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Trialgebras and families of polytopes

May 6, 2002

Jean-Louis Loday and Maŕıa O. Ronco

Abstract. We show that the family of standard simplices and the family
of Stasheff polytopes are dual to each other in the following sense. The
chain modules of the standard simplices, resp. the Stasheff polytopes,
assemble to give an operad. We show that these operads are dual of each
other in the operadic sense. The main result of this paper is to show
that they are both Koszul operads. As a consequence the generating
series of the standard simplices and the generating series of the Stasheff
polytopes are inverse to each other. The two operads give rise to new
types of algebras with 3 generating operations, 11 relations, respectively
7 relations, that we call associative trialgebras and dendriform trialgebras
respectively. The free dendriform trialgebra, which is based on planar
trees, has an interesting Hopf algebra structure, which will be dealt with
in another paper.

Similarly the family of cubes gives rise to an operad which happens
to be self-dual for Koszul duality.

Introduction. We introduce a new type of associative algebras charac-
terized by the fact that the associative product ∗ is the sum of three binary
operations :

x ∗ y := x≺ y + x≻ y + x · y ,

and that the associativity property of ∗ is a consequence of 7 relations
satisfied by ≺,≻ and ·, cf. 2.1. Such an algebra is called a dendriform
trialgebra. An example of a dendriform trialgebra is given by the algebra
of quasi-symmetric functions (cf. 2.3).

Our first result is to show that the free dendriform trialgebra on one
generator can be described as an algebra over the set of planar trees.
Equivalently one can think of these linear generators as being the cells of
the Stasheff polytopes (associahedra), since there is a bijection between
the k-cells of the Stasheff polytope of dimension n and the planar trees
with n + 2 leaves and n − k internal vertices.

The knowledge of the free dendriform trialgebra permits us to con-
struct the algebras over the dual operad (in the sense of Ginzburg and
Kapranov [G-K]) and therefore to construct the chain complex of a den-
driform trialgebra. This dual type is called the associative trialgebra since
there is again three generating operations, and since all the relations are
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of the associativity type (cf. 1.2). We show that the free associative trial-
gebra on one generator is linearly generated by the cells of the standard
simplices.

The main result of this paper is to show that the operads of den-
driform trialgebras (resp. associative trialgebras) is a Koszul operad, or,
equivalently, that the homology of the free dendriform trialgebra is trivial.

As a consequence of the description of the free trialgebras in the den-
driform and associative framework, the generating series of the associated
operads are the generating series of the family of the Stasheff polytopes
and of the standard simplices respectively:

fK
t (x) =

∑

n≥1

(−1)np(Kn−1, t)xn, f∆
t (x) =

∑

n≥1

(−1)np(∆n−1, t)xn .

Here p(X, t) denotes the Poincaré polynomial of the polytope X .
The acyclicity of the Koszul complex for the dendriform trialgebra

operad implies that
f∆

t (fK
t (x)) = x.

Since p(∆n, t) = ((1 + t)n+1 − 1)/t one gets

f∆
t (x) =

−x

(1 + x)(1 + (1 + t)x)

and therefore

fK
t (x) =

−(1 + (2 + t)x) +
√

1 + 2(2 + t)x + t2x2

2(1 + t)x
.

In [L1, L2] we dealt with dialgebras, that is with algebras defined
by two generating operations. In the associative framework the dialgebra
case is a quotient of the trialgebra case and in the dendriform framework
the dialgebra case is a subcase of the trialgebra case.

If we split the associative relation for the operation ∗ into 9 relations
instead of 7, then we can devise a similar theory in which the family of
Stasheff polytopes is replaced by the family of cubes. So we get a new
type of algebras that we call the cubical trialgebras. It turns out that the
associated operad is self-dual (so the family of standard simplices is to
be replaced by the family of cubes). The generating series of this operad
is the generating series of the family of cubes: f I

t (x) = −x
1+(t+2)x . It is

immediate to check that f I
t (f I

t (x)) = x , hence one can presume that this
is a Koszul operad. Indeed we can prove that the Koszul complex of the
cubical trialgebra operad is acyclic.

As in the dialgebra case the associative algebra on planar trees can
be endowed with a comultiplication which makes it into a Hopf algebra.
This comultiplication satisfies some compatibility properties with respect
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to the three operations ≺,≻ and · . This subject will be dealt with in
another paper.

Here is the content of the paper.

1. Associative trialgebras and standard simplices
2. Dendriform trialgebras and Stasheff polytopes
3. Homology and Koszul duality
4. Acyclicity of the Koszul complex
5. Cubical trialgebras and hypercubes

In the first section we introduce the notion of associative trialgebra
and we compute the free algebra. This result gives the relationship with
the family of standard simplices.

In the second section we introduce the notion of dendriform trialgebra
and we compute the free algebra, which is based on planar trees. This
result gives the relationship with the family of Stasheff polytopes.

In the third section we show that the associated operads are dual to
each other for Koszul duality. Then we construct the chain complexes
which compute the homology of these algebras. The acyclicity of the
Koszul complex of the operad is equivalent to the acyclicity of the chain
complex of the free associative trialgebra.

This acyclicity property is the main result of this paper, it is proved
in the fourth section. After a few manipulations involving the join of
simplicial sets we reduce this theorem to proving the contractibility of
some explicit simplicial complexes. This is done by producing a sequence
of retractions by deformation.

In the fifth section we treat the case of the family of hypercubes, along
the same lines.

These results have been announced in [LR2].

Convention. The category of vector spaces over the field K is denoted
by Vect, and the tensor product of vector spaces over K is denoted by ⊗.
The symmetric group acting on n elements is denoted by Sn.

1. Associative trialgebras and standard simplices.

In [L1, L2] the first author introduced the notion of associative dial-
gebra as follows.

1.1 Definition. An associative dialgebra is a vector space A equipped
with 2 binary operations : ⊣ called left and ⊢ called right,

⊣ : A ⊗ A → A,(left)

⊢ : A ⊗ A → A,(right)
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satisfying the relations:






(x⊣ y)⊣ z = x⊣(y ⊣ z),

(x⊣ y)⊣ z = x⊣(y ⊢ z),

(x⊢ y)⊣ z = x⊢(y ⊣ z),

(x⊣ y)⊢ z = x⊢(y ⊢ z),

(x⊢ y)⊢ z = x⊢(y ⊢ z).

Observe that the eight possible products with 3 variables x, y, z (appearing
in this order) occur in the relations. Identifying each product with a vertex
of the cube and moding out the cube according to the relations transforms
the cube into the triangle ∆2 :
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(⊣)⊣ (⊢)⊣

(⊣)⊢ (⊢)⊢

⊢(⊢)⊣(⊢)

⊣(⊣) ⊢(⊣)
7→

⊣⊣

⊢⊣

⊢⊢

The double lines indicate the vertices which are identified under the rela-
tions.

Let us now introduce a third operation ⊥ : A⊗A → A called middle.
We think of left and right as being associated to the 0-cells of the interval
and middle to the 1-cell :

⊣ ⊥ ⊢

•−−−−−−−−•

Let us associate to any product in three variables a cell of the cube by using
the three operations ⊣,⊢,⊥. The equivalence relation which transforms
the cube into the triangle determines new relations (we indicate only the
1-cells):
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(⊥)⊣

(⊢)⊥
(⊥)⊢

(⊣)⊥
⊥(⊣)

⊣(⊥)

⊥(⊢)

⊢(⊥)

7→

⊥⊣ ⊢⊥

(⊣)⊥ = ⊥(⊢)
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This analysis justifies the following :

1.2 Definitions. An associative trialgebra (resp. an associative trioid) is
a vector space A (resp. a set X) equipped with 3 binary operations : ⊣
called left, ⊢ called right and ⊥ called middle, satisfying the following 11
relations : 





(x⊣ y)⊣ z = x⊣(y ⊣ z),

(x⊣ y)⊣ z = x⊣(y ⊢ z),

(x⊢ y)⊣ z = x⊢(y ⊣ z),

(x⊣ y)⊢ z = x⊢(y ⊢ z),

(x⊢ y)⊢ z = x⊢(y ⊢ z),






(x⊣ y)⊣ z = x⊣(y⊥ z),

(x⊥ y)⊣ z = x⊥(y ⊣ z),

(x⊣ y)⊥ z = x⊥(y ⊢ z),

(x⊢ y)⊥ z = x⊢(y⊥ z),

(x⊥ y)⊢ z = x⊢(y ⊢ z),
{

(x⊥ y)⊥ z = x⊥(y⊥ z).

