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OPERADS, HOMOTOPY ALGEBRA, AND ITERATED INTEGRALS FOR

DOUBLE LOOP SPACES

E. GETZLER AND J.D.S. JONES

Chen's theory of iterated integrals provides a remarkable model for the di�erential forms on

the based loop space 
M of a di�erentiable manifold M (Chen [10]; see also Hain-Tondeur [23]

and Getzler-Jones-Petrack [21]). This article began as an attempt to �nd an analogous model for

the complex of di�erentiable forms on the double loop space 


2

M , motivated in part by the hope

that this might provide an algebraic framework for understanding two-dimensional topological �eld

theories.

Our approach is to use the formalism of operads. Operads can be de�ned in any symmetric

monoidal category, although we will mainly be concerned with dg-operads (di�erential graded op-

erads), that is, operads in the category of chain complexes with monoidal structure de�ned by the

graded tensor product. An operad is a sequence of objects a(k), k � 0, carrying an action of the

symmetric group S

k

, with products

a(k) 
 a(j

1

)
 : : :
 a(j

k

) �! a(j

1

+ � � �+ j

k

)

which are equivariant and associative | we give a precise de�nition in Section 1.2. An operad such

that a(k) = 0 for k 6= 1 is a monoid: in this sense, operads are a non-linear generalization of monoids.

If V is a chain complex, we may de�ne an operad with

E

V

(k) = Hom(V

(k)

; V );

where V

(k)

is the k-th tensor power of V . The symmetric group S

k

acts on E

V

(k) through its action

on V

(k)

, and the structure maps of E

V

are the obvious ones. This operad plays the same role in the

theory of operads that the algebra End(V ) does in the theory of associative algebras.

An algebra over an operad a (or a-algebra) is a chain complex A together with a morphism of

operads � : a �! E

A

. In other words, A is equipped with structure maps

�

k

: a(k)


S

k

A

(k)

�! A

which are compatible in a natural sense. The space a(k) should be thought of as parametrizing

all of the ways of combining k elements of an a-algebra A to obtain an element of A, while the

structure maps of a express the way in which these operations compose. If the operad a is such that

a(k) = 0 for k 6= 1, so that a(1) is an associative algebra, then an a-algebra is the same thing as an

a(1)-module.

Many familiar algebraic structures, such as commutative, associative, Lie and Poisson algebras,

can be described by dg-operads. (Restricted Lie algebras and �elds are examples of algebraic struc-

tures which cannot.) In a sense, discussing algebraic structures without mentioning the associated

operads leaves out half the story, since one cannot then formulate theorems involving morphisms of

operads.

Many of our results are expressed in the language of Quillen's homotopical algebra [40]. This is

a non-linear generalization of homological algebra, allowing the construction of derived functors in

categories with some of the structure of homotopy theory. Such categories are called closed model

categories, and in Chapter 4, we prove that the category of algebras over a dg-operad a is a closed

1
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model category, provided the S

k

-modules a(k) are at for all k > 1 (of course, this is always true

over a �eld of characteristic 0).

If � : a �! b is a map of operads, there is a functor �

�

from a-algebras to b-algebras, analogous

to base change in categories of modules (Section 1.5). In the special case that a is an augmented

operad with augmentation ", the functor "

�

from a-algebras to chain complexes is the functor of

indecomposables Q.

The homology functor on a-algebras is the left derived functor L"

�

of the indecomposables functor

"

�

. An almost free a-algebra

~

A is one which is free when we forget the di�erentials on

~

A and a.

The homology L"

�

A may be calculated by resolving A by an almost free a-algebra

~

A: the homology

of A is the homology of the complex of generators "

�

~

A of

~

A. For associative, commutative and Lie

algebras (the last two cases in characteristic zero), this homology theory may be identi�ed, up to a

suspension, with Hochschild, Harrison and Lie algebra homology respectively.

One of the main applications of topological operads is to the study of iterated loop spaces; for two

excellent overviews of this subject, see Adams [2] and May [34]. Boardman and Vogt [9] introduced

a sequence of operads, the little n-cubes operads F

n

(k), which have the homotopy type of the

con�guration space F

n

(k) of k distinct points in R

n

. A space with an action of the operad F

n

is

called an E

n

-space, and a connected E

n

-space has the homotopy type of an n-fold loop space. Certain

cases are of particular interest: n = 1 recovers the theory of A

1

-spaces [49], n =1 leads to in�nite

loop spaces, and n = 2 is intimately related to the braid groups B

k

, since F

2

(k)=S

k

' K(B

k

; 1).

The homology e

n

(k) = H

�

(F

n

(k);K) of the topological operad F

n

over a �eld K of character-

istic zero is a dg-operad with trivial di�erential, which we will view as an algebraic model for the

structure of n-fold loop spaces. Algebras over e

1

are associative dg-algebras, while e

1

-algebras are

commutative dg-algebras. We adopt the term n-algebra for an e

n

-algebra.

For n > 1, the structure of n-algebras was explicitly determined by F. Cohen in his thesis [11].

An n-algebra is a commutative dg-algebra A

�

with a graded Lie bracket [a; b] of degree n � 1 (that

is, a graded Lie bracket on the (n� 1)-fold suspension �

n�1

A of A) satisfying the Poisson relation

[a; bc] = (�1)

(jaj�1)jbj

b[a; c] + [a; b]c:

If A is an n-algebra, let B

n

A be the chain complex

B

n

A =

1

M

k=1

�

n(k�1)

e

�

n

(k) 


S

k

A

(k)

:

In particular, B

1

A =

1

M

k=1

�

�1

(�A)

(k)

is closely related to the usual bar construction for associative

algebras

BA =

1

M

k=0

(�A)

(k)

;

while B

2

A may be expressed in terms of cohomology of braid groups:

B

2

A =

1

M

k=1

�

�2

H

�

(B

k

; (�

2

A)

(k)

):

The functor B

n

takes values in the category of cofree n-coalgebras, that is, chain complexes with Lie

cobracket of degree 1 and a cocommutative coproduct of degree n, satisfying the Poisson co-relation.

(The n-fold suspension of the dual of an n-coalgebra is an n-algebra.) The following theorem is one

of the main results of this paper.

Theorem. Over a �eld of characteristic zero, the bar construction B

n

A of an n-algebra A is an

n-coalgebra whose image in the homotopy category of n-coalgebras equals the left derived functor

L"

�

A.
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The functor B

n

has an adjoint functor 


n

, and this pair of functors gives an equivalence of

homotopy categories. For n = 1 and n = 1, this result is familiar from the work of Quillen:

there are homotopy equivalences between the categories of associative dg-algebras and connected

coassociative dg-coalgebras, and between the categories of commutative dg-algebras and connected

Lie dg-coalgebras [42].

Our strategy for proving the above theorem is to generalize work of Stashe� [49]. He introduced

a sequence of convex (k � 2)-dimensional polyhedra K(k), the associahedra, such that the products

K(k)�S

k

form a topological operad, and proved that a connected space X has the homotopy type

of a loop space if X is an algebra over this operad; such a space is called an A

1

-space.

We construct an operad F

n

with the same homotopy type as F

n

, such that F

n

(k) is a manifold

with corners of dimension n(k � 1) � 1, generalizing the sequence of polyhedra K(k), which is the

case n = 1. The construction of F

n

(k) makes use of a compacti�cation of the con�guration space

F

n

(k), or rather, its quotient by translations and dilatations, due to Fulton and MacPherson [15].

The operad F

n

is obtained by gluing together faces corresponding to components of the free operad

generated by the top-dimensional strata of the spaces F

n

. (In a sense which we do not make precise

in this article, F

n

is a co�brant operad.)

The theorem that the bar construction B

n

realizes the derived functor L"

�

for n-algebras now

follow from the study of the spectral sequences associated to the manifolds with corners F

n

(k), and

an application of Lefschetz duality. This method of proof was inspired by an article of Beilinson-

Ginburg [8]; in e�ect, they considered the case n =1.

In the language of Ginzburg-Kapranov [22], we show that the operad e

n

is Koszul. In our

exposition, we make use of their bar construction for dg-operads, which we view as a functor from

dg-operads to dg-cooperads. We also make use the free operad triple, which we believe is new: this

provides a clear explanation for the role of trees in the theory of operads, since the free operad may

be expressed as a sum over trees.

Over the integers, the operad e

n

is not well-behaved, and must be replaced by a dg-operad E

n

,

which we study in Chapter 5: in the special case of n = 1, this is just the operad A

1

. Let S

�

(X) be

the dg-algebra of singular cochains on a topological space X, with integral coe�cients. By a theorem

of Adams [1], if X is simply connected there is a natural isomorphism in homology between the bar

construction BS

�

(X) and S

�

(
X). Many authors have attempted to �nd an analogue of this theorem

for iterated loop spaces; however, it is not obvious that the bar construction B can be iterated even

twice, since S

�

(X) is not a commutative dg-algebra, and thus it is not evident that BS

�

(X) has an

associative product. For further iterations, the problem only becomes worse. Nevertheless, Baues

[7] has constructed an associative product on BS

�

(X) using Steenrod's [

1

operation and certain

multilinear analogues, which allow him to construct the structure of a dg-bialgebra on BS

�

(X). He

shows that if X is 2-connected, the bar complex of this algebra is a model for the cohomology of the

double loop space 


2

X.

In Chapter 5, we take a di�erent approach to this problem. From a regular S

k

-equivariant cell

decomposition of the Fulton-MacPherson space F

n

(k) which we de�ne using the lexicographical

ordering of points in R

n

, we obtain an almost free operad E

n

resolving e

n

. We prove that S

�

(X)

carries a natural E

1

-algebra structure; in a sequel to this paper, we will prove that if X is n-

connected, there is natural isomorphism in homology between L"

�

S

�

(X), where S

�

(X) is considered

as an E

n

-algebra, and �

�n

S

�

(


n

X). For a di�erent extension of Adam's theorem which uses

simplicial methods and thus avoids the introduction of almost free operads, see Smirnov [46], [47].

In Chapter 6, we examine the same questions from the point of view of rational homotopy and

iterated integrals. Let A

�

(M ) be the dg-algebra of di�erential forms on a smooth manifold M ,

negatively graded (A

�i

= A

i

(M )) in order that the di�erential lowers degree. Quillen's and Sullivan's

theories of rational homotopy show that if M is a simply connected manifold, the bar construction

B

1

A

�

(M ) provides a model for �

�

(M; C ) = Hom(�

�

(M ); C ), the dual of the homotopy of M with
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complex coe�cients. As we saw above, the bar construction BA

�

(M )

�

=

�B

1

A

�

(M )� C provides a

model for the cohomology of the loop space 
M . In fact, Chen's theory of iterated integrals gives

a natural map from BA

�

(M ) to A

�

(
M ), inducing an isomorphism in homology if M is simply

connected.

Now, the algebra of di�erential forms A

�

(M ) may be considered as a 2-algebra, by imposing on it

a vanishing Lie bracket [a; b]. In Chapter 6, we construct an iterated integral map from �

2

B

2

A

�

(M )

to the complex of di�erential forms A

�

(


2

M ) on the double loop space 


2

M . We show that this

map induces an isomorphism in homology if M is 2-connected. In fact, it was our discovery of this

iterated integral map which led us to the bar complex B

2

on 2-algebras, and to the conjecture that

e

2

is Koszul.

The construction of the iterated integral map

�

2

B

2

A

�

(M ) �! A

�

(


2

M )

relies on certain currents on the spaces C

k

, which are the principal values of the di�erential forms

!

ij

=

1

2�i

d(z

i

� z

j

)

z

i

� z

j

;

with logarithmic singularities along the divisors z

i

= z

j

. These currents play the role which the

fundamental class of the simplex �

k

plays in Chen's theory of iterated integrals.

When n > 2, there is also an isomorphism in homology between �

n

B

n

A

�

(M ) and A

�

(


n

M )

for n-connected M . Although it would be desirable to realize this by means of an iterated integral

map, this is a far more di�cult problem than the case n = 2: as Kontsevich has observed, the

con�guration spaces F

n

(k) are formal only if n 2 f1; 2;1g.

Recently, it has emerged that the deformation theory of homotopy Batalin-Vilkovisky algebras

(which are closely related to 2-algebras) is central to string �eld theory, or at least to its genus

zero approximation (Zwiebach [51] and Getzler [19]). In particular, the notion of a homotopy

Batalin-Vilkovisky algebra, analogous to the notion of homotopy 2-algebra of Section 4.4, is precisely

the algebraic structure induced by genus zero correlation functions on the state space of a two-

dimensional topological �eld theory. The Batalin-Vilkovisky operad bv is a Koszul operad (in

a generalized sense, since bv(1) is an exterior algebra on a generator of degree 1) and the bar

construction for homotopy Batalin-Vilkovisky algebras appears to play a basic role in string �eld

theory.
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1. Operads and Algebras

In this chapter, we give an exposition of the theory of operads in a symmetric monoidal category

C. Let Sbe the groupoid

`

1

k=0

S

k

obtained by taking the disjoint union of the symmetric groups

S

k

. The category of S-objects, or functors from Sto C, is a monoidal category with respect to a

certain tensor product, and operads are monoids in this monoidal category. (This tensor product

was studied by Joyal [26], who calls S-objects species, and by Smirnov [46].)

Representations of operads are called algebras: for example, associative and commutative algebras

are algebras over certain operads e

1

and e

1

in the category of vector spaces. We generalize these

examples in Section 1.3, introducing the n-algebra operads e

n

, 1 < n <1, in the category of graded

vector spaces, which are related to the homology of con�guration spaces ofR

n

. One of the objectives

of this paper is to study the homotopical algebra of the category of algebras over the operads e

n

.

In Section 1.4, we construct a triple on the category ofS-objects, involving a sum over trees, such

that operads are algebras for this triple. This triple may be viewed as a non-linear analogue of the

space of tensors on a vector space.

In Section 1.5, we prove that the category of operads has all limits and colimits: the interesting

part of the proof is the explicit construction of coproducts, and more generally, pushouts.

In Section 1.6, we prove that the category of algebras over an operad has all limits and colimits:

again, the interesting part of the proof is the explicit construction of pushouts. Given a morphism

of operads � : a �! b, we construct a left adjoint �

�

of the natural functor �

�

from b-algebras to

a-algebras, called the direct image: this functor generalize the base change M 7! B 


A

M along a

morphism of algebras f : A �! B.

In Section 1.7, we describe the dual theory, of cooperads and their coalgebras. Just as the theory

of coalgebras is not perfectly dual to that of algebras, so with cooperads: the di�culty is that in

general, the functor of S

k

-covariants is left but not right exact. However, in the category of chain

complexes over a �eld of characteristic zero this di�culty does not arise.

1.1. Triples. Triples arise in category theory as an abstraction of the notion of an algebraic struc-

ture on an underlying space. For example, there are triples associated to such notions as groups,

associative algebras, Lie algebras, commutative algebras and modules over a ring.

If C is a category, we denote by C(A;B) the set of arrows between objects A and B. Similarly, if

C

1

and C

2

are categories, we denote by Cat(C

1

; C

2

) the category of functors from C

1

to C

2

.

Let C be a category, and let End(C) = Cat(C; C) be the category of endofunctors R : C �! C,

with morphisms the natural transformations. The category End(C) is a strictly monoidal category,

with tensor product given by composition. The unit of End(C) is the identity functor, which we will

denote by 11.

Monoids in the monoidal category End(C) are called triples: let us make this de�nition more

explicit.

De�nition 1.1. A triple (T; �; �) on a category C is a functor T : C �! C, together with natural

transformations � : TT �! T and � : 11 �! T, such that the following diagrams commute:

TTT TT

TT T

-

T�

?

�T

?

�

-

�

T TT T

T

-

T�

@

@

@R

T

?

�

�

�T

�

�

�	

T

Triples arise when one has an adjoint pair of functors U : C
Alg : F . (In this notation, the

functor associated to the right pointing arrow is the left adjoint.) The composition FU : C �! C is a

triple, with product � = F"U : FUFU �! FU , where " : UF �! 11 is the counit of the adjunction,

while the unit � : 11 �! FU of the triple is the unit of the adjunction.
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In fact, any triple may be factored as T = FU , where U is left adjoint to F : this is proved by

introducing the category of algebras over the triple, following Eilenberg-Moore (see MacLane [32],

Section VI.2).

De�nition 1.2. An algebra over a triple (T; �; �) is a pair (X; �) where X is an object of the

category C and � : TX �! X is a morphism, such that the composition X

�X

��! TX

�

�! X is the

identity, and the following diagram commutes:

TTX

T�

����! TX

�X

?

?

y

?

?

y

�

TX

�

����! X

A morphism f : (X; �

X

) �! (Y; �

Y

) of T-modules is a morphism f : X �! Y in C such that the

diagram

TX

Tf

����! TY

�

X

?

?

y

?

?

y

�

Y

X

f

����! Y

commutes. The category of T-algebras is denoted C

T

.

If X is an object of C, then TX is the underlying object of a T-algebra, called the free T-algebra:

its structure map �X : TTX �! TX is induced by the product � : TT �! T of T. We obtain a

functor F

T

: C �! C

T

by mapping an object X of C to the free T-algebra (TX;�X); this functor has

a left adjoint, the functor U

T

: C

T

�! C which sends (X; �) to the object X, and T may be factored

T = U

T

F

T

.

1.2. Operads. From now on, we will restrict attention to a category C with the following properties:

(1) C is a symmetric monoidal category with tensor product functor �
 � and unit 11;

(2) C has all small limits and colimits;

(3) for any object X, the functor X 
� preserves colimits.

Denote by 0 the initial object of C, which exists by the assumption that C has colimits. We will

eventually specialize to two categories.

