Let Zn ⊂ X ×X[n] be the universal family of subschemes param-

eterized by X[n].

Denote by p1 : Zn → S and π : Zn → X[n] the projection onto the

X and X[n] respectively.

For any locally free sheaf F on X let F [n] = π∗(OZn ⊗ p∗1F ).

With this notation we write ξn = ξXn = O[n]
X .



Conjecture 2 (Z.) For an arbitrary smooth k-dimensional pro-

jective variety X and arbitrary holomorphic line bundle L/ on X,

one has ∑
n≥0

Qnχ(X[n],Λ−uL
[n] ⊗ Λ−vL

[n]∗)

= exp
∞∑
n=1

Qn

n
χ(X,Λ−unL⊗ Λ−vnL

∗).

We prove this conjecture for projective surfaces.



Strategy of proof:

Step 1. Reduction to the case of P2 and P1 × P1.

Step 2. Use localization to reduce to the equivariant case on C2.

Step 3. On C2 establish a connection to Macdonald polynomials.



Step 1.

For a complex n-manifold X, let Ψ : K(X) → H×[u, v] be a group
homomorphism from the additive group K(X) to the multiplica-
tive group H× of units of H(X;Q).

We require Ψ is functorial with respect to pull-backs and is poly-
nomial in Chern classes of its argument.

Also let φ(x) ∈ Q[[x]] be a formal power series and put Φ(X) :=
φ(x1) · · ·φ(xn) ∈ H∗(X;Q) with x1, · · · , xn the Chern roots of TX.

For x ∈ K(X), define a power series in Q[[z, u, v]] as follows:

HΨ,Φ(S, x) :=
∞∑
n=0

∫
S[n]

Ψ(x[n])Φ(S[n])zn.



Theorem (Ellingsrud-Gotẗsche-Lehn) For each integer r there

are universal power series Ai ∈ Q[[z, u, v]], i = 1, · · · ,5, depending

only on Ψ, Φ and r, such that for each x ∈ K(S) of rank r we

have

HΨ,Φ(S, x) = exp(
∫
S
(c21(x)A1 + c2(x)A2 + c1(x)c1(S)A3

+c21(S)A4 + c2(S)A5)).

Hence one can reduce to the case of P2 and P1 × P1.



Step 2.

This is an easy step.

Consider the natural 2-torus actions on P2 and P1 × P1, and the

induced actions on their Hilbert schemes.

The fixed points on (P2)[n] and (P1 × P1)[n] can be analyzed.

They “come from” fixed points on P2 or P1 × P1, where locally

is just C2, with suitable T2-actions.



Step 3.

Let T k = (C∗)k act on Ck whose actions on the linear coordinates

z1, . . . , zk are given by

(t1, . . . , tk) · zj = tjzj.

This action induces actions on (Ck)[n] and ξn.

Since (Ck)[n] are quasiprojective, one can consider the equivariant

indices of equivariant coherent sheaves on them.

For a vector A = (a1, . . . , ak) ∈ Zk, denote by OACk the T k-

equivariant line bundle on Ck with weight A. Recall the uni-

versal family Zn lies in Ck × (Ck)[n], denote by p1 : Zn → Ck the

projection onto the first factor. Let ξAn = π∗(OZn ⊗ p∗1O
A
Ck).



Conjecture 3 (Z.) The following identity holds for k ≥ 2:∑
n≥0

Qnχ((Ck)[n],Λ−uξAn ⊗ Λ−v(ξ
A
n )∗)(t1, . . . , tk)

=exp(
∞∑
n=1

(1− untnA)(1− vnt−nA)Qn

n
∏k
i=1(1− tni )

),

where

tnA = t
na1
1 · · · tnakk .



By holomorphic Lefschetz formula,∑
n≥0

Qnχ((C2)[n],Λ−uξ
A
n ⊗ Λ−v(ξ

A
n )∗)(t1, t2)

=
∑
µ
Q|µ|

∏
(i,j)∈µ

(1− utAti−1
1 t

j−1
2 ) · (1− vt−At−(i−1)

1 t
−(j−1)
2 )

(1− t
−(µtj−i)
1 t

µi−j+1
2 )(1− t

µtj−i+1

1 t
−(µi−j)
2 )

=
∑
µ
Q|µ|

∏
s∈µ

(1− utAt
l′(s)
1 t

a′(s)
2 ) · (1− vt−At−l

′(s)
1 t

−a′(s)
2 )

(1− t
−l(s)
1 t

a(s)+1
2 )(1− t

l(s)+1
1 t

−a(s)
2 )

Summations over all partitions of nonnegative integers

Combinatorics results in the theory of symmetric function.



Key observation (with Zhilan Wang):

∑
n≥0

Qnχ((C2)[n],Λ−uξ
A
n ⊗ Λ−v(ξ

A
n )∗)(t1, t2)

=
∑
µ

(
−Qvt−A

t1t2)
)|µ|εx

utA,t−1
1
Pµ(x; t2, t

−1
1 ) · εy

v−1tA,t−1
2
Pµt(y; t1, t

−1
2 ).

Macdonald polynomials: Pµ(x1, x2, . . . ; q, t) Complicated defini-
tions not to be recalled here.

Summation formula for macdonald polynomials:∑
µ
v|µ|Pµ(x; q, t)Pµt(y; t, q) =

∏
j,k

(1 + vxjyk).



Specialization: εxu,t : ΛF → F the specialization homomorphism

defined by

εxu,tpn(x) =
1− un

1− tn

for each integer n ≥ 1. Then we have:

εxu,tPµ(x; q, t) =
∏
s∈µ

tl
′(s) − qa

′(s)u

1− qa(s)tl(s)+1
.

Changing µ to µt, we also have

εxu,tPµt(x; q, t) =
∏
s∈µ

ta
′(s) − ql

′(s)u

1− ql(s)ta(s)+1
.



Mark Haiman established a different relationship between Hilbert

schemes and Macdonald polynomials.



Thank you very much for your
attentions!