First, observe that each operation is associative. Second, observe that
the following rule holds: “on the bar side, does not matter which prod-
uct”. Third, each relation has its symmetric counterpart which consists
in reversing the order of the parenthesizing, exchanging ⊢ and ⊣, leaving
⊥ unchanged.

A morphism between two associative trialgebras is a linear map which
is compatible with the three operations. We denote by Trias the category
of associative trialgebras.

1.3 Relationship with the planar trees. The set of planar trees with
(n + 1) leaves is denoted by Tn, see 2.4 for notation and definitions. We
associate the trees in T2 to the three binary operations as follows:

(
@

@
@@

�
�

��@
@

; x, y
)
7→

(
@

@
@@

�
�

��

; x⊣ y
)

(
@

@
@@

�
�

���
�

; x, y
)
7→

(
@

@
@@

�
�

��

; x⊢ y
)

(
@

@
@@

�
�

��

; x, y
)
7→

(
@

@
@@

�
�

��

; x⊥ y
)
.

Observe that it is the direction of the middle leaf which determines the
operation. Anyone of the 11 trees t in T3 gives two different ways of com-
puting the image of (t; x, y, z). Equating the two results gives a relation.

For instance, let t = @
@

@@

�
�

��
�

��

. The first computation gives

( @
@

@@

�
�

��
�

��

; x, y, z) 7→ ( @
@

@@

�
�

���
�

; x⊥ y, z) 7→ ( @
@

@@

�
�

��

; (x⊥y)⊢ z ).

The second computation gives

( @
@

@@

�
�

��
�

��

; x, y, z) 7→ ( @
@

@@

�
�

���
�

; x, y⊢ z) 7→ ( @
@

@@

�
�

��

; x⊢(y ⊢ z)).
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So this tree gives rise to the 10th relation of the list 1.2. It is straightfor-
ward to verify that the 11 trees of T3 give the 11 relations of 1.2. This
relationship will be exploited in constructing the chain complex of an as-
sociative trialgebra in section 3.

1.4 Examples of associative trialgebras.

(a) If A is an associative trialgebra, then the n × n-matrices over A still
form an associative trialgebra by taking the operations coefficient-wise.
(b) If ⊣ = ⊥ = ⊢, then we get simply an associative algebra (nonunital).
So we get a functor between the categories of algebras :

As → Trias .

Ignoring the operation ⊥ gives an associative dialgebra. Hence there is a
(forgetful) functor

Trias → Dias

from the category of trialgebras to the category of dialgebras.

(c) The vector space over an associative trioid is obviously an associative
trialgebra.

d) The Solomon algebra. Let V = ⊕n≥0K · ωn be the graded K-vector
space such that the subspace of homogeneous elements of degree n is the
vector space of dimension one, spanned by the generator ωn, for all n ≥ 0.
Consider the tensor algebra T (V ), with the operations ⊥, ⊣ and ⊢ given
by:

(ωn1
⊗ . . .⊗ωnr

) ⊥ (ωm1
⊗ . . .⊗ωmk

) := ωn1
⊗ . . .⊗ωnr

⊗ωm1
⊗ . . .⊗ωmk

,

(ωn1
⊗ . . .⊗ ωnr

) ⊣ (ωm1
⊗ . . . ⊗ ωmk

) := ωn1
⊗ . . .⊗ ωnr

⊗ ωm1+...+mk
,

(ωn1
⊗ . . .⊗ ωnr

) ⊢ (ωm1
⊗ . . . ⊗ ωmk

) := ωn1+...+nr
⊗ ωm1

⊗ . . .⊗ ωmk
,

for n1, . . . , nr, m1, . . . , mk ≥ 0. It is easy to check that (T (V ),⊥,⊣,⊢) is
an associative trialgebra. The associative algebra (T (V ),⊥) is isomorphic
to the Solomon algebra Sol∞ (cf. for instance [LR1]).

1.5 Notation. Let [n−1] := {0, · · · , n−1} be a set with n elements. The
set of non-empty subsets of [n − 1] is denoted by Pn. Observe that Pn is
graded by the cardinality of its members. We denote by Pn,k the subset
of Pn whose members have cardinality k. So Pn = Pn,1 ∪ · · · ∪ Pn,n.

1.6 Free associative trialgebra. By definition the free associative tri-
algebra over the vector space V is an associative trialgebra Trias(V )
equipped with a map V → Trias(V ), which satisfies the following uni-
versal property. For any map V → A, where A is an associative trialge-
bra, there is a unique extension Trias(V ) → A which is a morphism of
associative trialgebras.
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Since the operations have no symmetry and since the relations let the
variables in the same order, Trias(V ) is completely determined by the
free associative trialgebra on one generator (i.e. V = K). The latter is a
graded vector space of the form

Trias(K) = ⊕n≥1Trias(n).

From our motivation of defining the associative trialgebra type it is clear
that for n = 1, 2, 3, a basis of Trias(n) is given by the elements of P1, P2

and P3 respectively (i.e. the cells of ∆0, ∆1, ∆2 respectively).

Let us denote by

bij : [i1 − 1] ∪ · · · ∪ [in − 1] → [i1 + · · ·+ in − 1]

the bijection which sends k ∈ [ij−1] to i1+· · ·+ij−1+k ∈ [i1+· · ·+in−1].

1.7 Theorem. The free associative trialgebra Trias(K) on one generator
is ⊕n≥1K[Pn] as a vector space. The binary operations ⊣,⊥ and ⊢ from
K[Pp] ⊗ K[Pq] to K[Pp+q] are given by

X ⊣Y = bij(X), X ⊥Y = bij(X ∪ Y ) X ⊢Y = bij(Y ) ,

where X ∈ Pp and Y ∈ Pq and bij : [p − 1] × [q − 1] → [p + q − 1].

1.8 Corollary. The free associative trialgebra Trias(V ) on the vector
space V is

Trias(V ) = ⊕n≥1K[Pn] ⊗ V ⊗n,

and the operations are induced by the operations on Trias(K) and con-
catenation.

Proof. It suffices to make explicit the free trioid in one generator, see
Proposition 1.9 below. Indeed, it proves Theorem 1.7 by applying the
functor which sends a set Z to the vector space K[Z] having the elements
of Z as a basis. Then the Corollary is a consequence of the Theorem
because all the relations in the definition of an associative trialgebra leave
the variables in the same order.

1.9 Proposition. The free trioid T on one generator x is isomorphic to
the trioid P =

⋃

n≥1 Pn equipped with the operations described in Theorem
1.7 above.

Proof. First we prove that (P ;⊣,⊢,⊥) is a trioid generated by {0} ∈ P1.
For convenience let us denote this generator by x and by x · · · x̌ · · · x̌ · · ·x
the element corresponding to X ∈ Pn, where there are n copies of x and, if
i ∈ X , then the ith factor is ceched. For instance {0, 2} ∈ P5 corresponds
to x̌xx̌xx. Under this notation the operations are easy to describe: one
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concatenates the two elements, keeping only the marking on the left side
for ⊣, on the right side for ⊢, on both sides for ⊥. For instance







x̌x⊣ xx̌x = x̌xxxx,

x̌x⊢ xx̌x = xxxx̌x,

x̌x⊥xx̌x = x̌xxx̌x.

It is immediate to verify that the eleven relations are fulfilled.
Since T is the free trioid generated by x, there exists a unique trioid

morphism φ : T → P . Each map φn : Tn → Pn is surjective since, in
P , x = {0} ∈ P1 is also the generator. In order to prove that φ is an
isomorphism, it suffices to show that #Tn ≤ #Pn.