(1) Let T be the category of compactly generated topological spaces, with tensor product the

product of spaces. An operad in T is called a topological operad (May [33]): this generalizes

the notion of a topological monoid.

(2) LetM be the category of chain complexes V

�

over a �eld K with V

i

= 0 for i < 0, and with

tensor product the graded tensor product. An operad in M is called a di�erential graded

operad (dg-operad): this generalizes the notion of a dg-algebra.

A symmetric monoidal category such as T , in which the tensor product equals the product, is called

cartesian.

Denote the k-fold tensor product of an object V of C by V

(k)

; it carries an action of the symmetric

group S

k

.

Let Sbe the symmetric groupoid whose objects are all �nite sets, including the empty set, and

whose morphisms are bijections between sets. If k is a natural number, we denote the object

f1; : : : ; kg of Sby k: the set of all such objects and their automorphisms form a skeleton of S, the

disjoint union of the symmetric groups

`

1

k=0

S

k

.

Let Cat(S;C) be the category of functors fromSto C; an object of Cat(S; C) is called an S-object,

or, in the di�erential graded case where C is the category of chain complexes M, an S-module. An
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S-object v determines a sequence v(k) of objects in C with action of S

k

, and conversely, from such

a sequence of objects we may reconstruct an S-object by setting S(S) to be the colimit

v(S) =

0

@

M

f2S(k;S)

v(k)

1

A

S

k

:

To an S-object v, we may associate an endofunctor S(v) on the category C, called the Schur

functor associated to v, by the formula

S(v; V ) =

1

M

k=0

v(k) 


S

k

V

(k)

;

it is here that we have used the hypothesis that C has small colimits. The functor S(v) is analytic,

with the S-object v as its Taylor coe�cients.

If a and b are S-objects, the composition S(a)S(b) is again a Schur functor: Joyal [26] and

Smirnov [46] give an explicit formula for its Taylor coe�cients, which we now recall.

Denote by �(S; T ) the set of maps from S to T : we think of an element � 2 �(S; T ) as a partition

of S into a �nite number of disjoint subsets f�

�1

(i) j i 2 Tg, possibly empty, labelled by elements

of T . Given an S-object b and � 2 �(S; T ), we de�ne

b(�) =

O

i2T

b(�

�1

(i)):

De�ne the tensor product on the category of S-objects by the formula

(a � b)(S) =

1

M

k=0

a(k)


S

k

�

M

�2�(S;k)

b(�)

�

:

This tensor product gives Cat(S;C) the structure of a monoidal category, with unit 11: to see the

associativity, we use the fact that the functor V 
 � preserves colimits. Of course, this monoidal

structure is not symmetric.

The inclusion of categories (C;
) ,! (Cat(S;C); �) de�ned by sending an object V of C to the

S-object, also denoted by V , such that

V (S) =

(

V; jSj = 1;

0; jSj 6= 1;

is a monoidal functor; that is, the functor � � � on S-objects is an extension of the usual tensor

product �
 � on C.

Proposition 1.3. The functor a 7! S(a) : Cat(S;C)�! End(C) is a monoidal functor:

S(a)S(b)

�

=

S(a � b):

The following de�nition of an operad is due to Smirnov [46].

De�nition 1.4. An operad is a monoid in the monoidal category Cat(S;C), that is, an S-object a

together with morphisms � : a � a �! a and � : 11 �! a satisfying the associativity and unit axioms.

Denote the category of operads in C by Op(C).

Note that a morphism of S-objects a � a �! a is determined by maps

a(k)
 a(j

1

)
 : : :
 a(j

k

) �! a(j

1

+ � � �+ j

k

);

corresponding to the partition

�(j) = i if j

1

+ � � �+ j

i�1

< i � j

1

+ � � �+ j

i

.
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The equivariance axiom in the original de�nition of an operad (May [33]) amounts to the assumption

that a � a �! a is a morphism of S-objects.

If a is an operad, Proposition 1.3 shows that the associated Schur functor S(a) is the underlying

functor of a triple, which we denote by T(a). If a is an operad, an algebra over T(a) is called

an a-algebra; the category of a-algebras will be denoted C

a

, and the space of morphisms between

two a-algebras A and B will be denoted Hom

a

(A;B). The a-algebra structure is determined by a

sequence of maps

�

k

: a(k) 
 V

(k)

�! V

invariant under the action of S

k

on a(k) 
 V

(k)

and compatible with the products of a; the space

a(k) parametrizes the k-linear products which make V into an a-algebra. If V is an object of C,

denote by [V ] the S-object

[V ](S) =

(

V; jSj = 0;

0; jSj � 1:

Note that a � [V ]

�

=

[S(a; V )]; thus, if a is an operad, an a-algebra A is the same thing as a module

[A] for the monoid a in the category of S-objects.

Let 11 be the unit for the tensor product � 
 � in the symmetric monoidal category C, and also

denote by 11 the corresponding S-object. The S-object 11 is an operad in an obvious way, since

the functor S(11) is just the identity functor. An augmented operad is an operad together with a

morphism of operads " : a �! 11 to the trivial operad.

An operad a such that a(S) = 0 for jSj 6= 1 is the same thing as a monoid in C, and an algebra

over such an operad is the same thing as a representation of this monoid: the triple T(a) is the

functor

T(a; X) = a(1)
X:

A monoid in the category of vector spaces is an associative algebra; thus, the theory of dg-operads

is a generalization of the theory of associative algebras.

If a is an operad, we denote the free a-algebra functor by F

a

: C �! C

a

, and its left adjoint, the

forgetful functor, by U

a

: C

a

�! C.

1.3. The little n-cubes operads. In this section, we introduce a sequence of operads in the

category M of chain complexes over a �eld K of characteristic zero, which interpolate between the

associative and commutative operads.

Let us state here our conventions on chain complexes. Unless otherwise stated, all chain complexes

will be concentrated in positive degree. If V is a chain complex, we denote by �V its suspension,

with

(�V )

i

= V

i�1

;

and �(�v) = (�1)

jvj

�(�v). A map V �! W of chain complexes inducing an isomorphism in homology

is called a weak equivalence. If V is a chain complex, its dual V

�

is the chain complex such that

(V

�

)

i

= (V

�i

)

�

:

Clearly, if V is concentrated in positive degree, the chain complex V

�

is concentrated in negative

degree.

If v is an S-module, denote by �v the S-module

(�v)(k) = �

1�k

v(k) 
 sgn

k

;

where sgn

k

is the sign representation of S

k

; this de�nition is motivated by the natural isomorphism

�S(a; V )

�

=

S(�a;�V ):
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It follows that (�v) � (�w)

�

=

�(v �w). Thus, if a is an operad, then �a is again an operad, while

if z is a cooperad, �z is again a cooperad. Furthermore, a �a-algebra structure on a chain complex

A is the same thing as an a-algebra structure on �A.

We will say that a map f : V �! W of chain complexes is a weak equivalence if it induces an

isomorphism in homology (this is sometimes called a quasi-isomorphism). Similarly, a map� : a �! b

of S-modules is a weak equivalence if �(S) : a(S) �! b(S) is a weak equivalence for all �nite sets S.

If � : a �! b is a map of operads, � is a weak equivalence if the underlying map of S-modules is a

weak equivalence.

Denote by F

X

(S) the con�guration space of embeddings of the �nite set S into the topological

space X,

F

X

(S) = fx 2 X

S

j x(s) 6= x(t) for s 6= tg:

As S varies over all �nite sets, we obtain an S-space F

X

on which Sacts freely. Abbreviate F

R

n

by

F

n

.

Denote by e

+

n

the S-module S 7! H

�

(F

n

(S);K), and by e

n

the S-module

e

n

(S) =

(

e

+

n

(S); jSj > 0;

0; jSj = 0:

The S-modules e

+

n

and e

n

have natural structures of operads, as we will now show. Call an algebra

for the operad e

n

an n-algebra, and denote the associated triple by T

n

; call an algebra for the

operad e

+

n

unital n-algebra, and denote the associated triple by T

+

n

. It is easily seen that a 1-algebra

is a di�erential graded algebra in the usual sense, while in characteristic zero, an 1-algebra is a

commutative dg-algebra.

In order to de�ne the operad structure of e

+

n

, we will construct a topological operad F

n

such

that the space F

n

(k) is homotopy equivalent to F

n

(k): this operad is Boardman and Vogt's \little

n-cubes operad" [9]. Let I denote the open subset (�1; 1) of R. If S is a �nite set, let F

n

(S) be the

space of all maps

`

i2S

d(i) :

a

i2S

I

n

�! I

n

such that each map d(i) : I

n

�! I

n

is a composition of a translation and a dilatation, and the maps

d(i) have disjoint images. The map from F

n

(k) to the con�guration space F

n

(k) de�ned by sending

a map I

n

�! I

n

to the image of the point (0; : : : ; 0) 2 I

n

is a homotopy equivalence, since it is a

�bration with contractible �bres (May [33], page 34). Thus H

�

(F

n

(k))

�

=

e

+

n

(k).

The operad structure of F

n

is given by maps

F

n

(T ) �

Y

i2T

F

n

(�

�1

(i)) �! F

n

(S); � 2 �(S; T );

de�ned for a set of disjoint cubes c 2 F

n

(T ) labelled by the set T and sets of disjoint cubes

c

i

2 F

n

(�

�1

(i)) labelled by the set �

�1

(i) by attaching to the label j 2 �

�1

(i) � S the cube

obtained by composing the embeddings d

i

(j) : I

n

�! I

n

and c(i) : I

n

�! I

n

. Taking the homology

of the little n-cubes operad F

n

, we see that e

+

n

is an operad in the category of graded vector spaces.

Arnold [3] and F. Cohen [11] have calculated H

�

(F

n

(k);Z) for n = 2, and n � 2, respectively:

the answer is summarized in the following proposition, proved by induction on k.

Proposition 1.5. Let 1 < n < 1. For 1 � i 6= j � k, let !

ij

2 H

n�1

(F

n

(k);Z) be the inverse

image of the generator of H

n�1

(S

n�1

;Z) under the map F

n

(k) �! S

n�1

de�ned by the formula

(x

1

; : : : ; x

k

) 7!

x

i

� x

j

jx

i

� x

j

j

:

The homology group H

�

(F

n

(k);Z) is torsion free, and its dual H

�

(F

n

(k);Z) is the graded commuta-

tive ring with generators !

ij

2 H

n�1

(F

n

(k);Z), and relations
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(1) !

ji

= (�1)

n

!

ij

;

(2) !

ij

!

jk

+ !

jk

!

ki

+ !

ki

!

ij

= 0;

(3) !

2

ij

= 0, for n odd.

The symmetric group S

k

acts on H

�

(F

n

(k);Z) by � � !

ij

= !

�(i)�(j)

.

In the special case n = 2, the cohomology class !

ij

is represented in de Rham cohomology by the

closed one-form

!

ij

=

1

2�i

d(z

i

� z

j

)

z

i

� z

j

;

where z

i

is the complex coordinate of the i-th point. The di�erential forms !

ij

satisfy the above

relations without any correction terms involving exact di�erential forms | there is no choice of

closed forms !

ij

for which this is true for n > 2 (Kontsevich, unpublished).

The Poincar�e series of a dg-operad a is the power series in two variables

g

a

(x; t) =

1

X

k=0

x

k

k!

1

X

i=0

t

i

dimH

i

(a(k)):

For example, the Poincar�e series of the operads e

1

and e

1

are given by

g

e

1

(x; t) =

x

1� x

; g

e

1

(x; t) = exp(x)� 1:

Using Proposition 1.5, we see that the Poincar�e series of the operad e

n

equals

g

e

n

(x; t) =

1

X

k=1

(1 + t

n�1

)(1 + 2t

n�1

) : : : (1 + (k � 1)t

n�1

)

x

k

k!

=

1

X

k=1

(�t

1�n

)(�t

1�n

� 1)(�t

1�n

� 2) : : : (�t

1�n

� (k � 1))

(�t

n�1

x)

k

k!

=

1

X

k=1

�

�t

1�n

k

�

(�t

n�1

x)

k

= (1� t

n�1

x)

�t

1�n

� 1:

As a �nal example, let L be the Lie operad: a basis of L(k) is given by the words in the free Lie

algebra generated by letters a

1

; : : : ; a

k

involving each letter exactly once. The vector space L(k) has

dimension (k � 1)!, and thus the Poincar�e series of the Lie operad equals

g

L

(x; t) = � log(1 � x):

Let us make explicit the structure of an n-algebra. A Lie bracket of degree m on a chain complex

V is de�ned to be a Lie bracket on �

m

V , that is, a bracket [�;�] : V

i


 V

j

�! V

i+j+m

such that

[v; w] = �(�1)

(jvj+m)(jwj+m)

[w; v];

�[v; w] = [�v; w] + (�1)

jvj+m

[v; �w];

[u; [v; w]] = [[u; v]; w]+ (�1)

(juj+m)(jvj+m)

[v; [u;w]]:

A Poisson algebra of degree m is a graded commutative algebra together with a graded Lie bracket

[u; v] of degree m satisfying the Poisson relation

[u; vw] = [u; v]w+ (�1)

(juj+m)jvj

v[u;w]:

Let p

n

be operad whose algebras are Poisson algebras of degree n � 1: p

n

(k) is the vector space

spanned by the words in letters a

1

; : : : ; a

k

constructed by means of the two products ab and [a; b],

involving each letter exactly once, and such a word is assigned a degree equal to n � 1 times the

number of bracket operations in it. We call p

n

the n-Poisson operad.

The following result is contained in the thesis of F. Cohen [11]; we will give a di�erent proof in

Chapter 3, generalizing work of Beilinson and Ginzburg [8].
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Theorem 1.6. If n � 2, the operads e

n

and p

n

are naturally isomorphic.

The two products on an n-algebra correspond to the two homology classes in H

�

(F

n

(2))

�

=

H

�

(S

n�1

), since F

n

(2) ' S

n�1

. The symmetry or antisymmetry of these two products is deter-

mined by the action of the involution in S

2

on H

�

(S

n�1

). The operad e

n

is quadratic, in the sense

of Ginzburg and Kapranov [22] (see Section 2.4): associativity, the Jacobi relation and the Poisson

relation are quadratic in the two operations.

We can also show that the unital analogue e

+

n

of the operad e

n

is isomorphic to the unital version

of the n-Poisson operad. If 1 is the distinguished element of e

+

n

(0), we must show that 1a = a1 = a

and that f1; ag = fa; 1g = 0. The �rst formula follows from the fact that the commutative product

is represented by any point of F

n

(2), thought of as a 0-chain, while the identity is represented by

any point of F

n

(1). The second formula is clear, since any element of degree n � 1 of e

n

(1) must

vanish.

Denote by T

L

the free Lie algebra functor T(L; V ).

Corollary 1.7. There is an isomorphism of functors T

n

(V )

�

=

T

1

(�

1�n

T

L

(�

n�1

V )).

Proof. For n = 1, this is the Poincar�e-Birkho�-Witt theorem, while for n > 1, it is an immediate

consequence of Theorem 1.6.

An entirely di�erent approach to Theorem 1.6 when n = 2 is contained in the work of Schechtman

and Varchenko [45]: they prove the more general result, that if S is a �nite subset of the complex

plane, then

1

M

k=0

H

�

(F

CnS

(k)) 


S

k

V

(k)

�

=

T

+

1

(�

�1

T

L

(�V )) 
 T

+

1

(�V )

(S)

:

It also follows from Theorem 1.6 that for any n > 1, the operad L may be identi�ed with the

operad consisting of the components in zero degree of �

n�1

e

n

,: thus L(k) may be identi�ed with

the top-dimensional homology group H

(k�1)(n�1)

(F

n

(k)), tensored with the (n� 1)-th power of the

sign representation sgn

k

.

We also see that the augmentation A

+

of an n-algebra is a unital n-algebra in a natural way: if

1 is the basis vector of the subspace 11 � A

+

, we de�ne the product with 1 to be the identity, and

the bracket with 1 to be zero.

The following lemma provides evidence for the validity of Theorem 1.6, and is used in our proof

of this theorem in Chapter 3.

Lemma 1.8. The Poincar�e series of the operads p

n

and e

n

are equal.

Proof. Using the Poisson relation, we see that, for k > 0, the words in p

n

(k) may be written as

a commutative product of the form A

1

: : :A

m

, where � 2 �(k;m) and A

i

is a word in the letters

fa

j

j �(j) = ig involving only the bracket. Taking into account the fact that such the monomial

A

i

has degree (n � 1)(j�

�1

(i)j � 1), we see that the Poincar�e series of p

n

equals the exponential

of t

1�n

g

L

(t

n�1

x), where g

L

(x) = � log(1 � x) is the Poincar�e series of the Lie operad L. In other

words,

g

p

n

(x; t) = e

�t

1�n

log(1�t

n�1

x)

� 1;

which does indeed equal the Poincar�e series of e

n

.

The usual Poisson operad is obtained by setting n = 1 in the de�nition of p

n

. Of course, the

operads e

1

and p

1

are not isomorphic: associative and Poisson algebras are quite di�erent. In Section

5.3, we will show that e

1

is naturally a �ltered operad, and that the associated graded operad is the

Poisson operad.

The homology of an n-fold loop space H

�

(


n

X;K) over a �eld of characteristic zero is an n-

algebra: the product is the Pontryagin product, and comes from the H-space structure of 


n

X,
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while the Lie bracket is the Browder operation. (For more details, see Cohen [11].) Furthermore,

Cohen shows that H

�

(


n

�

n

X;K) is the free unital n-algebra T

+

n

(

~

H

�

(X)) generated by the reduced

homology of X: this is familiar in the special cases n = 1 and n =1.