1.10 Lemma. Any complete parenthesizing of

(x⊢ · · · ⊢x)
︸ ︷︷ ︸

a0

⊢ (x⊣ · · · ⊣x)
︸ ︷︷ ︸

a1

⊥ (x⊣ · · · ⊣x)
︸ ︷︷ ︸

a2

⊥ · · ·⊥ (x⊣ · · · ⊣x)
︸ ︷︷ ︸

ak

where a0 ≥ 0, ai ≥ 1 for i = 1, · · ·k, gives the same element, denoted ω,
in T . We call it the normal form of ω. Its image under φ in P is

x · · ·x
︸ ︷︷ ︸

a0

x̌ · · ·x
︸ ︷︷ ︸

a1

x̌ · · ·x
︸ ︷︷ ︸

a2

· · ·x x̌ · · ·x
︸ ︷︷ ︸

ak

.

Proof. Putting parentheses outside (resp. inside) the existing parentheses
does not change the value of the element by virtue of relations 9 and 11
(resp. 1 and 5). The second statement is immediate by direct inspection.

End of the proof of Proposition 1.9. Since any element in Pn is the image
of an element of the type indicated in Lemma 1.10, it suffices to show that
any element in Tn can be written under this form. We work by induction
on n. It is clear for n = 1. We suppose that it is true for all p < n. Any
σ ∈ Tn is of the form σ′ ⊣σ′′ or σ′ ⊢σ′′ or σ′⊥σ′′ for some σ′ ∈ Tp, σ

′′ ∈ Tq.
We write σ′ and σ′′ in a normal form as in Lemma 1.10 and we compute
the three elements σ′ ⊣σ′′, σ′ ⊢ σ′′ and σ′⊥σ′′. By using the relations 1
to 11 it is easy to show that they can be written under a normal form. So
the proof of Proposition 1.9 is complete.

1.11 Filtration. The set Pn can be filtered by FkPn := ∪i≤kPn,i, cf. 1.5.
Since, in any product of two elements, the number of marked variables is
equal or less than the sum of the numbers of the components, the image
of FkPn × FlPm is in Fk+lPn+m.

1.12 The family of standard simplices. Let ∆n = {(x0, · · · , xn) ∈
Rn+1 | x0 + · · ·+xn = 1, 0 ≤ xi ≤ 1} be the standard n-simplex. As usual
we label its vertices by the integers 0 to n. So the vertex i has coordinates

8



0 except xi = 1. An i-cell in ∆n is completely determined by its vertices,
hence by a non-empty subset of [n] = {0, · · · , n}, that is, following our
notation, an element of Pn+1. So there is a bijection between the k-cells
of ∆n and the set Pn+1,k+1.

∆0

•

0

∆1

• •

0 1

∆2

•�
�
�
�
�
�
�
�
�
��

A
A

A
A

A
A

A
A

A
AA

•
0

•

1
•

2

Observe that the Poincaré polynomial of ∆n is

p(∆n, t) :=
∑

k≥0

#(k-cells)tk =
((1 + t)n+1 − 1)

t
.

If we define the generating series of a family of polytopes X(n), n ≥ 0 by
fX

t (x) =
∑

n≥1(−1)np(X(n − 1), t)xn, then we get the following for the
family of standard simplices:

f∆
t (x) =

−x

(1 + x)(1 + (1 + t)x)
.

1.13 Generating series of a filtered operad. The operad P deter-
mined by a category of algebras is a functor P : Vect → Vect of the form
P(V ) = ⊕n≥1P(n) ⊗Sn

V ⊗n (here P(n) is a right Sn-module) together
with an associative and unital transformation of functors γ : P ◦ P → P,
cf. [G-K, O]. The free P-algebra over V is precisely P(V ).

By definition the generating series of an operad P is

fP(x) :=
∑

n≥1

(−1)n(1/n!) dimP(n)xn.

When the operad is filtered, we can define a finer invariant by replacing
the dimension of P(n) by its Poincaré polynomial

p(P(n), t) :=
∑

k≥0

dim(FkPn/Fk−1Pn) tk

to get a series with polynomial in t as coefficients:

fP
t (x) :=

∑

n≥1

(−1)n(1/n!)p(P(n), t)xn.

In [G-K] it is shown that if the quadratic operad P is a Koszul operad, then

the generating series of P and of its dual P ! are related by fP(fP!

(x)) = x .
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This formula is obtained by computing the Euler-Poincaré characteristic
of the Koszul complex of P, which gives the left hand-side. Since this
complex is acyclic, its homology is trivial, and this gives the right-hand
side.

If the quadratic operad P is filtered, then a refinement of this argu-
ment gives the functional equation:

fP
t (fP!

t (x)) = x .

1.14 The operad of associative trialgebras. Let Trias be the op-
erad associated to the associative trialgebras. By Corollary 1.8 we have
Trias(n) = K[Pn] ⊗ K[Sn], where Sn is the symmetric group. So, as
an Sn-module, Trias(n) is the direct sum of several copies of the regu-
lar representation, one for each element in Pn. In other words Trias is
a non-Σ-operad in the sense of [O, p.4]. The filtration of the free trioid
described in 1.11 induces a filtration on the operad Trias. Since this fil-
tration corresponds precisely to the filtration of the standard simplex by
the dimension of the cells, the generating series are equal:

fTrias
t (x) = f∆

t (x) =
−x

(1 + x)(1 + (1 + t)x)
.

1.15 Relationship with the Leibniz and Poisson algebra struc-

tures. The notion of associative dialgebra was first introduced as an
analogue of associative algebra for Leibniz algebras. Let us recall that
a Leibniz algebra is defined by a binary operation [−,−] which is not
necessarily skew-symmetric and satisfies the right Leibniz identity:

[[x, y], z] = [[x, z], y] + [x, [y, z]].

If the bracket happens to be skew-symmetric, then this is a Lie bracket.
Any associative dialgebra gives rise to a Leibniz bracket by:

[x, y] := x⊣ y − y ⊢x.

Suppose now that we would like to construct a noncommutative version
of Poisson algebra. Then we introduce an associative operation xy (not
necessarily commutative), and it is natural to require that its relationship
with the Leibniz bracket is given by

[xy, z] = x[y, z] + [x, z]y , (1.15.1)

[x, yz − zy] = [x, [y, z]] . (1.15.2)

1.16 Proposition. Let (A,⊣,⊢,⊥) be an associative trialgebra. By defin-
ing

[x, y] := x⊣ y − y ⊢x and xy := x⊥ y

10



we get a noncommutative Poisson algebra structure on A.

Proof. The relation 1.15.1 is a consequence of the relations number 7,
8 and 9 in 1.2 and the relation 1.15.2 is a consequence of the relations
number 6 and 10.

Compare with the work of Marcelo Aguiar [A].

1.17 Relationship with the boundary map of the standard sim-

plex. The space K[Pn] is in fact the chain module of the standard sim-
plex ∆n−1, and so it is equipped with a differential map δ : K[Pn,k] →
K[Pn,k−1]. Explicitly δ is given by

δ(X) :=
r∑

i=1

(−1)i+1X \ {ni},

for X = {n1 < n2 < . . . < nk} a subset of [n − 1]. The relationship of δ
with the three operations ⊣,⊢ and ⊥ is given (for X ∈ Pn,k) by:

δ(X ⊣ Y ) = δ(X) ⊣ Y,

δ(X ⊢ Y ) = (−1)kX ⊢ δ(Y ),

δ(X ⊥ Y ) =







δ(X) ⊥ Y + (−1)kX ⊥ δ(Y ) for δ(X) 6= 0 and δ(Y ) 6= 0,
X ⊢ Y + (−1)kX ⊥ δ(Y ) for δ(X) = 0 and δ(Y ) 6= 0,
δ(X) ⊥ Y + (−1)kX ⊣ Y for δ(X) 6= 0 and δ(Y ) = 0,
X ⊢ Y − X ⊣ Y for δ(X) = 0 and δ(Y ) = 0.

2. Dendriform trialgebras and Stasheff polytopes. In [L1, L2] the
first author introduced the notion of dendriform dialgebras. Here we add
a third operation.

2.1 Dendriform trialgebras. By definition a dendriform trialgebra is
a vector space D equipped with three binary operations :

≺ called left, ≻ called right, · called middle,

satisfying the following relations :







(x≺ y)≺ z = x≺(y ∗ z) ,

(x≻ y)≺ z = x≻(y≺ z) ,

(x ∗ y)≻ z = x≻(y≻ z) ,







(x≻ y) · z = x≻(y · z) ,

(x≺ y) · z = x · (y≻ z) ,

(x · y)≺ z = x · (y≺ z) ,
{

(x · y) · z = x · (y · z) ,

11



where x ∗ y := x≺ y + x≻ y + x · y.

2.2 Lemma. The operation ∗ is associative.

Proof. It suffices to add up all the relations to observe that on the right
side we get (x∗y)∗z and on the left side x∗ (y ∗z). Whence the assertion.

In other words, a dendriform trialgebra is an associative algebra for
which the associative operation is the sum of three operations and the
associative relation splits into 7 relations.

We denote by Tridend the category of dendriform trialgebras and
by Tridend the associated operad. By the preceding lemma, there is a
well-defined functor:

Tridend → As ,

where As is the category of (nonunital) associative algebras.
Observe that the operad Tridend does not come from a set operad

because the operation ∗ needs a sum to be defined. However there is a
property which is close to it. It is discussed and exploited in [L3].

2.3 Examples of dendriform trialgebras.

(a) If D is a dendriform trialgebra, then the n × n-matrices over D still
form a dendriform trialgebra.

(b) If the operation · is taken to be trivial (i.e x · y = 0 for any x, y ∈ D),
then x ∗ y = x≺ y + x≻ y, and we get simply a dendriform dialgebra
as defined in [L1, L2] (two generating operations and 3 relations). This
defines a functor

Didend → Tridend.

(c) Quasi-symmetric functions. Let K < y1, y2, · · · , yk, · · · > be the free
associative unital algebra on a countable set of variables yk. We define a
new associative product on it by the following inductive formula

ykω ∗ yk′ω′ := yk(ω ∗ yk′ω′) + yk′(ykω ∗ ω′) + yk+k′(ω ∗ ω′) ,

where ω and ω′ are monomials or 1 (unit for ∗). So for instance

yk ∗ yk′ := ykyk′ + yk′yk + yk+k′ .

If we denote by ykω≺ yk′ω′, resp. ykω≻ yk′ω′, resp. ykω · yk′ω′, the first,
resp. second, resp. third summand in this sum, then we can show that we
have defined a dendriform trialgebra structure on the augmentation ideal.
Indeed, let x = ykω , y = ylω

′ and z = ymω′′. Then the seven relations of
2.1 hold and give the elements

yk(ω ∗ ylω
′ ∗ ymω′′) ,

12



yl(ykω ∗ ω′ ∗ ymω′′) ,

ym(ykω ∗ ylω
′ ∗ ω′′) ,

yk+l(ω ∗ ω′ ∗ ymω′′) ,

yl+m(ykω ∗ ω′ ∗ ω′′) ,

yk+m(ω ∗ ylω
′ ∗ ω′′) ,

yk+l+m(ω ∗ ω′ ∗ ω′′) .

Equipped with the associative (and commutative) product ∗, the space of
noncommutative polynomials K〈y1, y2, · · · , yk, · · ·〉 is the algebra QSym of
quasi-symmetric functions, cf. [C, formula 94], [H].

One can show that the augmentation ideal is the free dendriform
commutative trialgebra on one generator y1. Here commutative means
x≻ y = y≺x and x · y = y · x for any x and y.

(d) The partition example. For n ≥ 1, a partition of n is a family
of positive integers n = (n1, . . . , nr), such that

∑r
i=1 ni = n. Given

partitions n = (n1, . . . , nr) of n and m = (m1, . . . , mk) of m, we denote
by n ×m the partitions of n + m given by:

n× m := (n1, . . . , nr, m1, . . . , mk).

Given a partition n = (n1, . . . , nr) of n, a (n1, . . . , nr)-shuffle is a permu-
tation σ in the symmetric group Sn, such that:

σ(1) < . . . < σ(n1), σ(n1 + 1) < . . . < σ(n1 + n2), . . . ,

σ(n1 + . . . + nr−1 + 1) < . . . < σ(n).

We denote by Sh(n1, . . . , nr) the set of all (n1, . . . , nr)-shuffles.
Given permutations σ ∈ Sn and τ ∈ Sm, we denote by σ × τ the element
of Sn+m whose image is (σ(1), . . . , σ(n), τ(1) + n, . . . , τ(m) + n).
Given an (n1, . . . , nr)-shuffle σ there exist unique elements σ0 ∈ Sh(n1 +
. . . + nr−1, nr) and σ1 ∈ Sh(n1, . . . , nr−1), such that:

σ = σ0(σ1 × 1Snr
), (∗)

where 1Snr
is the identity element of the group Snr

.

For n ≥ 1, the set of ordered partitions of n is the set

Πn := {(n, σ) : where n is a partition of n and σ ∈ Sh(n1, . . . , nr)}.

If n = (1, 2, · · · , n), then we simply denote it by (n). The element ((n), 1Sn
)

will play a particular role.
Given elements (n, σ) ∈ Πn and (m, τ) ∈ Πm, and an (n, m)-shuffle

γ, we define a new element (n, σ) ×γ (m, τ) in Πn+m as follows:

(n, σ)×γ (m, τ) := (n× m, γ(σ × τ)).
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Let K[Π∞] be the graded vector space spanned by the graded set
∪n≥1Πn. Given partitions n = (n1, . . . , nr) of n and m = (m1, . . . , mk)
of m, and permutations σ ∈ Sh(n1, . . . , nr) and τ ∈ Sh(m1, . . . , mk), we
define the three operations on K[Π∞] as follows.

• Right operation: If (m, σ) = ((m), 1Sm
), then:

(n, σ) ≻ ((m), 1Sm
) := ((n1, . . . , nr, m), σ × 1Sm

).

If k ≥ 2, then

(n, σ) ≻ (m, τ) := ((n, σ) ∗ (m′, τ1)) ×1Sn×τ0
((mk), 1Smk

),

where τ0 and τ1 are the permutations defined in formula (∗) above and
m′ = (m1, . . . , mk−1).

• Left operation: If r = 1, then ((n), σ) = ((n), 1Sn
). In this case, we

define
((n), 1Sn

) ≺ (m, τ) := (m, τ) ×αn,m
((n), 1Sn

)

where αn,m(i) :=

{

n + i for 1 ≤ i ≤ m
i − m for m + 1 ≤ i ≤ m + n.

If r ≥ 2, then we have

((n, σ) ≺ (m, τ) := ((n′, σ1) ∗ (m, τ)) ×β ((nr), 1Snr
),

where

β(i) :=







σ0(i) for 1 ≤ i ≤ n1 + . . . + nr−1,
i + nr for n1 + . . . + nr−1 < i ≤ n1 + . . . + nr−1 + m
σ0(i − n1 − . . . − nr−1) for n1 + . . . + nr−1 + m < i ≤ n + m.

,

and σ0 and σ1 are the elements defined in formula (∗) above.

• Middle operation: If (n, σ) = ((n), 1Sn
) and (m, τ) = ((m), 1Sm

), then

((n), 1Sn
) · ((m), 1Sm

) := ((n + m), 1Sn+m
).

If (n, σ) = ((n), 1Sn
) and k ≥ 2, we have:

((n), 1Sn
) · (m, τ) := ((m1, . . . , mk−1, mk + n), β(τ1 × 1Smk+n

)),

where

β :=







τ0(i) for 1 ≤ i ≤ m1 + . . . + mk−1,
i − m1 − . . .− mk−1 for m1 + . . . + mk−1 < i ≤ m1 + . . . + mk−1 + n,
τ0(i − n) for m1 + . . . + mk−1 + n < i ≤ m + n.

14



if (m, τ) = ((m), 1Sm
), and r ≥ 2, then:

(n, σ) · ((m), 1Sm
) := ((n1, . . . , nr−1, nr + m), σ × 1Sm

).