The cases n = 1, 2 and 1 are of particular interest. The con�guration space F

1

(k) is a disjoint

union of contractible spaces; the components correspond to permutations � 2S

k

by the rule

� 7! f(x

�(1)

; : : : ; x

�(k)

) 2 R

k

j x

�(1)

< � � � < x

�(k)

g:

It follows that the underlying S-module of e

+

1

is the free S-module e

+

1

(k) = K[S

k

]. The associated

triple is the space of tensors

T

+

1

(V ) =

1

M

k=0

V

(k)

:

Algebras over the operad e

+

1

are just unital associative algebras; the space T

+

1

(V ) is of course the

vector space underlying the free unital associative algebra generated by V . Indeed, the distinct ways

of multiplying elements (x

1

; : : : ; x

k

) of a unital associative algebra are parametrized by elements

of S

k

: to � 2 S

k

, we associate the multiple product x

�(1)

: : :x

�(k)

. The natural transformation

� : T

+

1

T

+

1

�! T

+

1

is de�ned by erasing parentheses. Finally, the unit � is given by the canonical

inclusion of the vector space V in T

+

1

(V ).

The con�guration spaces of R

1

are contractible. It follows that the underlying S-module of e

+

1

has e

+

1

(k) = 11, where 11 is the trivial representation of S

k

. The associated triple is the space of

symmetric tensors on V

T

+

1

(V ) =

1

M

k=0

�

V

(k)

�

S

k

:

Algebras over the operad e

+

1

are just unital commutative algebras; the symmetric tensor space

T

+

1

(V ) is of course the vector space underlying the free unital commutative algebra generated by

V . The structure maps � : T

+

1

T

+

1

�! T

+

1

and � : 11 �! T

+

1

are de�ned in much the same way as for

the triple T

+

1

.

We now turn to the case n = 2. The braid group on k strands B

k

is the fundamental group of the

quotient space F

2

(k)=S

k

. The pure braid group P

k

on k strands is de�ned to be the fundamental

group of F

2

(k). Thus, there is an exact sequence of groups

1 �! P

k

�! B

k

�! S

k

�! 1:

By induction on k, we see that F

2

(k) is an Eilenberg-Maclane space. It follows that, at least over a

�eld of characteristic zero, the triple associated to e

+

2

has the following expression in terms of the

braid groups B

k

:

T

+

2

(V ) =

1

M

k=0

H

�

(B

k

; V

(k)

):

Here, the braid group B

k

acts on the tensor power V

(k)

through its quotient the symmetric group.

1.4. Free operads. We will now construct a triple Ton the category of S-objects such that an

operad is an algebra over this triple. We use what Boardman and Vogt call \the language of trees."

We work with graphs which are not necessarily compact: an edge of a graph may be terminated

by a vertex at only one end (or none). Such an edge is called external. If S is a graph, its set of

vertices is denoted v(S).

An orientation of a graph is an orientation of each edge. If s is a vertex of an oriented graph, we

denote by in(s) and out(s) the sets of incoming and outgoing edges incident to s. We also denote by

in(S) and out(S) the sets of incoming and outgoing external edges of S. (If S is the unique graph

with one external edge and no vertices, then in(S) = out(S); in all other cases, these two sets are

disjoint.)
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De�nition 1.9. A tree S is an oriented, contractible graph, such that out(S) has one element (the

root of the tree), and out(s) has one element for each vertex s 2 v(S).

An ordered tree is a tree S together with a total order on its set v(S) of vertices.

A tree on a �nite set S is a tree S together with a bijection between in(S) and S.

The cardinality j in(s)j of the set of incoming edges incident to a vertex s is called its valence. We

have the formula

X

s2S

(j in(s)j � 1) = j in(S)j � 1:

A parent of a vertex t is a vertex s whose outgoing edge e terminates at t. A vertex with no parents

is called maximal: this is equivalent to in(t) � in(S).

Denote the in�nite set of isomorphism classes of trees on S by T (S); it is a functor fromSto the

category of sets.

If S is a tree with no vertices of valence 0 or 1, we say that S is a nest. To a vertex of a nest, we

may associate the set of elements of 2 (S) lying above it. The resulting collection n(S) of subsets

of in(S) is a nest in the sense of Fulton and MacPherson [15]:

(1) if S 2 n(S), jSj � 2;

(2) for any two sets S

1

; S

2

2 n(S), either S

1

\ S

2

= ; or S

1

� S

2

or S

2

� S

1

;

(3) in(S) 2 n(S).

The set of nests N (S) on a �nite set S is �nite.

We often employ a graphical notation to denote trees, with the incoming edges at the top and

the root at the bottom: for example, here are two trees with 2 (S) = 5, the �rst of which is a nest

and the second of which is not.

@

@

@

@

@

@

�

�

�

�

�

�

1 2 3

4 5

r

r

@

@

@

@

@

@

�

�

�

�

�

�

1 2 3

4

5

r

r r

The �rst of these trees has one maximal vertex, while the second has two.

The number of trees with k incoming external edges and a given underlying graph may be counted

by dividing k! by the number of automorphisms of the graph which �x the root. As an example, we

may enumerate the 26 nests with four incoming external edges:

@

@

@

A

A

A

�

�

�

�

�

�

1

q @

@

@

@

�

�

�

�

6

q

q

@

@

@

@

�

�

�

�

4

q

q

@

@

@

@

�

�

�

�

�

�

A

A

3

q

q q

@

@

@

@

�

�

�

�

�

�

12

q

q

q

If � 2 �(S; T ) is a partition of the set S into disjoint non-empty subsets labelled by T , and

S

0

2 T (T ) and S

i

2 T (�

�1

(i)) for i 2 T , de�ne the tree S

0

[S

1

; : : : ;S

k

] 2 T (S) by attaching the tree

S

i

to the external edges of S

0

labelled by i 2 T . This operation is called grafting. If the trees S

i

are

ordered, then the grafted tree S

0

[S

1

; : : : ;S

k

] has a natural order, obtained by de�ning vertices of S

i

to come before vertices of S

j

if i < j.

If v is an S-object in a symmetric monoidal category C and S is an ordered tree on S, let

v(S) =

N

s2V (S)

v(in(s)); the ordering on the vertices of S is needed so that we know in what
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order to take the tensor products. If S

1

and S

2

are two ordered trees with the same underlying tree

but di�erent orderings of the vertices, then v(S

1

) and v(S

2

) are naturally isomorphic, since C is a

symmetric monoidal category. If S is the tree with no vertices and one external edge, v(S)

�

=

11.

Let v be an S-object in a symmetric monoidal category C. The S-object of tensors Tv over v is

de�ned to be the sum over trees

Tv(S) =

M

S2T (S)

v(S);

where an ordering is chosen for each tree. There is a more invariant way of de�ning Tv(S): if

T

ord

(S) is the category whose objects are ordered trees on S and whose morphisms are pairs (S

1

;S

2

)

of ordered trees with the same underlying tree, then Tv(S) is the colimit of the functor from T

ord

(S)

to C which sends an ordered tree to v(S).

Note that if V is an object of C, which we may consider to be an S-object as in Section 1.2, then

TV

�

=

1

M

k=0

V

(k)

is just the usual space of tensors on V . It is for this reason that we think of Tv as generalizing the

notion of tensors to the category of S-objects.

If v is an S-object, the S-objectTv may be given an operad structure in a natural way. The unit

� : 11 �! Tv is given by the injection of the summand 11 ofTv(1), while the product � : (Tv)�(Tv)�!

Tv is de�ned by grafting of trees. The summands of ((Tv) � (Tv))(S) are labelled by a partition

� 2 �(S; k) of S, a tree S

0

2 T (k) with k leaves, and k trees S

i

2 T (�

i

), 1 � i � k, labelled by the

sets �

i

= �

�1

(i) � S. Such a summand is isomorphic to

v(S

0

)
 v(S

1

)
 : : :
 v(S

k

);

which in turn is naturally isomorphic to the summand v(S

0

[S

1

; : : : ;S

k

]) of Tv: the product � :

(Tv)� (Tv)�! Tv is de�ned by means of this identi�cation.

We will denote this operad by Tv, and the free operad functor by F

T

. This construction gener-

alizes the construction of the tensor algebra on a vector space V .

Proposition 1.10. Given an operad a and a map f : v �! a of S-objects, there is a map of operads

h : Tv �! a such that the following diagram commutes:

v

Tv

a

-

h

@

@

@

@R

�v

?

f

Proof. It su�ces to show that for an operad a, there is a natural map of operads Ta �! a, its

structure map. Given a tree S 2 T (S), choose a total ordering of the vertices v(S). We de�ne the

map Ta(S) �! a(S) by mapping an element

O

s2v(S)

a(s) 2 a(S) � Ta(S);

to the element of a(S) obtained by successively applying the product map of a to the elements a(s):

we start at the maximal vertices and work our way down the tree. It is easily seen that this map is

equivariant, and sends the result of the grafting operation in Ta to the product in a; hence, it does

de�ne a map of operads.

Corollary 1.11. The free operad functor F

T

: Cat(S;C)�! Op(C) is the right adjoint of the under-

lying S-object functor U

T

: Op(C) �! Cat(S; C).
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It follows from this corollary that the functor

T= U

T

F

T

: Cat(S; C)�! Cat(S;C)

has the natural structure of a triple.

Proposition 1.12. The category of algebras for the triple T is naturally isomorphic to the category

of operads.

Proof. The result follows from the Crude Tripleablity Theorem (MacLane [32], Exercise VI.7.7),

which says that any functor U : Alg �! C satisfying the following three conditions is tripleable:

(1) U has a left adjoint;

(2) U reects isomorphisms;

(3) Alg has coequalizers of reexive pairs (f; g) : X �! Y (pairs with a common right inverse)

such that (Uf; Ug) has a coequalizer, and U preserves such coequalizers.

We have shown that the functor U

T

: Op(C) �! Cat(S;C) has a left adjoint. The other two conditions

are obvious.

1.5. Limits and colimits of operads. In this section, we will show that the category of operads

has all limits and colimits. This follows from the following theorem, which is a rather special case

of the results of Section 9.3 of Barr and Wells [6].

Theorem 1.13. Let C be a category with all limits and colimits, and let T : C �! C be a triple which

preserves �ltered colimits. Then the category of T-algebras C

T

has all limits and colimits.

The di�cult part of this theorem is the construction of pushouts in C

T

; however, for the category

of operads, this may be done explicitly, as follows.

First, recall that if A and B are associative algebras, their coproduct may be explicitly realized

as the direct sum

A

`

B =

�

1

M

n=1

(A 
B)

(n)

�

�

�

1

M

n=0

(A 
B)

(n)


A

�

�

�

1

M

n=0

B 
 (A
 B)

(n)

�

�

�

1

M

n=0

B 
 (A 
B)

(n)


A

�

:

Similarly, if a and b are operads, we may realize their coproduct as follows. We take a sum over

trees with vertices coloured either black or white: to a black vertex of valence k we attach the space

a(k), while to a white vertex of valence k we attach the space b(k). Taking a tensor product over

the vertices and a sum over trees, we obtain the free operad T(a� b). Suppose we have a black

(white) vertex s all of whose parents are coloured black (white): we may form a new tree in which s

and its parents are combined into a single black (white) vertex, and the corresponding elements of a

(respectively b) are multiplied using the operad structure of a (resp. b). The coproduct of a and b

is this quotient of T(a�b): thus a

`

b may be identi�ed with the subspace spanned by those trees

such that no black (white) vertex has all of its parents black (white).

Now suppose we are given an operad c and maps � : c �! a and 	 : c �! b. To construct the

pushout a

`

c

b, we further quotient a

`

b by the subspace which identi�es trees in which one vertex

of valence k is changed from black to white, and the associated label is changed from �(c) to 	(c),

where c 2 c(k). It may be easily shown that the resulting quotient is an operad in a natural way,

and that it has the universal property of the coproduct a

`

c

b.

By Theorem 8.1 of MacLane [32], a category with �ltered colimits and pushouts has all small

colimits. To show that the free operad functor Tpreserves �ltered colimits, we apply the following

lemma.
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Lemma 1.14. In a symmetric monoidal category such that � 
 � preserves colimits, the functor

V 7! V

(k)

preserves �ltered colimits.

Proof. Let I be a �ltered category, and let � : I �! C be an I-diagram in C. We may factor the

functor V 7! V

(k)

into the diagonal functor

V 7! V � � � � � V : C �! C

k

;

followed by the tensor product functor

V

1

� � � � � V

k

7! V

1


 : : :
 V

k

: C

k

�! C:

Since the colimit over I

k

of �(i

1

) 
 : : :
 �(i

k

) can be expressed as an iterated colimit, and X 
 �

preserves colimits, we see that

�

colim

i2I

�(i)

�

(k)

= colim

(i

1

;:::;i

k

)2I

k

�(i

1

) 
 : : :
 �(i

k

):

But since the category I is �ltered, its diagonal is co�nal, so that

colim

(i

1

;:::;i

k

)2I

k

�(i

1

)
 : : :
 �(i

k

)

�

=

colim

i2I

�(i)

(k)

:

Using this lemma, we may show that the category of operads Op(C) has all �ltered colimits.

Suppose that � : I �! Op(C) is a �ltered diagram of operads, and let a be the colimit in Cat(S; C) of

the underlying diagram of S-objects. There is a family of compatible maps T�(i) �! a in Cat(S; C)

induced by the structure mapsT�(i)�! �(i), which induce a map from the colimitTa= colim

I

T�(i)

to a. It is easily checked that this map gives a an operad structure.

Finally, the category of operads has all limits by general considerations: if T is a triple, the

functor U

T

: C

T

�! C creates limits. (This is Theorem 3.4.1 of Barr and Wells [6].) To see this, let

� : I �! C

T

be a diagram of T-algebras, and let X be the limit in C of the diagram U

T

� : I �! C.

There is a unique T-algebra structure induced on the limit limU

T

� in C making it the limit of the

diagram � in C

T

. Indeed, for each i 2 I, there is a map of T-algebras TX �! �(i) induced by the

mapX �! U

T

�(i) in C of the limit cone. The limit of the maps TX �! �(i) induces a map TX �! X

in C, which gives X a T-algebra structure.

1.6. Limits and colimits of algebras. In this section, we will show that the category of algebras

over an operad has all limits and colimits. Although this follows from Thorem 1.13, we prefer to

imitate our proof of the corresponding result for operads. The construction of limits and �ltered

colimits is identical to the case of operads, and the only di�cult part of the proof is the construction

of pushouts. Their existence is a consequence of the construction of a direct image, or base change,

functor.

A morphism of operads � : a �! b induces a functor �

�

: C

b

�! C

a

on the categories of algebras:

if B is a b-algebra, the object of C underlying �

�

B is B itself, and the a-algebra structure on B is

given by the composition

T(a; B)

T(�;B)

����! T(b; B)

�

�! B:

The functor �

�

has a left adjoint �

�

, the direct-image: if A is an a-algebra, the object of C underlying

�

�

A is the coequalizer

T(b;T(a; A))

T(b;�)

���������!

���������!

�(A)�T(b;T(�;A))

T(b; A) �! �

�

A:

This generalizes the de�nition of the direct image �

�

M of an A-module M along a morphism of

algebras f : A �! B, often denoted by B 


A

M , as the coequalizer

B 
A 
M

�����!

�����!

B 
M �! �

�

M:
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Lemma 1.15. The object �

�

A of C has a natural b-algebra structure.

Proof. Observe that T(b;�

�

A) is the coequalizer in C

T(b;T(b;T(a; A))� T(b; A))

T(b;T(b;�)�T(b;A))

������������������!

������������������!

T(b;(�A)�T(b;T(�;A))�T(b;A))

T(b;T(b; A)) �! T(b;�

�

A):(�)

Indeed, if X

f

����!

����!

g

Y �! Z is a coequalizer in C, then so is

T(b; X � Y )

T(b;f�Y )

������!

������!

T(b;g�Y )

T(b; Y ) �! T(b; Z) ;

since the functor b(k)


S

k

� is right-exact. It now su�ces to apply this general observation to the

coequalizer diagram de�ning �

�

A.

But the composite morphism

T(b;T(b; A))

�A

��! T(b; A) �! �

�

A

coequalizes the parallel pair of arrows in (�), so there is induced an arrow T(b;�

�

A) �! �

�

A. This

may be checked to give �

�

A a b-algebra structure.

Note that since both of the arrows T(b;T(a; A))

�����!

�����!

T(b; A) are morphisms of b-algebras,

�

�

A is actually a coequalizer in the category of b-algebras as well as in C.

Proposition 1.16. The direct image functor �

�

: C

a

�! C

b

is the left adjoint of the functor �

�

:

C

b

�! C

a

.

Proof. If A is an a-algebra and B is a b-algebra, we may associate to a linear map f : A �! B the

square

T(a; A)

T(�;f)

����! T(b; B)

�

A

?

?

y

?

?

y

�

B

A

f

����! B

This induces two linear maps from C(A;B) to C(T(a; A); B), and we may identify Hom

a

(A;�

�

B)

with the equalizer

Hom

a

(A;�

�

B) �! C(A;B)

�����!

�����!

C(T(a; A); B):

Since Hom

b

(�; B) maps coequalizers in the category of b-algebras to equalizers in the category of

sets, we also have the equalizer diagram

Hom

b

(�

�

A;B) �! Hom

b

(T(b; A); B)

�����!

�����!

Hom

b

(T(b;T(a; A)); B):

These equalizers are identi�ed under the isomorphism Hom

b

(T(b;�); B)

�

=

C(�; B), showing that

Hom

b

(�

�

A;B)

�

=

Hom

a

(A;�

�

B).

Corollary 1.17. The composite functor �

�

F

a

: C �! C

b

is isomorphic to the functor F

b

.