If k, r ≥ 2, then the product · is given by:

(n, σ) · (m, τ) := ((n′, σ1) ∗ (m′, τ1)) ×α ((nr + mk), 1Sn−r+mk
),

where

α(i) :=







σ0(i) for 1 ≤ i ≤ n1 + . . . + nr−1,
τ0(i − n1 − . . . − nr−1) for n1 + . . . + nr−1 < i ≤ n + m − nr − mk,
σ0(i − mi − . . .− mk−1) for n + m − nr − mk < i ≤ n + m − mk,
τ0(i − n) for n + m − mk < i ≤ n + m.

With these definitions one can show that (K[Π∞];≺,≻, ·) is a den-
driform trialgebra.

2.4 Planar trees. We denote by Tn the set of planar trees with n + 1
leaves, n ≥ 0 (and one root) such that the valence of each internal vertex
is at least 2. Here are the first of them:

T0 = {|}, T1 = { @
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The integer n is called the degree of t ∈ Tn. The number of elements in
Tn is the so-called super Catalan number Cn :

n 1 2 3 4 5
Cn 1 3 11 45 197

The set Tn is the disjoint union of the sets Tn,k made of the pla-
nar trees which have n − k + 1 internal vertices. For instance Tn,1 is
made of the planar binary trees, and its cardinality is the Catalan number
(2n)!/n!(n + 1)!. On the other extreme the set Tn,n has only one element,
which is the planar tree with one vertex. It is sometimes called a corolla.
So we have

Tn = Tn,1 ∪ · · · ∪ Tn,n.

By convention T0 = T0,0.
The grafting of k planar trees x(0), · · · , x(k) is a planar tree denoted

x(0) ∨ · · · ∨ x(k) obtained by joining the k + 1 roots to a new vertex and
adding a new root. Any planar tree can be uniquely obtained as x =
x(0)∨· · ·∨x(k), where k+1 is the valence of the lowest vertex. We will use
the uniqueness of this decomposition in the construction of a dendriform
trialgebra structure on planar trees. Observe that the degree of x(i) is
strictly smaller than the degree of x.
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2.5 Free dendriform trialgebra. The free dendriform trialgebra over
the vector space V is a dendriform trialgebra Tridend(V ) equipped with
a map V → Tridend(V ) which satisfies the classical universal property,
cf. 1.6. In the following theorem we make it explicit in terms of planar
trees.

2.6 Theorem. The free dendriform trialgebra on one generator is

Tridend(K) = ⊕n≥1K[Tn],

where Tn is the set of planar trees with (n + 1) leaves.
The binary operations are given on Tp ×Tq by the recursive formulas:

x≺ y = x(0) ∨ · · · ∨ (x(k) ∗ y) ,

x · y = x(0) ∨ · · · ∨ (x(k) ∗ y(0)) ∨ · · · ∨ y(ℓ) ,

x≻ y = (x ∗ y(0)) ∨ · · · ∨ y(ℓ) ,

where x = x(0) ∨ · · · ∨ x(k) ∈ Tp and y = y(0) ∨ · · · ∨ y(ℓ) ∈ Tq. As before
x ∗ y := x≺ y + x · y + x≻ y and | ∈ T0 is a unit for ∗.

Proof. It follows from the following two lemmas. In the first one we prove
that (⊕n≥1K[Tn];≺,≻, ·) is a dendriform trialgebra generated by the tree

@
@

@@

�
�

��

. As a consequence there is a unique dendriform trialgebra morphism
Tridend(K) → ⊕n≥1K[Tn] which sends the generator x of Tridend(K) to

@
@

@@

�
�

��

∈ T1. In order to prove that this (surjective) map is an isomorphism,
we construct explicitly its inverse in the second lemma.

2.7 Lemma. The binary operations ≺,≻ and · defined on ⊕n≥1K[Tn] in
theorem 2.6 satisfy the axioms of 2.1.

Proof. The proof is straightforward by induction on the degree. Let us
show for instance that

(x≺ y)≺ z = x≺(y ∗ z).

For x = x(0) ∨ · · · ∨ x(k) one has

(x≺ y)≺ z = (x(0) ∨ · · · ∨ (x(k) ∗ y))≺ z

= x(0) ∨ · · · ∨ ((x(k) ∗ y) ∗ z).

On the other hand one has

x≺(y ∗ z) = x(0) ∨ · · · ∨ (x(k) ∗ (y ∗ z)).

Since the degree of x(k) is strictly smaller than the degree of x, we can
assume that all the relations are fulfilled for x(k), y and z. In particular
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the associativity relation (x(k) ∗ y) ∗ z = x(k) ∗ (y ∗ z) holds. Therefore one
gets (x≺ y)≺ z = x≺(y ∗ z) as expected.

All the other formulas are proved similarly.

2.8 Lemma. Let us denote by u the generator of the free dendriform
trialgebra Tridend(K). The map α : ⊕n≥0K[Tn] → Tridend(K) ⊕ K.1
defined inductively by

α(|) := 1, α(x(0) ∨ x(1)) := α(x(0))≻u≺α(x(1)) ,

and

α(x(0) ∨ · · · ∨ x(k)) := (α(x(0))≻u) · α(x(1) ∨ · · · ∨ x(k−1)) · (u≺α(x(k)))

for k ≥ 2 is a morphism of dendriform trialgebras when restricted to
⊕n≥1K[Tn].

Proof. Since it may happen that x(0) = |, (resp. x(k) = |), we need to
specify that 1≻ z = z = z≺ 1. Similarly it may happen that, when k = 2,
one has x(1) = |. So we need to specify that

α(x(0) ∨ | ∨ x(1)) := (α(x(0))≻u) · (u≺α(x(2))).

For instance, one has α( @
@

@@

�
�

��

) = α(1∨1∨1) = (1≻u) · (u≺ 1) = u ·u .
We want to show that

α(x≺ y) = α(x)≺α(y), α(x≻ y) = α(x)≻α(y), α(x · y) = α(x) ·α(y)

for any x ∈ Tp, y ∈ Tq , z ∈ Tr. We check the first equality, the checking
of the others is similar.

Let us first check the case x = x(0) ∨ x(1). On one hand we have

α(x≺ y) = α(x(0) ∨ (x(1) ∗ y))

= α(x(0))≻u≺
(
α(x(1) ∗ y)

)

= α(x(0))≻u≺
(
α(x(1)) ∗ α(y)

)
, by induction.

On the other hand we have

α(x)≺α(y) = α(x(0) ∨ x(1))≺α(y)

=
(
α(x(0))≻u≺α(x(1))

)
≺α(y) by relation (2),

= α(x(0))≻u≺
(
α(x(1)) ∗ α(y)

)
by relation (1).

Therefore one gets α(x≺ y) = α(x)≺α(y) as expected.
Let us now suppose that x = x(0) ∨ · · · ∨ x(k) with k ≥ 2. One one

hand we have

α(x≺ y) = α(x(0) ∨ · · · ∨ (x(k) ∗ y))

= (α(x(0))≻u) · α(x(1) ∨ · · · ∨ x(k−1)) ·
(
u≺α(x(k) ∗ y)

)

= (α(x(0))≻u) · α(x(1) ∨ · · · ∨ x(k−1)) ·
(
u≺(α(x(k)) ∗ α(y))

)
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On the other hand we have

α(x)≺α(y) = (α(x(0) ≻u) · α(x(1) ∨ · · · ∨ x(k−1)) · (u≺α(x(k)))≺α(y)

= (α(x(0) ≻u) · α(x(1) ∨ · · · ∨ x(k−1)) · ((u≺α(x(k)))≺α(y))

= (α(x(0) ≻u) · α(x(1) ∨ · · · ∨ x(k−1)) ·
(
u≺(α(x(k)) ∗ α(y))

)

by relations (6) and (1), whence the result.
If x = x(0)∨|∨x(1), then the proof is similar and uses also the relations

(6) and (1) of 2.1.

2.9 Corollary. The free dendriform trialgebra Tridend(V ) on the vector
space V is

Tridend(V ) = ⊕n≥1K[Tn] ⊗ V ⊗n,

and the operations are induced by the operations on ⊕n≥1K[Tn] and con-
catenation.

Proof. Follows from Theorem 2.6 by the same argument as in Corollary
1.8.

2.10 The family of Stasheff polytopes. Let Kn be the Stasheff poly-
tope (alias associahedron also denoted Kn+2) of dimension n, cf. [St]. The
cells of Kn−1 are in one-to-one correspondence with the planar trees with
n leaves. More precisely the set Tn,k of planar trees with n leaves and
n−k +1 vertices labels the cells of dimension k−1 of Kn−1. In particular
the planar binary trees are in 1-1 correspondence with the vertices.
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2.11 The operad of dendriform trialgebras. The operad Tridend is
a non-Σ-operad and so is completely determined by the free dendriform
trialgebra on one generator. The filtration on Tn (cf. 2.4) is compatible
with the three operations (cf. [L3, section 9.9]). In particular there is a
functor from the category of dendriform dialgebras to the category of den-
driform trialgebras (take x · y = 0). The operad of dendriform dialgebras
involves only the planar binary trees.

Since the operad Tridend is filtered, we can built the graded associated
operad gr Tridend as follows: gr Tridend(n) := FnTridend/Fn−1Tridend.
It is clear that the 0th part of the graded operad is the operad of dendri-
form dialgebras.

From the bijection between the cells of the Stasheff polytopes and the
planar trees, and the description of the free dendriform trialgebra given in
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Theorem 2.6 it follows that the generating series of the family of Stasheff
polytopes is equal to the generating series of the (filtered) operad Tridend:

fK
t (x) = fTridend

t (x).

One way of keeping track of the filtration is to introduce a type of
algebra depending on a parameter q ∈ K as follows. In the relations 1
and 3 of 2.1 we replace the occurences of a · b (where a and b are x, y or
z) by q(a · b). When q = 1 this is the dendriform trialgebra. When q = 0,
this is (almost) the case treated by Chapoton in [Ch]. Almost because
he is working with graded vector spaces and modify the grading for the
operation · , like when passing from Poisson algebras to Gerstenhaber
algebras.

2.12 Remark. The Stasheff polytopes form an operad (cf. [St]), which
encodes the associative algebras up to homotopy (A∞-algebras). But, in
this case the Stasheff polytope Kn is put in dimension n + 2 while for
the operad Tridend it is put in dimension n + 1. In other words, in the
A∞-algebra case a cell of the Stasheff polytope Kn encodes an operation
on n + 2 variables, though in the dendriform case it encodes an operation
on n + 1 variables. So they are completely different operads.

3. Homology and Koszul duality. In [G-K] Ginzburg and Kapranov
have extended the notion of Koszul duality to binary quadratic operads.
Both operads Trias and Tridend are binary and quadratic, hence we can
apply this theory here. In particular we can construct the chain complex
of an associative trialgebra (resp. of a dendriform trialgebra), and also
the Koszul complex of these operads.

3.1 Theorem. The operad Trias of associative trialgebras is dual to the
operad Tridend of dendriform trialgebras :

Trias! = Tridend and Tridend! = Trias.

Proof. Let us compute the Koszul dual of Trias. Since we are dealing
with non-Σ-operads, that is P(n) = P ′(n) ⊗ K[Sn] we can forget about
the action of the symmetric group and work with P ′(n). The space of
generating operations is Trias′(2) = K[P2] = K ⊣⊕K ⊢⊕K ⊥ . The
space of operations that one can perform on three variables is K[P2 ×
P2] ⊕ K[P2 × P2]. This is the part of degree 3 of the free non-Σ-operad
generated by K[P2]. The operad Trias is completely determined by some
subspace R ⊂ K[P2 × P2] ⊕ K[P2 × P2]. Let us denote by (◦1)◦2 (resp.
◦1(◦2) ) the basis vectors of the first (resp. second) summand K[P2 ×P2].
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Then R is generated by the 11 vectors of the form (◦1)◦2−◦1 (◦2) obtained
from the 11 relations of definition of associative trialgebras (cf. 1.2).

Let us identify the dual of K[P2] with itself by identifying a basis vec-
tor with its dual. Then the dual operad Trias! is completely determined
by R⊥ ⊂ K[P2 × P2] ⊕ K[P2 × P2], where R⊥ is the orthogonal space of

R under the quadratic form

(
Id 0
0 − Id

)

(cf. [G-K]).

We claim that, under the identification ⊣ = ≺ , ⊢ = ≻, ⊥ = · , the
space R⊥ is the space R′ generated by the vectors obtained from the 7
relations of definition of dendriform trialgebras (cf. 2.1). Indeed, since
dim K[P2 × P2] ⊕ K[P2 × P2] = 18, dimR = 11 and dim R′ = 7, it is
sufficient to prove that 〈v, w〉 = 0 for any basis vector v of R and any
basis vector w of R′. This is a straightforward checking. We verify this
equality in one case, the others are similar. Let v = (⊣)⊣−⊣(⊣) which
we identified with (≺)≺−≺(≺). We get

〈v, (x≺y)≺ z − x≺(y ∗ z)〉 = 1 − 1 = 0,

〈v, (x≻ y)≺ z − x≻(y≺ z)〉 = 0,

〈v, (x ∗ y)≻ z − x≻(y≻ z)〉 = 0,

〈v, (x≻y) · z − x≻(y · z)〉 = 0,

〈v, (x≺y) · z − x · (y≻ z)〉 = 0,

〈v, (x · y)≺ z − x · (y≺ z)〉 = 0,

〈v, (x · y) · z − x · (y · z)〉 = 0.

Hence the dual of the operad Trias is the operad Tridend.

3.2 Trialgebras versus dialgebras. There is a functor from the cate-
gory of associative trialgebras to the category of associative dialgebras (cf.
1.4.b), that is a map from the operad Dias to the operad Trias. This is
a map of binary quadratic operads. Its dual is a map from Tridend to
Didend, which gives the functor from the category of dendriform dialge-
bras to the category of dendriform trialgebras described in 2.3.b. Similarly
the dual of the functor As → Trias is the functor Tridend → As.

3.3 Homology of associative trialgebras. Ginzburg and Kapranov’s
theory of algebraic operads shows that there is a well-defined chain com-
plex for any algebra A over the binary quadratic operad P, constructed
out of the dual operad P ! as follows.

The chain complex of the P-algebra A is CP
n (A) = P !(n)∗ ⊗Sn

A⊗n

in dimension n and the differential d agrees, in low dimension, with the
P-algebra structure of A

γA(2) : P(2) ⊗ A⊗2 → A

under the identification P !(2)∗ ∼= P(2).
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In fact d is characterized by this condition plus the fact that on the
cofree P !-coalgebra CP

∗ (A) = P !∗(A) it is a graded coderivation.

3.4 Proposition. The chain complex of an associative trialgebra A is
given by

CTrias
n (A) = K[Tn] ⊗ A⊗n, d =

i=n−1∑

i=1

(−1)idi,

where di(t; a1, · · · , an) = (di(t); a1, · · · , ai ◦
t
i ai+1, · · ·an), and di(t) is the

tree obtained from t by deleting the ith leaf and where ◦t
i is given by

◦t
i =

{
⊣ if the ith leaf of t is left oriented,
⊢ if the ith leaf of t is right oriented,
⊥ if the ith leaf of t is a middle leaf.

Observe that at a given vertex of a tree there is only one left leaf, one
right leaf, but there may be none or several middle leaves.

Proof. First observe that this is a chain complex since the operators di

satisfy the presimplicial relations

didj = dj−1di for i < j.

Indeed, this relation is either immediate (when i and j are far apart), or
it is a consequence of the axioms of associative trialgebras when j = i+1.
It suffices to check the case n = 3, and this was done in 1.3.

By Theorems 3.1 and 2.6 Ginzburg and Kapranov theory gives, as
expected,

CTrias
n (A) = K[Tn] ⊗ A⊗n.

It is clear from 1.3 that d agrees with the Trias-algebra structure of A in
low dimension. Since d is completely explicit, the coderivation property
is immediate to check.