Proof. The composition of functors C

b

�

�

��! C

a

U

a

��! C is equal to U

b

. Taking adjoints, we see that

�

�

F

a

�

=

F

b

: C �! C

b

.

If a is an augmented operad with augmentation map " : a �! 11, the direct image functor

"

�

: C

a

�! C is the indecomposables, or linearization, functor. The composition "

�

F

a

is the identity

functor of C: the indecomposables of a free object are its generators.
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We will use the direct image construction to prove the existence of pushouts in C

a

. Recall that

if C is a category and X is an object in C, the category X nC of objects under X is the category of

morphisms f : X �! Y with source X.

Lemma 1.18. Let a be an operad and let X be an a-algebra. There is an operad a[X] such that the

category of a[X]-algebras is naturally isomorphic to the category X n C

a

of a-algebras under X.

Proof. In the special case that a = 11, the S-object underlying the operad 11[X] is

11[X](S) =

8

>

>

<

>

>

:

X; jSj = 0;

11; jSj = 1;

0; jSj > 1:

More genereally, the S-object underlying the operad a[X] equals a � 11[X] on nonempty �nite sets

S, while on the empty set it equals X: explicitly,

a[X](S) =

8

>

<

>

:

X; jSj = 0;

1

M

k=0

a(S

`

k)


S

k

X

(k)

; jSj > 0:

We de�ne the product of a[X] as follows: if jSj > 0,

(a[X] � a[X])(S)

�

=

(a � a)[X](S);

and the product (a[X] � a[X])(S) �! a[X](S) is de�ned using the product of a. On the other hand,

(a[X] � a[X])(0) � T(a � a; X);

and the product is de�ned by �rst mapping T(a � a; X) to T(a; X) and then applying the structure

map T(a; X) �! X. The unit of a[X] is the composition of the unit of a with the natural inclusion

a(1) �! a[X](1). These maps give a[X] an operad structure.

An algebra Y over a[X] is de�ned by a structure map T(a[X]; Y ) �! Y . Composing with the

inclusion T(a; Y ) �X �! T(a[X]; Y ), we see that this determines maps T(a; Y ) �! Y and X �! Y .

The operad structure of a[X] show that two such maps determine an a[X]-algebra structure on Y

if and only if they give Y the structure of an a-algebra under X.

If f : X �! Y is a morphism of a-algebras, and a[f ] : a[X] �! a[Y ] is the induced morphism of

operads, then a[f ]

�

is the natural map from a-algebras under Y to a-algebras under X induced by

f . We see that the pushout of the diagram

X

f

����! Y

?

?

y

Z

is the direct image a[f ]

�

Z. This gives an explicit construction of the pushout in C. In the special

case where X is the initial object 11, we obtain the coproduct in C

a

, which we denote by Y

`

Z.
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1.7. Cooperads and Coalgebras. The theory of cooperads and their coalgebras is almost dual

to the theory of operads and their algebras. This duality is not perfect, since the Schur functor

S(a) does not commute with limits without an extra hypothesis on a. This leads us to impose the

additional assumption that the S-object underlying the cooperad is exact.

De�nition 1.19. An S-object v is exact if for all k � 0, the functor v(k)


S

k

� preserves limits.

For example, in the category of chain complexes over a �eld of characteristic 0, every S-object is

exact.

A cotriple on a category is a comonoid in End(C), that is, a functor C : C �! C together with a

coproduct � : C �! CC and counit " : C �! 11 satisfying axioms dual to those of a triple. Cotriples

arise when one has an adjoint pair of functors U : C
Alg : F . The composition UF : Alg �! Alg

is a cotriple, with coproduct � = U�F : UFUF �! UF , where � : 11 �! FU is the unit of the

adjunction, and the counit " : UF �! 11 of the adjunction is the counit of the triple.

Dualizing algebras over a triple, we obtain coalgebras over a cotriple: a coalgebra is an object

X of C together with a morphism � : X �! CX, satisfying axioms dual to those for algebras over a

triple. In particular, if X is an object of C, then CX is the underlying object of a coalgebra over C,

called the cofree C-coalgebra on X. The category of C-coalgebras is denoted by C

C

.

A cooperad z in a symmetric monoidal category C is a comonoid in the monoidal category

�

Hom(S;M); �; 11

�

, that is, an S-object z together with morphisms � : z �! z � z and " : z �! 11

satisfying the coassociativity and counit axioms. We will denote the category of cooperads by

Coop(C).

If z is a cooperad, let C(z) be the associated cotriple, with underlying functor S(z); we denote

the category of C(z)-coalgebras by C

z

, and call an object of C

z

a z-coalgebra.

The following proposition is an example of how the hypothesis of exactness is used in the theory

of cooperads.

Proposition 1.20. If z is an exact cooperad, the category of z-coalgebras has all limits and colimits.

Proof. This follows from the dual of Theorem 1.13. The hypothesis of exactness is required in order

that C(z) preserve �ltered limits.

One may dualize the construction of direct images of Section 1.6: if � : w �! z is a morphism of

cooperads and w is exact, the functor �

�

has a right adjoint �

�

, the inverse-image.

One may also dualize the explicit construction of pushouts, to obtain a construction of pullbacks

in the category of z-colagebras, for z an exact operad. The category C=Z of z-coalgebras over a z-

coalgebra Z may be identi�ed with the category of coalgebras over a cooperad z[Z], whose underlying

S-object is

z[Z](S) =

8

>

<

>

:

1

M

k=0

z(S

`

k)


S

k

Z

(k)

; jSj > 0;

Z; jSj = 0:

The pullback of a diagram

X

?

?

y

Y

f

����! Z

in C

z

is given by the explicit formula z[f ]

�

X.

There is a cotriple C on the category of S-objects whose category of coalgebras is the category of

cooperads. The functor underlying C is the same endofunctor T: Cat(S; C) �! Cat(S; C) as underlies

the free operad triple T. The coproduct � : Cv �! (Cv) � (Cv) of the cooperad Cv is de�ned by

grafting of trees. The summands of ((Cv) � (Cv))(S) are labelled by a partition � 2 �(S; k) of S, a
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tree S

0

2 T (k) with k incoming external edges, and k trees S

i

2 T (�

�1

(i)), 1 � i � k, labelled by

the sets �

�1

(i) � S. Such a summand is isomorphic to

v(S

0

)
 v(S

1

)
 : : :
 v(S

k

);

which in turn is naturally isomorphic to the summand v(S

0

[S

1

; : : : ;S

k

]) of Cv: the coproduct

� : Cv �! (Cv) � (Cv) is de�ned by means of this identi�cation. The counit " : Cv �! 11 of the

cooperad Cv is the projection to the summand 11 of Cv(1).

If v is an S-object, the cooperad Cv is the cofree cooperad of v: any map of S-objects z �! v,

where z is a cooperad, factors as z �! Cv �! v, where Cv �! v is the canonical projection of Cv

onto its summand v, and z �! Cv is a map of cooperads. It follows that the functor G

C

such that

G

C

(v) = Cv is the right adjoint of the underlying S-object functor U

C

: Coop(C) �! Hom(S;C), and

that the functor U

C

is cotripleable.

Proposition 1.21. The category of coalgebras for the cotriple C = U

C

G

C

is isomorphic to the

category of cooperads Coop(C).

2. The bar construction for operads and algebras

We now begin the study of operads and cooperads in the category of chain complexes M. In

Section 2.1, we de�ne the bar cooperad Ba of an operad a: this construction is based on Ginzburg

and Kapranov's bar operad of an operad [22], which is its linear dual, and generalizes the bar

construction of Eilenberg and MacLane for associative algebras.

As will be explained in Chapter 4, Quillen's homotopical algebra for algebras over an operad is

the correct generalization of homological algebra for modules over an algebra. In Section 2.2, we

study the algebras which play the role of the free complexes in the category of modules: the almost

free a-algebras. In homotopical algebra, the role of projective complexes will be taken by co�brant

a-algebras, the retracts of almost free a-algebras.

In Section 2.3, we use the bar cooperad to construct a homotopy equivalence between the cate-

gories of a-algebras and Ba-coalgebras. By this, we mean that there is an adjoint pair of functors


(a) :M

Ba


M

a

: B (a)

such that the unit 
(a; B(a; A)) �! A and counit C �! B (a;
(a; C)) of the adjunction are weak

equivalences.

In Section 2.4, we recall the de�nition of a Koszul operad, due to Ginzburg and Kapranov: this

generalizes Priddy's notion of a Koszul algebra. One of the main results of this paper, proved in

Chapter 3, is that the n-algebra operad e

n

of Section 1.3 is Koszul, for 1 � n � 1: for n = 1 and

n = 1, this is equivalent to the well known theorems which identify the Hochschild homology of a

free associative algebra and the Lie algebra homology of a free Lie algebra.

2.1. The bar construction for operads. The bar construction of Eilenberg and MacLane is a

functor from augmented dg-algebras to coaugmented dg-coalgebras. If A is an augmented algebra,

let

�

A be the kernel of the augmentation map " : A �! 11, and let �

�

A be its suspension. The bar

construction is obtained by twisting the di�erential of the cofree coalgebra generated by �

�

A in a way

which reects the algebra structure of A. In this section, following Ginzburg and Kapranov [22], we

de�ne the bar cooperad Ba of a dg-operad a; this construction specializes to the bar construction of

Eilenberg-MacLane if a is an algebra.

If v is an S-module (an S-object in the category of chain complexes M), denote by v

#

the

S-module with zero di�erential underlying v (this is Moore's notation [36]).

De�nition 2.1. An operad a is almost free if the operad a

#

is free. A cooperad z is almost cofree

if the cooperad z

#

is cofree.
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If a is an augmented operad, let
�
a be the kernel of the augmentation map " : a �! 11. The bar

cooperad Ba is de�ned by twisting the di�erential of the cofree cooperad C (�
�
a) in a way which

refects the operad structure of a; thus Ba is an almost cofree cooperad.

Let S be a tree, and let e be an internal edge of S, starting at the vertex s and ending at the

vertex t. De�ne a new tree S n e by contracting the edge e and merging the vertices s and t. Denote

this merged vertex of S n e by t � s.

In de�ning the contribution of the edge e to the di�erential of Ba, it is convenient to suppose

that the vertices of S are ordered in such a way that s comes �rst among the parents of t. The

multiplication map

a(in(t)) 
 a(in(s)) 
 11

in(t)nfeg

1
1
�

in(t)nfeg

���������! a(in(t)) 
 a(in(s)) 
 a(1)

in(t)nfeg

�! a(in(t � s));

induces by suspension a map @

e

: (�
�
a)(S) �! (�

�
a)(S n e) of degree �1. The following picture

illustrates the situation.

@

@

@

@

@

@

�

�

�

A

A

A

�

�

�

�

�

�

A

A

A

�

�

�

: : :

v(s)

: : :

v(t)

r

t

e

r

s

-

@

e

@

@

@

@

A

A

A

A

�

�

�

�

�

�

�

�

: : :

v(t � s)

r

t � s

Denote by @ : C (�
�
a) �! C (�

�
a) the sum of the maps @

e

: (�
�
a)(S) �! (�

�
a)(S n e) over all trees S and

internal edges e 2 S, and by �

a

the internal di�erential of C (�
�
a) induced by that of a.

Proposition 2.2. The operator �

a

+@ is a di�erential, and is compatible with the cooperad structure

of C (�
�
a).

Proof. We �rst show that (�

a

+ @)

2

= 0. The internal di�erential �

a

of a commutes with @

e

for all

internal edges e, showing that [�

a

; @] = 0. If S is a tree and e

1

and e

2

are two internal edges of S,

it is easy to verify that @

e

1

@

e

2

+ @

e

2

@

e

1

= 0, showing that @

2

= 0. It follows that (�

a

+ @)

2

= 0.

Since it is clear that �

a

is compatible with the coproduct of C (�
�
a), it remains to show that @ is.

Denote by �

S

0

[S

1

;:::;S

k

]

the component of the coproduct � : C (�
�
a) �! C (�

�
a) � C (�

�
a) which maps

the summand (�
�
a)(S

0

[S

1

; : : : ;S

k

]) of C (�
�
a) to the image of

(�
�
a)(S

0

)
 (�
�
a)(S

1

) 
 : : :
 (�
�
a)(S

k

)

in C (�
�
a) � C (�

�
a). If e is an internal edge of a subtree S

i

, we see that

�

S

0

[S

1

;:::;S

k

]

@

e

= (1
 : : :
 1
 @

e


 1
 : : :
 1)�

S

0

[S

1

;:::;S

k

]

;

where on the right-hand side, @

e

acts on the factor (�
�
a)(S

i

). Since � is the sum of �

S

0

[S

1

;:::;S

k

]

over

all S

i

, and @ is the sum of @

e

over all trees S and internal edges e, this shows that @ is compatible

with the coproduct of C (�
�
a): C (�

�
a) with di�erential �

a

+ @ is a cooperad.

De�nition 2.3. The bar cooperad Ba of an augmented operad a is the cooperad C (�
�
a) with

di�erential �

Ba

= �

a

+ @. We denote the summand (�
�
a)(S) of Ba by Ba(S).

A connected cooperad is a cooperad such that
�
z is concentrated in strictly positive degree: for

example, the cooperad Ba is connected. There is a dual version of the bar construction for connected

coaugmented cooperads z: the cobar operad B

�

z is the almost free operad T(�

�1

�
z) with di�erential

�

B

�

z

= �

z

+ @

�

, where �

z

is the internal di�erential of T(�

�1

�
z) induced by that of z, and @

�

is the

di�erential de�ned by reversing all of the arrows in the de�nition of @ on C (�
�
a). The condition
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that the cooperad z is connected is needed in order for the operad B

�

z to not have any elements of

negative degree. Note that B�a

�

=

�Ba and B

�

�z

�

=

�B

�

z.

In Section 2.3, we will prove that the functors B

�

and B form an adjoint pair. In Theorem

3.2.16 of [22], Ginzburg and Kapranov show that the counit B

�

Ba �! a and unit z �! BB

�

z of

this adjunction are weak equivalences. Thus, the operad B

�

Ba may be thought of as a canonical

almost free resolution of the operad a. The analogous construction for algebras is well-known; see

for example Moore [37].

2.2. Almost-free algebras and di�erentials. The following de�nition may be compared to that

of an almost free operad of the last section.

De�nition 2.4. If a is an operad, an a-algebra A is almost free if the underlying a

#

-algebra A

#

is

free.

An almost free a-algebra has an underlying free a-algebra T(a; V ) with di�erential � induced by

a di�erential on V , and its di�erential may be decomposed as � + d, where d is an endomorphism

of T(a; V ) of degree �1. In order to classify all deformations of the di�erential on a free a-algebra

compatible with the a-algebra structure, we will study the more general question of �nding all

operators d on a general a-algebra A compatible with the a-algebra structure of A, in a sense that

we now explain.

Let a, b and c be S-modules in the category of chain complexes over a �eld K. The derivative

@(�) : a � b �! a � c of a linear map � : b �! c is the unique map for which the following diagram

commutes:

L

1

k=0

a(k)


�

L

�2�(S;k)

b(�)

�

L

k

i=1

1
1

(i�1)


�
1

(k�i)

�����������������!

L

1

k=0

a(k) 


�

L

�2�(S;k)

c(�)

�

?

?

y

?

?

y

L

1

k=0

a(k) 


S

k

�

L

�2�(S;k)

b(�)

�

@(�)

����!

L

1

k=0

a(k) 


S

k

�

L

�2�(S;k)

c(�)

�

In particular, if D : V �! W where V and W are chain complexes, then @(D) : T(a; V ) �! T(a;W ).

Let a be an operad with di�erential �

a

, and let A be an a-algebra, with di�erential �. Note that

the following diagram commutes:

T(a; A)

�

a

+@(�)

�����! T(a; A)

�

?

?

y

?

?

y

�

A

�

����! A

De�nition 2.5. An a-derivation of an a-algebra A is a linear map d : A �! A such that the following

diagram commutes:

T(a; A)

@(d)

����! T(a; A)

�

?

?

y

?

?

y

�

A

d

����! A

We write Der(a; A) for the graded vector space of a-derivations of an a-algebra A.

If �

1

and �

2

are two di�erentials on A compatible with its a-algebra structure, then d = �

1

� �

2

is an a-derivation of A of degree �1. Conversely, if A is an a-algebra with di�erential �, and d is a

derivation of degree �1 such that (�+d)

2

= 0, the chain complex (A; �+d) is an a-algebra with the

same structure map T(a; A) �! A as A; we call this procedure twisting. An a-derivation of degree
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�1 on an a-algebra A such that (� + d)

2

= 0 is called an a-di�erential; the set of all a-di�erentials

on A is denoted Di�(a; A).

Proposition 2.6. If A is an a-algebra, Der(a; A) is a Lie dg-algebra, with bracket the graded com-

mutator and di�erential the graded commutator with the di�erential � of A.

Proof. If d

1

and d

2

are endomorphisms of A, then the maps @(d

i

) : T(a; A) �! T(a; A) satisfy the

formula

[@(d

1

); @(d

2

)] = @([d

1

; d

2

]):

It follows immediately from this formula that Der(a; A) is closed under the graded commutator, and

hence is a graded Lie algebra. Furthermore, Der(a; A) is closed under the di�erential d 7! [�; d];

indeed,

@([�; d]) = [�

a

+ @(�); @(d)] = [@(�); @(d)];

since [�

a

; @(d)] = 0.

The following proposition gives a more precise description of a-derivations on a free a-algebra.

Proposition 2.7. The chain complex underlying the Lie algebra Der(a;T(a; V )) is isomorphic to

the chain complex Hom(V;T(a; V )), under the map which identi�es an a-derivation d : T(a; V ) �!

T(a; V ) with the map

V

�V

��! T(a; V )

d

�! T(a; V )

in Hom(V;T(a; V )).