3.5 Proposition. The chain complex of a dendriform trialgebra A is
given by

CTridend
n (A) = K[Pn] ⊗ A⊗n, d =

i=n−1∑

i=1

(−1)idi,

where di(X ; a1, · · · , an) = (di(X); a1, · · · , ai ◦
X
i ai+1, · · ·an), and di(X) is

the image of X under the map di : [n] → [n − 1] given by

di(r) =

{
r − 1 if i ≤ r,
r if i ≥ r + 1.
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and where ◦X
i is given by

◦X
i =







· if i − 1 ∈ X and i ∈ X,
≻ if i − 1 /∈ X and i ∈ X,
≺ if i − 1 ∈ X and i /∈ X,
∗ if i − 1 /∈ X and i /∈ X.

Proof. Again, observe that this is a chain complex since the operators di

satisfy the presimplicial relations

didj = dj−1di for i < j.

Indeed, this relation is either immediate (when i and j are far apart), or
it is a consequence of the axioms of dendriform trialgebras when j = i+1.
It suffices to check the case n = 3. We actually do the computation in one
particular case, the others are similar:

d1d2({0, 2}, a1, a2, a3) = d1({0, 1}; a1, a2 ≺ a3) = ({0}; a1 · (a2 ≻ a3) ) ,

d1d1({0, 2}, a1, a2, a3) = d1({0, 1}; a1≻ a2, a3) = ({0}; (a1 ≺ a2) · a3 ) ,

These two elements are equal by the fifth relation in 2.1.

4. Acyclicity of the Koszul complex. By definition the Koszul com-
plex associated to the operad Trias is the differential functor Tridend ◦
Trias from Vect to Vect. We will show that it is quasi-isomorphic to the
identity functor. Equivalently we have the

4.1 Theorem. The homology of the free associative trialgebra on V is

HTrias
n (Trias(V )) =

{
V if n=1,
0 otherwise.

4.2 Corollary. The operads Trias and Tridend are Koszul operads.

4.3 Corollary. The homology of the free dendriform trialgebra on V is:

HTridend
n (Tridend(V )) =

{
V if n=1,
0 otherwise.

4.4 Corollary. Let fK
t (x) be the generating series of the Stasheff polytope

(i.e. of the planar trees), as defined in 1.12. Then one has

fK
t (x) =

−(1 + (2 + t)x) +
√

1 + 2(2 + t)x + t2x2

2(1 + t)x
.

Proof of the Corollaries. By Ginzburg and Kapranov theory [G-K] the
first two Corollaries follow from the vanishing of the homology of the free
associative trialgebra.

The last Corollary follows from the functional equation relating the
two operads and the computation of the generating series for the associa-
tive trialgebra operad (cf. 1.12).

Proof of Theorem 4.1. The acyclicity of the augmented complex
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CTrias
∗ (Trias(V )) is proved in several steps as follows.

1. We show that it is sufficient to treat the case V = K.
2. The chain complex CTrias

∗ (Trias(K)) splits into the direct sum of
chain complexes C∗(u), one for each element u in Pm, m ≥ 1.

3. The chain complex C∗(u) is shown to be the cell complex of a
simplicial set X(u).

4. The space X(u) is shown to be the join of spaces X(v) for certain
particular elements v in Pm.

5. The spaces X(v) are shown to be contractible by constructing a
series of retractions by deformation.

1. First step. Recall from 1.8 that Trias(V ) =
⊕

n≥1 K[Pn] ⊗ V ⊗n.
Therefore one has

CTrias
j (Trias(V )) = K[Tj] ⊗

(⊕

n≥1

K[Pn] ⊗ V ⊗n
)⊗j

= K[Tj] ⊗
⊕

m≥1

(⊕n1+···+nj=mK[Pn1
× · · · × Pnj

]) ⊗ V ⊗m.

Since d is homogeneous in V , the complex CTrias
∗ splits into the direct

sum of subcomplexes, one for each m ≥ 1. This subcomplex is in fact of
finite length and, up to tensoring by V ⊗m, is of the following form:

C∗(Pm) : 0 → K[Tm × P1 × · · · × P1] → · · ·

→
⊕

n1+···+nj=m

K[Tj × Pn1
× · · · × Pnj

] → · · · → K[T1 × Pm].

Recall that P1 and T1 have only one element. The case m = 1 gives the
subcomplex of length 0 reduced to V . This shows that HTrias

1 (Trias(V ))
contains V as expected.

For m ≥ 2, the differential is simply the differential of C∗(Pm) ten-
sored by the identity of V ⊗m, hence it is sufficient to prove the acyclicity
of C∗(Pm) to prove the theorem.

2. Second step. The chain complex C∗(Pm) can still be split into the
direct sum of smaller complexes indexed by the elements u of Pm. Indeed,
let α := (t; u1, · · · , uj) ∈ Tj × Pn1

× · · · × Pnj
be a basis element. Under

applying j−1 face operators successively to α, we get an element ( @
@

@@

�
�

��

; u) ∈
T1×Pm which does not depend on the choice of the face operators because
of the simplicial relations (cf. 3.4). Considering t as an operation on m
variables for associative trialgebras, u is nothing but the result of the
evaluation of t on (x, · · · , x), cf. 1.3. Fixing u, let C∗(u) be the chain

subcomplex linearly generated by the elements α whose image is ( @
@

@@

�
�

��

; u) ∈
T1 ×Pm. It is clear that C∗(Pm) is the direct sum of the chain complexes
C∗(u), u ∈ Pm.

23



Observe that C∗(u) is of simplicial type, that is, its boundary is of

the form d = −
∑i=n−1

i=1 (−1)idi.

3. Third step. We fix u ∈ Pm. At this point it is helpful to modify
slightly our indexing of the faces and have them to run from 0 to n − 2
rather than from 1 to n − 1. We also shift the indexing of the complex
C∗(u) by 1, putting K[T1 × Pm] in dimension −1. For any generator α of
C∗(u) the faces di(α), 0 ≤ i ≤ n − 2, are still generators of C∗(u). Hence
C∗(u) is the normalized augmented complex of an augmented simplicial
set that we denote by X(u). The nondegenerate simplices of X(u) are the
linear generators α of C∗(u). The top dimensional ones are of the form
(t; x, · · · , x) ∈ X(u)m−2 where t = t0 ∨ · · · ∨ tk ∈ Tq. The integer k is the
number of decorations (Cech signs) appearing in u. We denote by T{u} this
subset of Tm. At the other end the augmentation set is X(u)−1 = T1×{u}
(one element). The geometric realization of X(u) is the amalgamation of
simplices ∆m−2 (one for each t ∈ T{u}) under the following rule:

if dik
· · ·di1(t; x, · · · , x) = dik

· · ·di1(t
′; x, · · · , x) for some m − 2 ≥

ik ≥ · · · ≥ i1 ≥ 0, then we identify the corresponding (oriented) faces of
the simplices t and t′. Observe that under this rule a vertex of type i is
identified only with a vertex of type i.

4. Fourth step. Let us first recall the join construction of augmented
simplicial sets (cf. for instance [E-P]). An augmented simplicial set is a
simplicial set X. together with a set X−1 and a map d0 : X0 → X−1

satisfying d1d0 = d0d0. The join of two augmented simplicial sets X. and
Y. is Z. = X. ∗ Y. defined by Zn =

⊔

p+q=n−1 Xp × Yq. The faces are

di(x, y) = (dix, y) for 0 ≤ i ≤ p,

di(x, y) = (x, di−p−1y) for p + 1 ≤ i ≤ p + 1 + q,

and similarly for the degeneracies. The geometric realization of the sim-
plicial join is the topological join

X ∗ Y = X × I × Y/{(x, 0, y) ∼ (x′, 0, y), (x, 1, y) ∼ (x, 0, y′)}.

In particular one has ∆p ∗ ∆q = ∆p+q+1.
Let u = x · · ·xx̌x · · ·xx̌x · · ·x ∈ Pm. By direct inspection we see that

X(u) is the simplicial join of the simplicial sets

X(x · · · x̌), X(x̌ · · ·x · · · x̌), · · · , X(x̌ · · ·x · · · x̌), X(x̌ · · ·x).

The point is that there are only one Cech signs at the extreme locations.
Hence it is sufficient to show the contractibility of X(u) in the cases u =
x̌ · · ·x · · · x̌ and u = x̌ · · ·x.