Proof. The inverse isomorphism is de�ned by sending a map p : V �! T(a; V ) to the a-derivation

T(a; V )

T(a;�)

����! T(a;T(a; V ))

@(p")

���! T(a;T(a; V ))

�V

��! T(a; V )

If a is an augmented operad, it is natural to restrict attention to those a-derivations of T(a; V )

such that the composition

V

�V

��! T(a; V )

d

�! T(a; V )

"V

��! V

vanishes. The set of such a-derivations forms an ideal of Der(a;T(a; V )), which we denote by

Der

�

(a;T(a; V )).

If d

1

and d

2

are two elements of Hom(V;T(a; V )), we may de�ne their product d

1

� d

2

by the

composition

V

d

1

�! T(a; V )

T(a;d

2

)

����! T(a;T(a; V ))

�(V )

���! T(a; V ):

It is easily veri�ed that

[d

1

; d

2

] = d

1

� d

2

� (�1)

jd

1

j jd

2

j

d

2

� d

1

;

and that � + d is a di�erential on T(a; V ) if and only if �d+ d � d = 0.

It is now clear that an almost free a-algebra is determined by the following data: a chain complex

V together with an a-di�erential d 2 Di�(a; A); we denote the resulting almost free a-algebra by

T(a; V; d). The a-di�erential d can change the di�erential on the chain complex V ; however, if d

lies in Di�

�

(a;T(a; V )), the intersection of Di�(a;T(a; V )) and Der

�

(a;T(a; V )), this possibility is

excluded, and the pair (V; d) provides a pair of invariants specifying uniquely the almost free algebra.

De�nition 2.8. An almost free a-algebra A over an augmented operad a is minimal if the induced

di�erential on the space of indecomposables "

�

A vanishes.

Equivalently, an almost free algebra T(a; V; d) is minimal if and only if the underlying di�erential

on the chain complex V vanishes.
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Proposition 2.9. A weak equivalence between two minimal algebras is an isomorphism.

Proof. If f : A �! B is such a weak equivalence, then so is "

�

f : "

�

A �! "

�

B. But by the de�nition of

minimal algebras, the di�erentials on "

�

A and "

�

B vanish, so "

�

A

�

=

"

�

B. Since A and B are almost

free on generators "

�

A and "

�

B, this shows that f is a bijection, and hence an isomorphism.

The following alternative description of a-di�erentials on T(a; V ) is due to Ginzburg and Kapra-

nov.

Proposition 2.10. ([22], 4.2.14) Let a be an augmented dg-operad, and let V be a chain complex.

There is a natural bijection between a-di�erentials d 2 Di�

�

(a;T(a; V )) and Ba-coalgebra structures

on V .

Proof. Since (Ba)

#

�

=

C (�
�
a

#

), a (Ba)

#

-coalgebra structure on V

#

corresponds to a linear map

d : V �! T(a; V ) of degree �1 whose composition with the augmentation " : T(a; V ) �! V vanishes.

This identi�es (Ba)

#

-coalgebra structures on V

#

with elements of Der

�

(a;T(a; V )) of degree �1.

In order for such a (Ba)

#

-coalgebra to underly a Ba-coalgebra, it is necessary and su�cient that

the coproduct be compatible with the di�erentials on V and C(Ba; V ), that is, that the following

diagram commute:

V

�

����! C(Ba; V )

�

?

?

y

?

?

y

�

Ba

+�+d

V

�

����! C(Ba; V )

The map �� equals d � � : V �! T(a; V ) followed by the inclusion, of degree 1, of T(�a; V ) in

C(Ba; V ). On the other hand, (�

Ba

+ � + d)� equals the map

V

(�

a

+�)�d+d�d

���������! T(a; V );

again followed by the inclusion of T(�a; V ) in C(Ba; V ). For these to be equal is precisely the

equation �d+ d � d = 0 for d to be an a-di�erential.

The above theory of almost free algebras, a-derivations and a-di�erentials has a parallel for

coalgebras over a cooperad z.

De�nition 2.11. If z is a cooperad, and C is a z-coalgebra, then C is almost cofree if the underlying

z

#

-coalgebra C

#

is cofree.

Suppose that the cooperad z is coaugmented. An almost cofree z-coalgebra C is minimal if the

space of primitives �

�

C has vanishing di�erential.

Just as for minimal algebras, a weak equivalence between two minimal coalgebras is an isomor-

phism.

De�nition 2.12. A z-coderivation of a z-coalgebra C is a linear map d : C �! C such that the

following diagram commutes:

C

d

����! C

�

?

?

y

�

?

?

y

C(z; C)

@(d)

����! C(z; C)

We write Coder(z; C) for the graded vector space of z-coderivations on a z-coalgebra C.

A z-codi�erential on an z-coalgebra (C; �) is a z-coderivation d : C �! C of degree �1 such that

(� + d)

2

= 0; the set of z-codi�erentials is denoted Codi�(z; C). The chain complex (C; � + d) is

then a z-coalgebra with the same structure map C �! C(z; C) as C.
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Proposition 2.13. If C is a z-coalgebra, Coder(z; C) is a Lie dg-algebras, with bracket the graded

commutator and di�erential the graded commutator with the internal di�erential � of C.

If z is a coaugmented operad, it is natural to restrict attention to those z-coderivations of C(z; V )

such that the composition

V

�V

��! C(z; V )

d

�! C(z; V )

"V

��! V

vanishes. The set of such z-coderivations forms an ideal of Coder(z;C(z; V )), which we denote by

Coder

�

(z;C(z; V )).

An almost cofree z-coalgebra is determined by a cofree z-coalgebra C(z; V ) together with a z-

codi�erential d; we denote the resulting almost cofree z-coalgebra by C(z; V; d). If z is coaugmented,

there is a bijection between almost cofree coalgebras C(z; C; d) and pairs (V; d) where V is a chain

complex and d 2 Codi�

�

(z;C(z; V )) = Codi�(z;C( z; V ))\Coder

�

(z;C(z; V )). Such data determine

a minimal z-coalgebra if and only if the chain complex V has vanishing di�erential.

Proposition 2.14. The chain complex underlying the Lie algebra Coder(z;C(z; V )) is isomorphic

to the chain complex Hom(C(z; V ); V ), under the map which identi�es a coderivation d : C(z; V ) �!

C(z; V ) with the map

C(z; V )

d

�! C(z; V )

"V

��! V

in Hom(C(z; V ); V ).

Proof. The inverse isomorphism is given by sending a map q : C(z; V ) �! V to the z-coderivation

C(z; V )

�V

��! C(z;C(z; V ))

C(z;@(�q))

������! C(z;C(z; V ))

C(z;")

����! C(z; V )

The following proposition is proved in the same way as Proposition 2.10.

Proposition 2.15. Let z be a coaugmented dg-cooperad, and let V be a chain complex. There is a

natural bijection between z-codi�erentials d 2 Codi�

�

(z;C(z; V )) and B

�

z-algebra structures on V .

2.3. Twisting cochains. If a is an augmented operad, let
�
a be the kernel of the augmentation

map " : a �! 11. Dually, if z is a coaugmented cooperad, let
�
z be the cokernel of the coaugmentation

map � : 11 �! z. If � and 	 are linear maps from
�
z to

�
a, de�ne the cup product � [ 	 :

�
z �!

�
a to

be the composition

�
z �!

�
z �

�
z

��@(	)

�����!
�
a �

�
a �!

�
a

of the map � � @(	) with the coproduct of z and the product of a.

De�nition 2.16. A twisting cochain � 2 T (z; a) is a linear map of degree �1 from
�
z to

�
a such

that ��+ � [ � = 0.

The analogous notion of a twisting cochain from a coassociative coalgebra to an associative algebra

is well-known. The following theorem motivates the introduction of twisting cochains.

Theorem 2.17. The functors B

�

and B form an adjoint pair between the categories of connected

coaugmented cooperads and augmented operads: there are natural isomorphisms

Hom

Op(M)

(B

�

z; a)

�

=

T (z; a)

�

=

Hom

Coop(M)

(z;Ba):

The counit B

�

Ba �! a and unit z �! BB

�

z of this adjunction are weak equivalences.
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Proof. The set Hom

Op(M)

(B

�

z; a) may be identi�ed with a subset of

Hom

Op(M)

(T�

�1

�
z; a) = Hom

Cat(S;M)

(�

�1

�
z;
�
a):

For such a map � : �

�1

�
z �!

�
a of S-modules to give rise to a map in Hom

Op(M)

(z;Ba), it must

be compatible with the di�erentials �

z

+ @

�

on B

�

z and �

a

on a. This condition coincides with the

condition for � to be a twisting cochain � 2 T (z; a). The proof that Hom

Coop(M)

(z;Ba)

�

=

T (z; a)

is similar.

For the proof that the counit B

�

Ba �! a and unit z �! BB

�

z are weak equivalences, we refer to

Theorem 3.2.16 of Ginzburg and Kapranov [22].

There is a universal twisting cochain � 2 T (Bz; a), obtained by composing the projection Ba �!

�
�
a onto those summands corresponding to trees with one internal vertex with the desuspension map

from �
�
a to

�
a � a. This twisting cochain corresponds under the above proposition to the identity

map of the cooperad Ba.

To any twisting cochain � 2 T (z; a), we will now associate a pair of adjoint functors


(�) :M

z


M

a

: B (�):

A linear map � :
�
z �!

�
a induces a natural transformation from the functor underlying the cotriple

C (z) to the functor underlying the triple T(a). If A is an a-algebra, let d

A;�

be the z-coderivation

of C(z; A) associated to the element

C(z; A)

�(A)

���! T(a; A)

�

�! A

of Hom(C(z; A); A) by Proposition 2.14. Since d

A;�

� d

A;	

= d

A;�[	

, we see that d

A;�

is a z-

codi�erential precisely if � is a twisting cochain. Denote by B (�) : M

a

�! M

z

the functor which

associates to an a-algebra A the almost cofree z-coalgebra C(z; A; d

A;�

)

If C is a z-coalgebra, let d

C;�

be the a-derivation of T(a; C) associated to the element

C

�

�! C(z; C)

�(C)

���! T(a; C)

of Hom(C;T(a; C)) by Proposition 2.7. Again, d

C;�

� d

C;	

= d

C;�[	

, and d

C;�

is an a-di�erential

precisely if � is a twisting cochain. Denote by 
(�) :M

z

�!M

a

the functor which associates to a

z-coalgebra C the almost free a-algebra T(a; C; d

C;�

).

If A is an a-algebra, C is a z-algebra, and f : C �! A is a map of degree 0, denote by �(f) : C �! A

the map

C �! C(z; C)

�(C)

���! T(a; C)

T(a;f)

����! T(a; A) �! A

A map f : C �! A is called a �-twisting cochain if �f + �(f) = 0; denote the set of �-twisting

cochains by T

�

(C;A).

Proposition 2.18. There are natural bijections

Hom

a

(
(�; C); A)

�

=

T

�

(C;A)

�

=

Hom

z

(C; B(�; A));

inducing an adjunction 
(�) :M

z


M

a

: B(�).

Proof. The set Hom

a

(
(�; C); A) may be identi�ed with the subset of

Hom

a

(T(a; C); A) = Hom(C;A)

consisting of those linear maps f : C �! A which are compatible with the di�erentials �

a

+ �

C

+d

C;�

on 
(�; C) and �

A;�

on A. This condition is easily seen to coincide with the condition de�ning the

set of twisting cochains f 2 T

�

(C;A). The proof that Hom

z

(C; B(�; A))

�

=

T

�

(C;A) is similar.
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If � 2 T (Ba; a) is the universal twisting cochain, we denote the resulting adjunction by


(a) :M

Ba


M

a

: B (a):

The following theorem shows that the almost free algebra 
(a; B(a; A)) is a natural resolution of

the a-algebra a.

Theorem 2.19. The counit 
(a; B(a; A)) �! A and unit C �! B(a;
(a; C)) of the adjunction


(a) :M

Ba


M

a

: B (a) are weak equivalences.

Proof. First, we prove that the counit 
(a; B(a; A)) �! A is a weak equivalence. Denote by

�

B (a; A)

the kernel of the projection from B (a; A) onto A. Consider the short exact sequence

�

�1

�

B (a; A) 
(a; B (a; A))













0 ����!

1

M

k=0

�
a(k) 


S

k

B (a; A)

(k)

����!

1

M

k=0

a(k) 


S

k

B(a; A)

(k)

����! B (a; A) ����! 0

The unit � : 11 �! a induces a natural splitting B (a; A) �! 
(a; B(a; A)) of this sequence. Let

h : 
(a; B (a; A)) �! 
(a; B (a; A)) be the map of degree +1 which maps the summand �

�1

�

B (a; A)

to B(a; A). Then

�h+ h� = 1� �;

where � is the projection on the summand A of 
(a; B (a; A)), and � is the total di�erential of


(a; B(a; A)), showing that 
(a; B (a; A)) �! A is a weak equivalence.

We now prove that C �! B (a;
(a; C)) is a weak equivalence. Recall that a maximal vertex of a

tree S is a vertex with no parents. In the proof, we will use the term marked tree for a pair (S; U )

where S is a tree and U is a subset of its set of maximal vertices, called the marked vertices.

The space B (a;
(a; C)) is a sum over trees, where a tree contributes the tensor product of factors

�
�
a(k) corresponding to vertices of valence k and factors of 
(a; C) corresponding to elements of

in(S). Decomposing 
(a; C) into the direct sum C � T(
�
a; C), we see that B (a;
(a; C)) may be

written as a sum over marked trees, where a tree contributes the tensor product of factors �
�
a(k)

corresponding to unmarked vertices of valence k, factors of
�
a corresponding to marked vertices, and

factors of C corresponding to elements of in(S).

Filter B(a;
(a; C)) by the number of vertices:

F

i

B (a;
(a; C)) = sum over marked trees with at most i vertices:

The di�erential d

0

on E

0

B (a;
(a; C)) is the sum of three terms:

(1) the internal di�erential on a;

(2) the internal di�erential on C;

(3) a sum, over maximal unmarked vertices, of the map which converts the unmarked vertex to

a marked vertex.

For each isomorphism class of trees, choose a maximal vertex. The set of marked trees is then

partitioned into two subsets: those in which the chosen maximal vertex is marked and unmarked,

respectively. We may construct a contracting homotopy h for the complex E

0

B (a;
(a; C)) by

sending a term corresponding to a marked tree of the �rst type to the term corresponding to the

same tree but in chosen vertex is unmarked: the second of these terms is the suspension of the �rst,

so this map has degree 1. The internal di�erentials commute with h, and we see that d

0

h+hd

0

equals

the projection onto trees with at least one vertex, and that E

1

B (a
(a; C)) may be identi�ed with

C. Thus, the spectral sequence collapses at E

1

, and C �! B (a;
(a; C)) is a weak equivalence.
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2.4. Koszul operads. The class of Koszul algebras was singled out by Priddy [39] as sharing

some of the good homological properties of polynomial algebras. Examples include free associative

algebras, universal enveloping algebras of Lie algebras, the Steenrod algebra, and the Dyer-Lasho�

algebra. A Koszul algebra is quadratic: it is generated by a vector space V , and all relations lie in

V � (V 
 V ). Ginzburg and Kapranov [22] have introduced a class of operads, called Koszul, which

share many properties with Koszul algebras. Like those authors, we restrict attention to Koszul

operads which are the analogue of homogeneous Koszul algebras.

An operad a is generated by an S-module v with relations the S-submodule r � Tv if it is a

pushout in the category of operads

Tr ����! Tv

?

?

y

?

?

y

11 ����! a

Informally, there is a surjective map of operads Tv �! a whose kernel is the ideal of Tv generated

by r.

Similarly, a cooperad z is cogenerated by an S-modulew with co-relations the quotient S-module

q of Cw if it is a pullback in the category of cooperads

z ����! 11

?

?

y

?

?

y

Cw ����! Cq

De�nition 2.20. ([22], 2.1.7) An operad a is quadratic if it has generators v with v(S) = 0 for

jSj 6= 2, and relations r with r(S) = 0 for jSj 6= 3.

A cooperad z is quadratic if it is cogenerated by an S-module u such that u(S) = 0 for jSj 6= 2,

with co-relations q such that q(S) = 0 for jSj 6= 3.

Note that if v satis�es v(S) = 0 for jSj 6= 2, then Tv(3) = (v � v)(3) is the direct sum of three

copies of v(2) 
 v(2), corresponding to the three binary trees with three leaves: as an S

3

-module,

it is the induced representation Ind

S

3

S

2

�

v(2) 
 v(2)

�

, where S

2

acts trivially on the �rst factor v(2).

Thus, a quadratic operad is determined by the chain complex v(2) and the relations r(3), which

may be any S

3

-invariant subcomplex of v(2) � v(2). Similarly, a quadratic cooperad is determined

by the chain complex u(2) and the co-relations q(3), which may be any S

3

-covariant quotient of

u(2) � u(2).

De�nition 2.21. The dual a

?

of a quadratic operad a with generators v and relations r is the

quadratic cooperad cogenerated by �v, with co-relations q such that

q(3) = (�v ��v)(3)=�

2

r(3):

The dual z

?

of a quadratic cooperad a is the quadratic operad generated by �

�1

u, with relations

r such that r(3) = ker

�

�

�2

q(3) �! (�

�1

u ��

�1

u)(3)

�

.

It is clear that (a

?

)

?

�

=

a. Ginzburg and Kapranov consider instead the operad a

!

= �

�1

(a

?

)

�

;

we prefer to work with the cooperad a

?

, in order to avoid taking linear duals.

A Koszul operad is a quadratic operad a whose bar cooperad is weakly equivalent to its dual a

?

,

in a sense which we now explain.

De�nition 2.22. Let T (S; i) � T (S), 1 � i < jSj, be the set of trees on a �nite set S with i

vertices. A tree S 2 T (S; jSj � 1) is called a binary tree.
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If S is a binary tree, then all of its vertices have valence 2. Similarly, if S 2 T (S; jSj � 2), then

one of the vertices of S has valence 3 and the remainder have valence 2.

The grading of T (S) induces a grading of the bar cooperad Ba of an operad a:

(B

i

a)(S) =

M

S2T (S;i)

(�
�
a)(S):

Furthermore, the di�erential @ of Ba maps B

i

a to B

i�1

a:

B

jSj�1

a(S)

@

�! B

jSj�2

a(S)

@

�! : : :

@

�! B

1

a(S)

@

�! B

0

a(S) �! 0:

If a is a quadratic operad with dual cooperad a

?

, the kernel of the di�erential

@ : B

jSj�1

a(S) �! B

jSj�2

a(S)

may be naturally identi�ed with the dual quadratic cooperad a

?

(S).

De�nition 2.23. ([22], 4.1.3) A quadratic operad a is Koszul if the inclusion a

?

,! Ba is a weak

equivalence.

There is an analogous grading of the cobar operad B

�

z of a connected cooperad z,

(B

�

i

z)(S) =

M

S2T (S;i)

(�

�1

�
z)(S):

Furthermore, the di�erential @

�

of B

�

z maps B

�

i

z to B

�

i+1

z:

0 �! B

�

0

z(S)

@

�

�! B

�

1

z(S)

@

�

�! : : :

@

�! B

�

jSj�2

z(S)

@

�

�! B

�

jSj�1

z(S):

If z is a quadratic cooperad, the cokernel of the di�erential B

�

jSj�2

z(S)

@

�

�! B

�

jSj�1

z(S) may be

naturally identi�ed with the dual quadratic operad z

?

. The quadratic cooperad z is Koszul if the

projection B

�

z �! z

?

is a weak equivalence.

Proposition 2.24. ([22], 4.1.4) A quadratic operad a is Koszul if and only if its dual cooperad a

?

is Koszul.

Proof. The operad a is Koszul if and only if the inclusion a

?

,! Ba is a weak equivalence. Applying

the cobar functor, we see that this is the case if and only if the inclusion B

�

a

?

,! B

�

Ba is a weak

equivalence. But the counit B

�

Ba �! a

�

=

(a

?

)

?

is a weak equivalence, and the result follows.

The associative operad e

1

is Koszul: its dual is the cooperad z

1

= �

�1

e

�

1

whose coalgebras are

the suspensions of coassociative coalgebras. In Belinson-Ginzburg [8], it is proved that the operad

e

1

in characteristic zero is also Koszul, with dual the cooperad z

1

= �

�1

L

�

whose coalgebras

are the suspensions of Lie coalgebras. In Chapter 3, we will prove that in characteristic zero, the

operads e

n

introduced in Section 1.3 are Koszul for all 1 � n �1, with dual �

�n

e

�

n

.

If a is a quadratic operad, the inclusion a

?

,! Ba induces a twisting cochain � 2 T (a

?

; a);

explicitly, this is the map which sends the cogenerators �v of a

?

to the generators v of a and

otherwise vanishes. We write B(a) for the associated functor B (�) : M

a

�! M

a

? , and, slightly

abusively, 
(a) for the functor 
(�) :M

a

? �!M

a

. The following theorem is an evident corollary

of Theorem 2.19.

Theorem 2.25. If a is a quadratic operad, there is an adjunction


(a) :M

a

?
M

a

: B(a):

If a is Koszul, the counit 
(a;B(a; A)) �! A and unit C �! B(a;
(a; C)) of this adjunction are

weak equivalences.
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3. The n-algebra operad is Koszul

In his work on A

1

-algebras, Stashe� introduced a series of (k � 2)-dimensional polytopes K(k)

[49]. In this chapter, we prove that the operads e

n

are Koszul, using a generalization F

n

(k) of K(k)

due to Fulton and MacPherson [15]. The space F

n

(k) is obtained by compactifying the quotient

of F

n

(k) by translations and dilatations: it is a manifold with corners, whose codimension p faces

correspond to trees S 2 T (k) with p + 1 vertices.

Beilinson and Ginzburg [8] have shown that a similar approach may be used to prove that the

commutative operad e

1

is Koszul, with dual the cooperad �

�1

L

�

. They prove this result by studying

the spectral sequence for the strati�ed spaceM

0;k+1

, the moduli space of (k+1)-pointed genus zero

curves: this is a smooth (k � 2)-dimensional projective variety. Our proof that e

n

is Koszul is

inuenced by their work. One di�erence is that their spectral sequence collapses by Deligne's mixed

Hodge theory. Our proof of collapse is more elementary, and relies on consideration of all 1 < n <1

simultaneously.

For 1 � n < 1, denote by z

n

the cooperad z

n

(k) = �

�n

e

�

n

(k). Explicitly, z

n

(k) is the graded

vector space such that

(z

n

(k))

i

=

(

H

n(k�1)�i

(F

n

(k)); k > 0;

0; k = 0:

It is clear that z

n

is connected and coaugmented. We call a z

n

-coalgebra an n-coalgebra, and denote

the cofree n-coalgebra C(z

n

; V ) by C

n

(V ).

The following theorem is the main result of this chapter.

Theorem 3.1. If 1 < n <1, then the operad e

n

is Koszul, and e

?

n

�

=

z

n

.

The operad e

1

is also Koszul, but this result is a lot easier to prove: it is a consequence of the

fact that the Hochschild homology of the free associative algebra T

1

(V ) is isomorphic to V in degree

1, and vanishes in other degrees.

The proof proceeds by considering the cobar complex of z

n

:

0 �! B

�

1

z

n

(k)

@

�

�! B

�

2

z

n

(k)

@

�

�! : : : �! B

�

k�2

z

n

(k)

@

�

�! B

�

k�1

z

n

(k):

In Section 3.1, we calculate the cokernel of the map B

�

k�2

z

n

(k)

@

�

�! B

�

k�1

z

n

(k), showing that it

equals the Poisson operad p

n

(k), where p

n

is the n-Poisson operad. The more di�cult part of the

proof is devoted to showing that elsewhere the cobar complex is exact, showing that B

�

z

n

' p

n

.

Since by Lemma 1.8, p

n

and e

n

have the same Poincar�e series, we see that e

n

must be the same

operad as p

n

, which is Theorem 1.6. The proof of Theorem 3.1 follows easily from combining all of

these partial results.

We identify the cobar complex of z

n

with the E

1

-term of the homology spectral sequence for the

manifold with corners F

n

(k): Lefschetz duality for this manifold with corners lies at the origin of

the self-duality e

?

n

�

=

�

�n

e

�

n

. From collapse of the spectral sequence, we see that the cobar complex

of z

n

is exact. In the next chapter, we will prove a homotopy equivalence between the categories

of n-algebras and n-coalgebras, generalizing the well-known cases n = 1, relating associative dg-

algebras and connected coassociative dg-coalgebras, and n = 1, relating commutative dg-algebras

and connected co-Lie dg-coalgebras.

3.1. The dual of p

n

. This section is devoted to the proof of the following result.

Lemma 3.2. The cokernel of the map B

�

k�2

z

n

(k)

@

�

�! B

�

k�1

z

n

(k) is naturally isomorphic to p

n

(k),

where p

n

is the n-Poisson operad.
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Proof. It is convenient to rewrite the quadratic relations of the operad p

n

in terms of the bracket

fa; bg, related to the bracket [a; b] in the statement of Theorem 1.6 by the formula

[a; b] = (�1)

(n�1)jaj

fa; bg:

In terms of this bracket (which of course equals the old one if n is odd), these relations may be

written

fv; wg = (�1)

jvj jwj+n

fw; vg;

�fv; wg = (�1)

n�1

�

f�v; wg+ (�1)

jvj

fv; �wg

�

;

ffu; vg; wg+ (�1)

juj(jvj+jwj)

ffv; wg; ug+ (�1)

jwj(juj+jvj)

ffw; ug; vg= 0;

fuv;wg = (�1)

juj(jvj+jwj)

fv; wgu+ (�1)

jwj(juj+jvj)+n

fw; ugv:

This rede�nition of the bracket has the e�ect of making fv; wg behave, as far as the sign convention

is concerned, as if it were written f�;�g 
 v 
w, where f�;�g is a symbol having degree n � 1.

Let v be the S-module

v(S) =

(

�

�1

z

n

(S); jSj = 2;

0; jSj 6= 2:

We see that B

�

k�1

z

n

(k)

�

=

Tv(k) for all k. We wish to identify the cokernel of the di�erential

B

�

k�2

z

n

(k)

@

�

�! B

�

k�1

z

n

(k)

�

=

Tv(k)

with p

n

(k). It is clear that this cokernel is a quadratic operad, with generators �

�1

z

n

(2), and to

calculate the relations, it su�ces to consider the above complex in the case k = 3.

For k = 3, the map @

�

has domain

B

�

1

z

n

(3) = �

�1

z

n

(3)

�

=

�

2n�1

e

�

n

(3);

since there is only one tree with one vertex and three incoming external edges. Proposition 1.5 shows

that

�

�1

z

n

(3) has basis

8

>

>

<

>

>

:

�

2n�1

(1); in degree 2n� 1,

�

2n�1

(!

12

);�

2n�1

(!

23

);�

2n�1

(!

31

); in degree n,

�

2n�1

(!

12

!

23

);�

2n�1

(!

23

!

31

); in degree 1,

and vanishes in other degrees.

The codomain B

�

2

z

n

(3)

�

=

Tv(3) of @

�

is the sum of three copies of

�

�1

z

n

(2)
 �

�1

z

n

(2)

�

=

�

n�1

e

�

n

(2) 
�

n�1

e

�

n

(2);

corresponding to the three labelled binary trees in T (3):

@

@

@

@

�

�

�

�

1 2

3

r

r

@

@

@

@

�

�

�

�

2 3

1

r

r

@

@

@

@

�

�

�

�

3 1

2

r

r

The space v(2) = �

�1

z

n

(2)

�

=

�

n�1

e

�

n

(2) has basis �

n�1

(!), in degree 0, and �

n�1

(1), in degree

n� 1. Thus, the free operad Tv is generated by two operations: a graded commutative operation of

degree 0, denoted ab, and an operation of degree n�1, graded commutative if n is even, and graded

anticommutative if n is odd, denoted fa; bg. A basis for Tv(3) is formed by ordered triples, each

entry of which is a basis of the tensor product �

n�1

e

�

n

(2)
�

n�1

e

�

n

(2), or alternatively by the words

that can be formed from three indeterminates a; b; c, representing even elements of a free n-algebra,

by means of these two products.



32 E. GETZLER AND J.D.S. JONES

(1) In degree 2(n� 1), Tv(3) has basis

(�

n�1

(1)
 �

n�1

(1); 0; 0) � ffa; bg; cg;

(0;�

n�1

(1)
 �

n�1

(1); 0) � ffb; cg; ag;

(0; 0;�

n�1

(1) 
�

n�1

(1)) � ffc; ag; bg:

(2) In degree n� 1, Tv(3) has basis

(�

n�1

(!)
 �

n�1

(1); 0; 0) � fa; bgc;

(�

n�1

(1)
�

n�1

(!); 0; 0) � fab; cg;

(0;�

n�1

(!) 
�

n�1

(1); 0) � fb; cga;

(0;�

n�1

(1)
 �

n�1

(!); 0) � fbc; ag;

(0; 0;�

n�1

(!) 
�

n�1

(1)) � fc; agb;

(0; 0;�

n�1

(1)
 �

n�1

(!)) � fca; bg:

(3) In degree 0, Tv(3) has basis

(�

n�1

(!) 
 �

n�1

(!); 0; 0) � (ab)c;

(0;�

n�1

(!) 
 �

n�1

(!); 0) � (bc)a;

(0; 0;�

n�1

(!)
 �

n�1

(!)) � (ca)b:

In other degrees, Tv(3) vanishes. Note that, by the sign rule,

�

n�1

(!) 
�

n�1

(!) = (�1)

n�1

�

2n�2

(! 
 !);

and similarly for the other vectors of the basis.

We must identify the relations in p

n

(3) with the image of the map @

�

: B

�

1

z

n

(3) �! B

�

2

z

n

(3). In

degree 2(n� 1), there is just one relation,

@

�

�

2n�1

(1) = (�

n�1

(1) 
�

n�1

;�

n�1

(1)
 �

n�1

;�

n�1

(1)
 �

n�1

)

= ffa; bg; cg+ ffb; cg; ag+ ffc; bg; ag;

which is the Jacobi relation for the bracket f�;�g.

To calculate the di�erential @

�

in degrees n� 1 and 2(n� 1), we use the explicit formulas for the

three maps e

�

n

(3) �! e

�

n

(2)
 e

�

n

(2) corresponding to the three binary trees S 2 T (3; 2):

!

12

7! (1
 !; (�1)

n

! 
 1; ! 
 1);

!

23

7! (! 
 1; 1
 !; (�1)

n

! 
 1);

!

31

7! ((�1)

n

! 
 1; ! 
 1; 1
 !):

Applying �

2n�1

to the left-hand side and �

2n�2

to the right-hand side, we obtain the desired formula

for @

�

in degree 2n� 1:

@

�

�

2n�1

(!

12

) = (�

n�1

(1)
 �

n�1

(!);��

n�1

(!) 
�

n�1

(1); (�1)

n�1

�

n�1

(!) 
 �

n�1

(1))

� fab; cg � fb; cga+ (�1)

n�1

fc; agb;

@

�

�

2n�1

(!

23

) = ((�1)

n�1

�

n�1

(!) 
 �

n�1

(1);�

n�1

(1)
 �

n�1

(!);��

n�1

(!) 
 �

n�1

(1))

� (�1)

n�1

fa; bgc+ fbc; ag � fc; agb;

@

�

�

2n�1

(!

31

) = (��

n�1

(!) 
�

n�1

(1); (�1)

n�1

�

n�1

(!) 
 �

n�1

(1);�

n�1

(1) 
�

n�1

(!))

� �fa; bgc+ (�1)

n�1

fb; cga+ fca; bg:
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Bearing in mind that fa; bg = (�1)

n

fb; ag, we obtain the Poisson relations

fab; cg = fb; cga+ fa; cgb;

fbc; ag = fc; agb+ fb; agc;

fca; bg = fa; bgc+ fc; bga:

To calculate the operator @

�

in degree 1, we use the formula

!

12

!

23

7! ((�1)

n�1

! 
 !; (�1)

n

! 
 !; 0);

!

23

!

31

7! (0; (�1)

n�1

! 
 !; (�1)

n

! 
 !);

!

31

!

12

7! ((�1)

n

! 
 !; 0; (�1)

n�1

! 
 !):

These add up to zero, as they must by Arnold's relation. We see that @

�

in degree 1 is given by the

formulas

@

�

�

2n�1

(!

12

!

23

) = (�

n�1

(!) 
�

n�1

(!);��

n�1

(!) 
�

n�1

(!); 0) � (ab)c� (bc)a;

@

�

�

2n�1

(!

23

!

31

) = (0;�

n�1

(!) 
 �

n�1

(!);��

n�1

(!) 
�

n�1

(!)) � (bc)a� (ca)b:

This gives the associativity of the product ab.

3.2. The Fulton-MacPherson compacti�cation of con�guration space. Denote by G(n)

the subgroup of a�ne transformations of R

n

, of dimension n + 1, generated by translations and

dilatations by a positive real number. This group acts freely on the con�guration spaces F

n

(S)

if jSj > 1; denote by

�

F

n

(S) the quotient F

n

(S)=G(n). Thus,

�

F

n

(S) is a manifold of dimension

n(jSj � 1) � 1, and the action of S(S) on

�

F

n

(S) is free. With the convention that

�

F

n

(1) and

�

F

n

(0)

are empty, the spaces

�

F

n

(S) assemble to form an S-space. Furthermore, the group GL(n) acts on

�

F

n

, and this action commutes with the action of S.

Fulton and MacPherson [15] have constructed a natural compacti�cation F

n

of the S-space

�

F

n

.

The underlying point set of this compacti�cation is the free operad T

�

F

n

generated by

�

F

n

. Observe

that only the nests S 2 N (S) contribute to T

�

F

n

(S), since

�

F

V

(1) and

�

F

V

(0) are empty.

Fulton and MacPherson show how to glueT

�

F

n

(S) together naturally by a continuous bijective map

T

�

F

n

(S) �! F

n

(S), to form a manifold with corners. This construction has the following properties:

(1) The gluing map T

�

F

n

(S) �! F

n

(S) is equivariant for the actions of Sand GL(n).

(2)

�

F

n

is an equivariant deformation retract of F

n

, and hence F

n

(S) is homotopy equivalent to

F

n

(S).

(3) The operad structure of T

�

F

n

descends to a di�erentiable operad structure on F

n

.

(4) For T � S, let D(T ) be the union of the faces of F

n

(S) which correspond to components

of T

�

F

n

(S) indexed by those trees S 2 T (S) such that T is the set of leaves of a subtree of

S. Then D(T ) is a submanifold with corners of F

n

(S) of codimension one, and F

n

(S) is the

transverse intersection of those D(T ) such that F

n

(S) � D(T ).