5. Fifth step: the case u = x̌ · · ·x · · · x̌ or u = x̌ · · ·x ∈ Pm. We treat in
detail the case u = x̌ · · ·x, the other one is similar.
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Since u = x̌ · · ·x the trees t in T{u} are of the form

@
@

@
@

@
@@

�
�

�
�

�
��

@
@

@
@

@@ · · ·

Hence the 0-cell (d0)
m−2(t; x, · · · , x) = ( @

@
@@

�
�

��@
@

; x̌x · · ·x, x) is the same
for all t ∈ T{u}. We denote this vertex by P . In other words, in the
amalgamation of the (m − 2)-simplices (t; x, · · · , x) giving X(u), all the
vertices of type m − 2 get identified to P .

We will show that there exists a sequence of retractions by deforma-
tion

X(u) = X(u)〈m−2〉→→ · · · →→X(u)〈k〉
φk
→→ · · · →→X(u)〈0〉 = P .

The simplicial set X(u)〈k〉 is a subsimplicial set of X(u) determined by its
nondegenerate k simplices. It is defined inductively as follows. We suppose
that X(u)〈k〉 has been defined (the induction process begins with k = m−
2) and we determine X(u)〈k−1〉. On X(u)〈k〉 we introduce the equivalence
relation generated by: α ∼ β if either dkα = dkβ or dk−1α = dk−1β.
Then in each equivalence class we pick an element, say α0. By definition
X(u)〈k−1〉 is made of the elements dk−1α0, one for each equivalence class.

The map φk is defined by φk(α) = sk−1dk−1α0. On the geometric
realization the map φk consists in collapsing each k-simplex α to its last
face (the edge relating the vertices k − 1 and k collapses to a point), and
then embedding this face into X(u) as dk−1α0. All the collapsing are
coherent, and so assemble to give a collapsing of X(u)〈k〉 to X(u)〈k−1〉,
because one can verify that for each vertex of type k − 1 in X(u)〈k〉 there
is only one edge to the edge relating it to the vertex of type k, that is P .

Here is an illustration for m = 4, u = x̌xxx and the planar binary
trees.

d0 d1 d2

a = ( @
@

@
@@

�
�

�
��

@
@

@@
�

����

; x, x, x, x) ( @
@

@@

�
�

��
@

@@��

; x̌x, x, x), ( @
@

@@

�
�

��
@

@@��

; x, xx̌, x), ( @
@

@@

�
�

��
@

@@��

; x, x, xx̌),

b = ( @
@

@
@@

�
�

�
��

@
@

@@
�

��@@

; x, x, x, x) ( @
@

@@

�
�

��
@

@@��

; x̌x, x, x), ( @
@

@@

�
�

��
@

@@��

; x, x̌x, x), ( @
@

@@

�
�

��
@

@@��

; x, x, xx̌),

c = ( @
@

@
@@

�
�

�
��

@
@

@@
@

@@��

; x, x, x, x) ( @
@

@@

�
�

��
@

@@��

; x̌x, x, x), ( @
@

@@

�
�

��
@

@@ @@

; x, x̌x, x), ( @
@

@@

�
�

��
@

@@ @@

; x, x, x̌x),

d = ( @
@

@
@@

�
�

�
��

@
@

@@
@

@@ @@

; x, x, x, x) ( @
@

@@

�
�

��
@

@@ @@

; x̌x, x, x), ( @
@

@@

�
�

��
@

@@ @@

; x, x̌x, x), ( @
@

@@

�
�

��
@

@@ @@

; x, x, x̌x),

e = ( @
@

@
@@

�
�

�
��

@
@

@@�� @@

; x, x, x, x) ( @
@

@@

�
�

��
@

@@ @@

; x̌x, x, x), ( @
@

@@

�
�

��
@

@@ @@

; x, xx̌, x), ( @
@

@@

�
�

��
@

@@��

; x, x, x̌x).

Hence the simplices a, b, c, d, e of type ∆2 are amalgamated under the
following rules:

d0(a) = d0(b) = d0(c), d0(d) = d0(e), d1(c) = d1(d), d2(a) = d2(b).

The first two spaces of the sequence (binary case)

X(x̌xxx) = X(x̌xxx)〈2〉 →→ X(x̌xxx)〈1〉 →→ X(x̌xxx)〈0〉 = P
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are shown below:
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In the planar tree case X(u)〈2〉 is made of eleven 2-simplices, X(u)〈1〉 is
made of seven 1-simplices and X(u)〈0〉 is made of one 0-simplex (namely
P ).

Since each map φk is a retraction by deformation, the space X(u) =
X(u)〈m−2〉 has the same homotopy type as X(u)〈0〉 = P hence it is con-
tractible.

5. Cubical trialgebras and hypercubes.

One can also associate a type of trialgebras to the family of hyper-
cubes. Once the correct relations are found the proof follows the same
pattern as in the previous sections. It turns out that the associated op-
erad is self-dual, so the generating series, which is f I

t (x) = −x
1+(2+t)x , is

its own inverse, a fact which is immediate to check: f I
t (f I

t (x)) = x .

5.1 Definition. A cubical trialgebra is a vector space A equipped with
3 binary operations : ⊣ called left, ⊢ called right and ⊥ called middle,
satisfying the following 9 relations :

(x ◦1 y) ◦2 z = x ◦1 (y ◦2 z)

where ◦1 and ◦2 are either ⊣ or ⊢ or ⊥.

We obtain the definition of a cubical dialgebra by restricting ourself to
the first two operations (this structure has been considered earlier by B.
Richter [Ri]). We denote by Tricub and Dicub the associated categories
of algebras. There is an obvious functor

As → Tricub

consisting in putting x⊣ y = x⊢ y = x⊥ y = xy.

Let Qn be the set of cells of the hypercube In, where I is the interval
[−1, 1]. Alternatively Qn can be described as {−1, 0, +1}n or {⊣,⊥,⊢}n.
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Obviously Qn is graded by the dimension of the cells (resp. the numbers
of 0’s or ⊥ signs).

5.2 Proposition. The free cubical trialgebra on one generator, Tricub(K) =
⊕

n≥1 Tricub(n) is such that Tricub(n) = K[Qn−1] with operations:

a⊣ b = (a,−1, b) ∈ Qp+q−1,

a⊥ b = (a, 0, b) ∈ Qp+q−1,

a⊢ b = (a, +1, b) ∈ Qp+q−1,

for a ∈ Qp−1 and b ∈ Qq−1.

5.3 Theorem. The operad Tricub is self-dual.

(Observe that 18 − 9 = 9.)

5.4 Cubical trialgebras and associative algebras. By Koszul dual-
ity the functor As → Tricub gives a functor Tricub → As since both
operads are self-dual. It is immediately seen that it is given by putting
x ∗ y := x⊣ y + x⊢ y + x⊥ y. So a cubical trialgebra is an associative
algebra for which the associative operation is the sum of three operations
and the associative relation splits into 9 relations.

5.5 Proposition. The homology of a cubical trialgebra A is given by
the following chain complex CTricub

n (A):

CTricub
n (A) = K[Qn] ⊗ A⊗n, d = −

i=n−1∑

i=1

(−1)idi,

where di(X ; a1, · · · , an) = (di(X); a1, · · · , ai ◦
X
i ai+1, · · ·an), and the ele-

ment di(X) is obtained from X by deleting the ith coordinate Xi, and the
operation ◦X

i is given by

◦X
i =

{
⊣ if Xi = −1,
⊥ if Xi = 0,
⊢ if Xi = +1.

5.6 Theorem. Let Tricub(V ) be the free cubical trialgebra on V . Its
homology is

HTricub
n (Trias(V )) =

{
V if n=1,
0 otherwise.

5.7 Corollary. The operad Tricub is a Koszul operad.

Proof. The same arguments as in the proof of theorem 4.1 lead to the
chain complex

0 → K[Qm × Q1 × · · · × Q1] → · · ·

→
⊕

n1+···+nj=m

K[Qj × Qn1
× · · · × Qnj

] → · · · → K[Q1 × Qm].
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This complex is the direct sum of complexes C∗(u), one for each generator
u of Qm. By direct inspection we see that C∗(u) is nothing but the nor-
malized augmented chain complex of the standard simplex ∆m−1, hence
it is acyclic.
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