The construction of F

n

is made by a sequence of blowings up. Fulton and MacPherson work in the

category of complex varieties: the blow up Bl

X

(M ) of smooth variety M along a smooth subvariety

X � M is obtained by gluing together M nX and the projectivized normal bundle of X in M . This

blow-up is again smooth, and blowing up has the e�ect of replacing the original submanifold by a

divisor (codimension one submanifold). By contrast, we work in the category of real manifolds with

corners. In this category, the blow up along a submanifold X � M transverse to all faces of M is

obtained by gluing together M nX and the normal sphere bundle of X: this is once more a manifold

with corners. (For a more detailed description of the Fulton-MacPherson compacti�cation in this

context, see Axelrod and Singer [4]).
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If S is a �nite set, let Bl

�

((R

n

)

S

) be the blow-up of (R

n

)

S

along the diagonal � ,! (R

n

)

S

. The

group G(n) acts freely on Bl

�

((R

n

)

S

), and the quotient is a manifold with boundary. There is a

natural inclusion

�

F

n

(S) ,! Bl

�

((R

n

)

S

)=G(n), and we de�ne F

n

(S) to be the closure of the diagonal

embedding of

�

F

n

(S) in the product

Y

T�S

Bl

�

((R

n

)

T

)=G(n):

Fulton and MacPherson prove that F

n

(S) has all of the asserted properties.

The S-spaces F

1

and F

2

are classical:

(1) The space F

1

(k) is equivariantly di�eomorphic to K(k) � S

k

, where K(k) is the (k � 2)-

dimensional polytope, the associahedron, introduced by Stashe� [49] in the study of homo-

topy associative spaces.

(2) The space F

2

(k) is a circle bundle over the moduli space M

0;k+1

of stable rational curves

with k + 1 marked points constructed by Knudsen [28].

We may also describe F

n

(2) and F

n

(3) for general n.

(1) The space F

n

(2) =

�

F

n

(2) is the sphere S

n�1

, reecting the fact that there is only one tree

with two leaves:

@

@

@

�

�

�

1 2

r

The group GL(n) acts by rotating R

n

, while the involution in S

2

acts by the antipodal map.

(2) The space F

n

(3) has four strata, the interior

�

F

n

(3) and the three boundary components

S

n�1

� S

n�1

, corresponding to the four trees with three leaves:

@

@

@

�

�

�

1 2 3

r @

@

@

@

�

�

�

�

1 2

3

r

r

@

@

@

@

�

�

�

�

2 3

1

r

r

@

@

@

@

�

�

�

�

3 1

2

r

r

The compacti�cation F

n

(4) already has 26 strata, and we leave it to the curious reader to draw a

picture of it.

Although the natural homotopy equivalence F

n

(k) �! F

n

(k) obtained by the composition

F

n

(k) �! F

n

(k) �!

�

F

n

(k) ,! F

n

(k)

is not a map of operads, on taking homology it induces an isomorphismof dg-operads e

n

= H

�

(F

n

)

�

=

H

�

(

�

F

n

). The topological operad F

n

expresses the structure of the dg-operad e

n

in its geometry much

better than the topological operad F

n

.

3.3. e

n

is Koszul. This section is devoted to the proof of Theorem 3.1. In its proof, we employ

the Fulton-MacPherson compacti�cations F

n

(k) of Section 3.2.

If M is a compact n-dimensional manifold with corners, denote by M [p] the union of the faces

of M with codimension p, and by F

p

M its closure, the union of the faces of M with codimension
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i � p. The Lefschetz duality theorem relates the homology of M [p] to the cohomology of the pair

(F

p

M;F

p+1

M ):

H

q

(M [p])

�

=

H

n�p�q

(F

p

M;F

p+1

M ):

Here, homology and cohomology are taken with respect to any abelian group of coe�cients.

Lemma 3.3. Let M be a compact n-dimensional manifold with corners. There is a spectral sequence

converging to H

n��

(M ) with E

1

pq

= H

q

(M [p]), such that d

i

: E

pq

i

�! E

i

p�i;q+i�1

. The di�erential

d

1

: E

1

pq

�! E

1

p�1;q

is identi�ed, by the Lefschetz duality theorem, with the boundary map @ of the

cohomology exact sequence for the triple (F

p�1

M;F

p

M;F

p+1

M ), by the commutative diagram

H

n�p�q

(F

p

M;F

p+1

M )

@

����! H

n�p�q+1

(F

p�1

M;F

p

M )













H

q

(M [p])

d

1

����! H

q

(M [p� 1])

Proof. Associated to the �ltration ofM by the closed subspaces F

p

M , there is an ascending �ltration

of the singular cochains of M by subcomplexes F

p

C

n��

(M ) = C

n��

(M;F

p+1

M ). The spectral

sequence of the proposition is the spectral sequence of this �ltered complex, which clearly converges

to H

n��

(M ), since the �ltration has �nite depth.

It is easy to identify E

0

pq

with

F

p

C

n�p�q

(M )=F

p�1

C

n�p�q

(M ) = C

n�p�q

(M;F

p+1

M )=C

n�p�q

(M;F

p

M )

= C

n�p�q

(F

p

M;F

p+1

M ):

This shows that E

1

pq

is isomorphic to H

n�p�q

(F

p

M;F

p�1

M ) = H

q

(M [p]).

The following lemma is the main step in the proof of Theorem 3.1.

Lemma 3.4. In the spectral sequence for the manifold with corners F

n

(k), the complex (E

1

p;q

; d

1

) is

naturally isomorphic to the bar cooperad Be

n

:

E

1

pq

d

1

����! E

1

p�1;q













(B

p+1

a(k))

p+q+1

@

����! (B

p

e

n

(k))

p+q

Proof. The space F

n

(k)[p] of codimension p faces of F

n

(k) may be identi�ed with the disjoint union

over trees S 2 T (k; p+ 1) of the products

�

F

n

(S) =

Y

s2S

�

F

n

(in(s)):

By the K�unneth theorem, we see that

E

1

p;�

�

=

M

S2T (k;p+1)

O

s2S

H

�

�

�

F

n

(in(s))

�

�

=

M

S2T (k;p+1)

O

s2S

e

n

(in(s))

�

=

�

�p�1

B

p+1

e

n

(S):

It remains to identify the di�erential d

1

: E

1

p;q

�! E

1

p�1;q

with the di�erential

@ : (B

p+1

a(k))

p+q+1

�! (B

p

a(k))

p+q

:
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Consider the map of manifolds with corners F

n

(S) �! F

n

(k), where S 2 T (k; p). This induces a map

of spectral sequences: summing over S 2 T (k; p), we obtain a map of E

1

-terms

M

S2T (k;p)

H

q

(F

n

(S)[1])

d

1

����!

M

S2T (k;p)

H

q

(F

n

(S)[0])

?

?

y







H

q

(F

n

(k)[p])

d

1

����! H

q

(F

n

(k)[p� 1])

The left-hand vertical arrow is surjective, so it su�ces to calculate the di�erential in the top row.

If M and N are compact manifolds with boundaries,

(M �N )[p] =

p

[

i=0

M [i]�N [p� i]:

The di�erential H

q

((M �N )[p])

d

1

p;q

��! H

q

((M �N )[p� 1]) in the spectral sequence for the manifold

with corners M � N may be rewritten by means of this isomorphism:

H

q

((M � N )[p])

�

=

p

M

i=0

H

q

(M [i]� N [p� i])

�

=

p

M

i=0

q

M

j=0

H

j

(M [i])
H

q�j

(N [p� i])

L

d

1

i;j


1+1
d

1

p�i;q�j

���������������!

p�1

M

i=0

q

M

j=0

H

j

(M [i])
H

q�j

(N [p� i� 1])

�! H

q

((M �N )[p� 1]);

reducing the calculation of d

1

p;q

to the corresponding calculation for M and N .

Applying this observation to the manifold with corners F

n

(S), we see that the di�erential d

1

1;�

in its spectral sequence is the sum of di�erentials d

1

1;�

over the factors F

n

(in(s)), indexed by the

vertices s of the tree S. Of course, the di�erential @ on the summand Be

n

(S) of the bar complex

Be

n

is also a sum of operators @

s

over internal vertices of the tree S; thus, it su�ces to examine the

case where S is a tree with a single vertex.

If S is a �nite set, F

n

(k)[1] is a union of spaces

`

T�S

�

F

n

((S nT )[fTg)�

�

F

n

(T ). On each of these

faces, the di�erential d

1

1;�

may be identi�ed with the corresponding product in the operad e

n

, and

thus equals the corresponding term in the di�erential of the bar complex. Assembling all of these

facts, we obtain the identi�cation between d

1

p;�

and @ : �

�p�1

B

p+1

e

n

(k) �! �

�p

B

p

e

n

(k).

Corollary 3.5. The spectral sequence for the n(k�1)�1-dimensional manifold with corners F

n

(k)

collapses at the E

2

-term; in other words,

H

�

(Be

n

(k))

�

=

H

n(k�1)��

(F

n

(k))

�

=

z

n

(k):

Proof. If n > 1, e

n

�

=

e

n+2

as Z=2-graded operads by Proposition 1.5, and hence Be

n

�

=

Be

n+2

as

Z=2-graded chain complexes. This shows that

M

pq

dimE

2

pq

=

M

i

dimH

i

(Be

n

(k))

only depends on the parity of n. On the other hand,

X

pq

dimE

1

pq

= k!

is independent of n. But E

1

pq

= 0 unless 0 � p � k � 1 and (n � 1)jq, the condition on p coming

from the fact that any nest with k leaves has at most k� 1 vertices, the condition on q coming from

Proposition 1.5. It follows that d

i

is non-zero only if i � k� 2 and (n� 1)j(i� 1). Thus, for n � k,
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the spectral sequence collapses at the E

2

-term. The collapse of the spectral sequence at E

2

for all

n > 1 follows.

We now have su�cient information on Be

n

to prove Theorem 3.1. First, note that the linear dual

of the bar cooperad Be

n

may be identi�ed with the cobar operad B

�

e

�

n

�

=

�

n

B

�

z

n

. Thus, the above

corollary implies that

H

�

(B

�

z

n

(k))

�

=

e

n

(k):

We argue that following sequence is exact:

0 �! B

�

1

z

n

(k)

@

�

�! B

�

2

z

n

(k)

@

�

�! : : : �! B

�

k�2

z

n

(k)

@

�

�! B

�

k�1

z

n

(k) �! e

n

(k) �! 0:

In Section 3.1, we proved that the cokernel of the map @

�

: B

�

k�2

z

n

(k) �! B

�

k�1

z

n

(k) is naturally

isomorphic to p

n

(k). Lemma 1.8 shows that the vector space p

n

(k) has the same dimension as

e

n

(k), namely k!, and hence that the homology of B

�

z

n

(k) is concentrated in the cokernel of @

�

:

B

�

k�2

z

n

(k) �! B

�

k�1

z

n

(k); in other words, e

n

= p

n

as operads. This completes the proof of Theorem

1.6 in the non-unital case; in particular, the operad e

n

is seen to be quadratic.

Returning to the bar complex Be

n

(k), we see that the homology of this complex, isomorphic to

z

n

(k), is the kernel of the di�erential @ : B

k�1

e

n

(k) �! B

k�2

e

n

(k); that is, E

2

pq

= 0 for p 6= k � 2.

Thus, e

n

is Koszul, and e

?

n

= z

n

, completing the proof of Theorem 3.1.

There is a natural embedding of operads F

n

(k) ,! F

n+1

(k) induced by the embeddingR

n

�! R

n+1

.

Taking homology, we obtain a map of operads e

n

�! e

n+1

which identi�es the degree 0 spaces and

vanishes in other degrees. Thus, if A is an (n + 1)-algebra, it is an n-algebra in a natural way: this

n-algebra has the same commutative product as A, but vanishing bracket.

The embedding F

n

(k) ,! F

n+1

(k) has codimension k � 1, and taking its Gysin map gives a map

of dg-operads �e

n+1

�! e

n

. Thus, if A is an n-algebra, its suspension �A is in a natural way an

(n + 1)-algebra. We will now show that this map is the one which suspends the Lie bracket on A

and sets the product to zero.

Taking the linear dual of the map �e

n+1

�! e

n

and applying the functor �

�n

, we obtain a map

of cooperads z

n

�! z

n+1

, which is the natural map e

?

n

�! e

?

n+1

induced by the map of operads

e

n

�! e

n+1

. This map �ts into a map of exact sequences

B

k�2

e

n

(k)

@

����! B

k�1

e

n

(k) ����! z

n

(k) ����! 0

?

?

y

?

?

y

?

?

y

B

k�2

e

n+1

(k)

@

����! B

k�1

e

n+1

(k) ����! z

n+1

(k) ����! 0

The arrow B

i

e

n

(k) �! B

i

e

n+1

(k) is zero except in degree i, where it is the identity map, proving the

following result.

Proposition 3.6. The map of graded vector spaces z

n

(k) �! z

n+1

(k) is the identity in degree k�1,

and zero in other degrees. The map of graded vector spaces �e

n+1

(k) �! e

n

(k) is the identity in

degree (n� 1)(k � 1), and zero in other degrees.

Denote by z

1

the colimit

z

1

= colim

n�!1

z

n

:

We see that e

1

is Koszul, that e

?

1

= z

1

, and that �

�1

z

�

1

is the Lie operad:

L(k)

�

=

H

(n�1)(k�1)

(F

n

(k)) 
 sgn

(n�1)

k

:

In particular, we obtain a proof that the Lie operad L is Koszul, and that L

?

�

=

�

�1

e

�

1

.
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4. Homotopy theory for a-algebras

Closed model categories were developed by Quillen in order to extend the methods of homotopy

theory to categories of algebras (Quillen [40], [42]). Examples of closed model categories abound:

simplicial sets, topological spaces, spaces with a group action, small categories, simplicial algebras,

spectra. In Section 4.2, we show that the categories of algebras over an exact dg-operad, and

coalgebras over a connected exact dg-cooperad, are closed model categories; this generalizes the

closed model categories of commutative dg-algebras over Q, Lie dg-algebras over Q (Section II.5,

Quillen [42]) and associative dg-algebras over any �eld (Munkholm [38]):

In Section 4.3, we prove that the adjoint pair of functors 
(a) and B (a) de�nes an equivalence

between the homotopy categories of a-operads and Ba-cooperads. We also study the total left

derived functor L�

�

of the direct image functor, where � : a �! b is a map of operads, proving that

if � is a weak equivalence, L�

�

induces an equivalence of homotopy categories.

In Section 4.4, we de�ne for a Koszul operad a the notion of a homotopy a-algebra A: this is an

a

?

-codi�erential on the cofree a

?

-coalgebra C(a

?

; A), or equivalently, the structure of an algebra on

A for the almost free resolution B

�

a

?

of a. We show that for the Lie operad L, we recover the notion

of a homotopy Lie algebra of Drinfeld [12], Hinich and Schechtman [25] and Lada and Stashe� [30].

All operads in this section will be exact and augmented, and all maps of operads will respect the

augmentation. All cooperads will be connected, exact and coaugmented.

4.1. Closed model categories. We say that the map i has the left lifting property (LLP) with

respect to the map p, and the map p has the right lifting property (RLP) with respect to i, if given

any commuting diagram of the form

A X

B Y

-

?

i

?

p

-

p

p

p

p

p

p

p

�

f

there is a lift f : B �! X making the upper and lower triangles commute.

A map g : V

1

�! V

2

is a retract of a map f :W

1

�! W

2

if there is a diagram

V

1

i

1

����! W

1

j

1

����! V

1

g

?

?

y

f

?

?

y

g

?

?

y

V

2

i

2

����! W

2

j

2

����! V

2

where the endomorphisms j

1

i

1

: V

1

�! V

1

and j

2

i

2

: V

2

�! V

2

are the identity.

De�nition 4.1. Let C be a category with classes of morphisms called weak equivalences, co�brations

and �brations. A map which is both a (co)�bration and a weak equivalence, is called an acyclic

(co)�bration. The category C is a closed model category if it satis�es the following axioms:

CM1: C has �nite limits and colimits.

CM2: If any two of f , g and fg are weak equivalences, then so is the third.

CM3: A retract f of a weak equivalence (co�bration, �bration) g is a weak equivalence

(co�bration, �bration).

CM4 (i): A co�bration has the LLP with respect to all acyclic �brations.

CM4 (ii): A �bration has the RLP with respect to all acyclic co�brations.

CM5 (i): Any map f : A �! B may be factored f = pi where i : A �! X is a co�bration

and p : X �! B is an acyclic �bration.

CM5 (ii): Any map f : A �! B may be factored f = pi where i : A �! X is an acyclic

co�bration and i : X �! B is a �bration.
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A proper closed model category is a closed model category such that

P (i): the pushout of a weak equivalence by a co�bration is a weak equivalence;

P (ii): the pullback of a weak equivalence by a �bration is a weak equivalence.

It follows from Axiom CM4 that a pullback of a �bration p is again a �bration, which is acyclic if

f is, while a pushout of a co�bration i is again a co�bration, and is acyclic if i is. We will use these

properties of closed model categories without further comment.

These axioms are self-dual: the opposite category C

op

, with the same weak equivalences and the

sets of �brations and co�brations exchanged, is a closed model category, and if C is proper then so

is C

op

. In a closed model category, the weak equivalences together with the �brations determine the

co�brations, while the weak equivalences together with the co�brations determine the �brations.

An object A of C is called co�brant if the unique map � �! A is a co�bration, where � is the

initial object of C. There is a dual de�nition of �brant, using the terminal object of C.

The homotopy category Ho C of a closed model category C is the localization of C with respect to

all weak equivalences. Denote by  : C �! Ho C the localization functor.

If F : C

1

�! C

2

is a functor between closed model categories, the total left-derived functor LF of

F is a colimit over all pairs (�; ") where � : HoC

1

�! Ho C

2

is a functor and " : F �! � is a natural

transformation. Such a functor, if it exists, is clearly unique up to isomorphism. If F : C

1

�! C

2

carries weak equivalences between co�brant objects into weak equivalences, then it possesses a total

left-derived functor (Quillen [40], Section I.4): if X is an object of C

1

, then LF (

1

(X)) = 

2

(F (Q))

where Q is a co�brant object of C

1

and p : Q �! X is an acyclic �bration. Similarly, if G : C

2

�! C

1

is a functor which carries weak equivalences between �brant objects into weak equivalences, there is

a total right-derived functor RF : Ho C

2

�! Ho C

1

.

The following theorem is due to Quillen (Section I.4 of [40]).

Theorem 4.2. Let C

1

and C

2

be closed model categories, and let F : C

1


 C

2

: G be a pair of adjoint

functors, such that

(1) F carries co�brations in C

1

into co�brations in C

2

, and G carries �brations in C

2

into

�brations in C

1

;

(2) F carries weak equivalences between co�brant objects in C

1

into weak equivalences in C

2

, and

G carries weak equivalences between �brant objects in C

2

into weak equivalences in C

1

.

Then the total derived functors LF : HoC

1


Ho C

2

: RG form an adjoint pair.

Suppose in addition that for X a co�brant object of C

1

and Y a �brant object of C

2

, the weak

equivalences correspond under the identi�cation

C

1

(FX; Y )

�

=

C

2

(X;GY ):

Then the unit Id �! (LF )(RG) and counit (RG)(LG) �! Id of this adjunction are natural equivalences

of functors, and thus LF and RG de�ne an equivalence between the categories HoC

1

and Ho C

2

.

The following lemma is a special case of Lemma I.1.4 of Baues [7].

Lemma 4.3. In a closed model category, if all objects are co�brant, then Axiom P (i) for a proper

closed model category holds. Dually, if all objects are �brant, then Axiom P (ii) for a proper closed

model category holds.

Proof. By duality, it su�ces to prove the �rst assertion. Given a map f : A �! X, factor the map

f

`

X : A

`

X �! X as in CM5 (i)

A

`

X

i

`

j

���! Z

f

p

�! X

where i

`

j and p are respectively a co�bration and an acyclic �bration. The space Z

f

is known

as the mapping cylinder of f : it is unique up to weak equivalence. Since A and X are co�brant, it
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follows that i : A �! Z

f

and j : X �! Z

f

are co�brations. Since pj : X �! X is the identity and p is

a weak equivalence, it follows from CM1 that that j is a weak equivalence.

Consider the following commutative diagram, in which each square is a pushout, and each vertical

arrow is a co�bration:

A

i

����! Z

f

p

����! X

j

����! Z

f

?

?

y

?

?

y

?

?

y

?

?

y

B

i

0

����! W

p

0

����! Y

j

0

����! W

Since i and j are acyclic co�brations, it follows that i

0

and j

0

are as well. It only remains to show

that p

0

is a weak equivalence: but pj : X �! X is the identity, and hence so is p

0

j

0

: Y �! Y , and

the result follows by a further application of CM1.

4.2. The closed model categories of a-algebras and z-coalgebras. The categoryM of chain

complexes over a �eld K is a proper closed model category:

(1) a map is a weak equivalence if it induces an isomorphism on homology;

(2) a map is a �bration if it is surjective in degree i > 0 (this reects the topological fact that

a �bration need not be surjective on components);

(3) a map is a co�bration if it is injective.

In this category, all objects are co�brant and �brant.

We will now show that the category of a-algebras M

a

over an exact dg-operad a is a proper

closed model category. In the category of algebras over an operad a, we de�ne weak equivalences,

�brations and co�brations in the following way:

(1) a map in M

a

is a weak equivalence (�bration) if it is a weak equivalence (�bration) in the

category of chain complexesM;

(2) a map f : A �! B inM

a

is a co�bration if the a[A]-algebra B is a retract of an almost free

a-algebra T(a[A]; V; d). (The a[A]-algebra structure on B de�ned by the map f is described

in Section 1.6.)

In particular, an a-algebra is co�brant if it is a retract of an almost free a-algebra T(a; V; d).

In the following proof, we will use the fact that if an operad a is exact, and A is an a-algebra,

then a[A] is exact.

Theorem 4.4. Let a be an exact operad. With the above de�nitions of weak equivalences, �brations

and co�brations, M

a

is a closed model category.

Proof. The existence of limits and colimits inM

a

was established in Section 1.6. Axioms CM2, and

CM3 for weak equivalences and �brations, are inherited from the closed model category M, while

CM3 for co�brations is immediate from the de�nition of a co�bration.

Next, we prove CM4 (i): a co�bration i : A �! B of a-algebras has the LLP with respect to acyclic

�brations. Replacing the operad a by a[A], we see that it su�ces to establish that a co�brant a-

algebra has the LLP with respect to acyclic �brations. But the retract of a map with the LLP with

respect to acyclic �brations inherits this property. Thus, it su�ces to show that an almost free

a-algebra has the LLP with respect to acyclic �brations.

If T(a; V; d) is an almost free a-algebra, write the underlying free algebra T(a; V ) as a colimit

T(a; V ) = colim

n�!1

T(a; �

n

V );

where �

n

V is the truncation of V to degrees i � n. Since the di�erential d has degree �1, it maps

�

n

V � T(a; V ) to T(a; �

n�1

V ). Thus the almost free a-algebra T(a; V; d) is also a colimit

T(a; V; d) = colim

n�!1

T(a; �

n

V; d):
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Thus, to show that the almost free algebra T(a; V; d) has the LLP with respect to an acyclic �bration

p, it su�ces to show that the injection

T(a; �

n�1

V; d) �! T(a; �

n

V; d)

has the LLP with respect to p, for all n > 0. To see this, we write the injection as a pushout

T(a; U )

f

����! T(a; �

n�1

V; d)

T(a;i)

?

?

y

?

?

y

T(a;W )) ����! T(a; �

n

V; d)

Here, U = �

�1

�

n

V=�

n�1

V is the chain complex with the vector space V

n

concentrated in degree

n� 1 and vanishing di�erential, and W is isomorphic as a graded vector space to U � �U and has

as di�erential the identity map of U . The map f is determined by its restriction to U , where it may

be identi�ed with the restriction of the di�erential d : �

n

V �! T(a; �

n�1

V ) to V

n

� �

n

V , and i is

the inclusion of U in W . The proof of CM4 (i) is completed by applying the following lemma.

Lemma 4.5. Let A be an a-algebra with the LLP with respect to acyclic �brations. Let i : V �! W

be a co�bration in M, and let B be the following pushout in M

a

:

T(a; V ) ����! A

T(a;i)

?

?

y

?

?

y

T(a;W ) ����! B

Then B has the LLP with respect to acyclic �brations.

Proof. The pushout of a map with the LLP with respect to a map p also has the LLP with respect

to p. Thus, it su�ces to show that if i : V �! W is a co�bration in M, then the map T(a; i) :

T(a; V ) �! T(a;W ) has the LLP with respect to acyclic �brations in M

a

. This follows from the

universality property of T(a;W ): to de�ne a lift

V

T(a; V )

X

W

T(a;W )

Y

-

�V

?

i

-

?

T(a;i)

?

p

-

�W

-

p

p

p

p

p

p

p

p

p

p

p

�

f

where p is an acyclic �bration of a-algebras, it su�ces to �nd a liftW �! X in the category of chain

complexes making the outer square commute, which exists since i has the LLP with respect to p in

the closed model category M.

CM5 (i) is proved using the bar construction of Section 2.3. Given a map f : A �! B of a-algebras,

let p : 
(a[A]; B(a[A]; B)) �! B be the unit of the adjunction


(a[A]) :M

Ba[A]


M

a[A]

: B (a[A]);

applied to the a[A]-algebra B. By Theorem 2.19, it is an acyclic �bration. Clearly, 
(a; B(a; A)) is

an almost free a[A]-algebra, and thus

i : A = 
(a[A]; 0) �! 
(a[A]; B(a[A]; B))

is a co�bration of a-algebras.

In the proof of CM5 (ii), we use the fact that if a is a exact S-module, the functor T(a) is

homotopy invariant, that is, if f : V �! W is a weak equivalence of chain complexes, then T(a; f) :
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T(a; V ) �! T(a;W ) is a weak equivalence. This is the only place in the proof of the theorem where

the hypothesis that the operad a is exact is needed.

If B is an a-algebra, let V be a contractible chain complex such that there is a �bration V �! B

in the closed model category of chain complexes. Given a map f : A �! B of a-algebras, let

X = A

`

T(a; V )

�

=

T(a[A]; V ):

Then f = pi, where p : X �! B is the natural surjection induced by the maps f : A �! B and

V �! B, and i : A �! X is the natural inclusion. Obviously, p is a �bration. The map i is free,

so is a co�bration. The operad a[A] is exact, since a is, so the functor T(a[A]) preserves weak

equivalences; thus, it sends the weak equivalence 0 �! V to the weak equivalence

i : A = T(a[A]; 0) �! T(a[A]; V ) = X:

It is now easy to prove CM4 (ii): given an acyclic co�bration f : A �! B, factor it as in the proof

of CM5 (ii)

A

i

�! A

`

T(a; V )

p

�! B:

By CM2, p is a weak equivalence. Since f is a co�bration, it has the LLP with respect to p, while i

inherits the LLP with respect to �brations from the closed model category M; in this way, we see

that f has the LLP with respect to any �bration.

Corollary 4.6. A co�brant a-algebra A is a deformation retract of an almost free a-algebra X; in

other words, there are weak equivalences p : X �! A and j : A �! X such that pj : A �! A is the

identity of A.

Proof. Factor f : � �! A as in the proof of CM5 (i) into a product f = pi, where i : � �! X is the

inclusion of the initial object into an almost free a-algebra, and p : X �! A is an acyclic �bration.

Since f is a co�bration, it has the LLP with respect to p, so that there is a map j : A �! X such

that pj : A �! A is the identity of A. It follows by CM2 that j is a weak equivalence.

There is also a closed model structure on the category of coalgebras over an exact connected

cooperad z. The proof will use the adjoint pair of functors

B

�

(z) = 
(�

�

) :M

z


M

B

�

z

: 


�

(z) = B (�

�

)

associated to the universal twisting cochain �

�

: z �! B

�

z.

In the category of coalgebras over z, we de�ne weak equivalences, �brations and co�brations in

the following way:

(1) a map inM

z

is a weak equivalence (co�bration) if it is a weak equivalence (co�bration) in

the category of chain complexes M;

(2) a map f : C �! D inM

z

is a �bration if the z[D]-algebra C is a retract of 


�

(z[D]; A) for

some B

�

z[D]-algebra A.

Note that if D is a z-coalgebra, then the cooperad z[D] is connected if z is.

Theorem 4.7. Let z be an exact connected cooperad. With the above de�nitions of weak equiva-

lences, �brations and co�brations, the category M

z

of z-coalgebras is a closed model category.

Proof. The proofs of all of the axioms of a closed model category other than Axiom CM4 (ii) are the

precise dual of the proofs of the corresponding axioms forM

a

. For example, given a map f : C �! D

of z-coalgebras, CM5 (ii) is proved by the factorization

C �! 


�

(z[D]; B

�

(z[D]; C)) �! 


�

(z[D]; B

�

(z[D]; 0)) = D;

while CM5 (i) is proved by the factorization

C �! D

Q

C(z; V )

�

=




�

(z[D]; V ) �! D;
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where V is a contractible chain complex such that there is a �bration V �! D.

To prove CM4 (ii), it su�ces to show that if A is a B

�

z-algebra, the z-coalgebra 


�

(z; A) has the

RLP with respect to acyclic co�brations i : C �! D. By adjointness, liftings in the diagram

C




�

(z; A)

D

-

?

i

p

p

p

p

p

p

p

p

p

p

p

�

are in bijective correspondence with liftings in the diagram

B

�

(z; C)

A

B

�

(z; D)

-

?

B

�

(z;i)

p

p

p

p

p

p

p

p

p

p

p

�

But A, like all B

�

z-algebras, is �brant, and thus has the RLP with respect to the acyclic co�bration

of B

�

z-coalgebras B

�

(z; f) : B

�

(z; C) �! B

�

(z; D).

If a is an operad, then Ba is a connected cooperad, which is exact if a is. The total derived

functors

L
(a) :M

Ba


M

a

: RB(a)

form an adjoint pair, and de�ne an equivalence of homotopy theories.

If a is a Koszul operad, then a

?

is a connected cooperad, which is exact if a is. From Theorem

2.25, we see the total derived functors

L
(a) :M

a

?
M

a

: RB(a)

form an adjoint pair, and de�ne an equivalence of homotopy theories. Taking for a the Lie operad

L, we obtain an equivalence between the homotopy category of Lie dg-algebras over Q, and the

homotopy category of connected cocommutative dg-coalgebras, also over Q, a result due to Quillen

([42], Section II.5). Actually, Quillen realizes the equivalence by means of the adjoint pair P�

�1

:

M

L

?
M

L

: �U , where P is the primitive functor and U is the universal enveloping algebra

functor. However, if C is an almost cofree cocommutative coalgebra, there is a weak equivalence

between PC and 
(L;�C): this shows that our equivalence of homotopy categories is the same as

Quillen's.

We now turn to the theory of cochain algebras and coalgebras. Let N be the category of cochain

complexes: that is, the category of complexes V

�

such that V

i

= 0 for i > 0. The name cochain

complex is motivated by the alternative notation V

i

= V

�i

; the di�erential is then a map � : V

i

�!

V

i+1

, and V

i

= 0 for i < 0. Since N is a symmetric monoidal category with respect to the tensor

product, we obtain corresponding categories of operads, cooperads, and their categories of algebras

and coalgebras.

A cochain complex is called n-connected if A

i

= 0 for i � �n; we say connected instead of

0-connected.

The category N of cochain complexes over a �eld K is a closed model category:

(1) a map is a weak equivalence if it induces an isomorphism on homology;

(2) a map is a �bration if it is surjective;

(3) a map is a co�bration if is injective.
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In this category, all objects are co�brant and �brant.

We have seen that there is an asymmetry in the construction of a closed model structure between

categories of algebras and coalgebras. For example, it is only if a cooperad is connected that its

category of coalgebras is a closed model category. In the category of cochain complexes, the situation

is similar, but the roles of operads and cooperads is reversed: for example, the category of a-algebras

over a cochain operad is a closed model category only if a is connected. This is reected in the fact

that the bar cooperad Ba is a cochain cooperad if and only if a is a connected cochain operad.

We will content ourselves with de�ning the closed model structures on categories of algebras and

coalgebras: the proofs that these are indeed closed model categories may be obtained by dualizing

the above proofs for chain algebras and coalgebras, exchanging operads and cooperads, algebras and

coalgebras, and reversing the arrows.

If a is an exact, connected cochain operad, de�ne weak equivalences, �brations and co�brations

in the category of a-algebras in the following way:

(1) a map in N

a

is a weak equivalence (�bration) if it is a weak equivalence (�bration) in the

category of cochain complexes N ;

(2) a map f : A �! B in N

a

is a co�bration if the a[A]-algebra B is a retract of 
(a[A]; C) for

some Ba[A]-coalgebra C.

If z is an exact cochain cooperad, de�ne weak equivalences, �brations and co�brations in the

category of z-coalgebras in the following way:

(1) a map in N

z

is a weak equivalence (co�bration) if it is a weak equivalence (co�bration) in

the category of cochain complexes N ;

(2) a map f : C �! D in N

z

is a �bration if the z[D]-coalgebra C is a retract of an almost cofree

z[D]-coalgebra C(z[D]; V; d).

If z is a connected dg-cooperad, its linear dual z

�

is a connected cochain operad. The closed

model structure on the category of z-coalgebras is closely related to the closed model structure on

the category of cochain z

�

-coalgebras: indeed, the contravariant functor C 7! C

�

between these

categories carries weak equivalences to weak equivalences, co�brations to �brations and �brations

to co�brations. If a is a dg-operad, there is a similar duality between a-algebras and a

�

-coalgebras.

Let e

n

be the n-algebra operad. The operad �

n

e

n

is a cochain operad with zero di�erential,

and since it is connected, the category of cochain �

n

e

n

-algebras is a closed model category. But a

�

n

e

n

-algebra structure on a cochain complex A is the same thing as an n-algebra structure on the

cochain complex �

�n

A. In this way, we obtain the following result.

Proposition 4.8. The category of (n� 1)-connected cochain n-algebras is a closed model category.

Similarly, there is a closed model category structure on the category of connected commutative

cochain algebras, since this category is isomorphic to the category of cochain �e

1

-algebras.

4.3. Andr�e-Quillen homology. In this section, we study the total derived functors of the adjoint

pair �

�

:M

a


M

b

: �

�

, where � : a �! b is a map of operads. In order to show that the functor �

�

has a total left derived functor, we must study more carefully its e�ect on an almost free a-algebra.

We will say that � : a �! b is a weak equivalence of operads if it is a weak equivalence of S-modules,

that is, if �(S) : a(S) �! b(S) is a weak equivalence of chain complexes for all �nite sets S.

De�nition 4.9. A contractible pair in a category is a diagram

A

f

0

�����!

�����!

f

1

B

t

�! A

such that f

0

t is the identity of B and f

1

tf

0

= f

1

tf

1

. The coequalizer of a contractible pair is called

a split coequalizer.
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A split coequalizer is absolute: that is, it remains a coequalizer after the application of any functor

(MacLane [32], Section VI.6).

Proposition 4.10. (1) If A is a co�brant a-algebra and � : a �! b is a map of operads, then

T(b;T(a; A))

T(b;�)

����������!

����������!

�(A)�T(b;T(�;A))

T(b; A) �! �

�

A

is a split coequalizer in M

b

.

(2) If f : A �! B is a weak equivalence of co�brant a-algebras and � : a �! b is a map of operads,

then �

�

f : �

�

A �! �

�

B is a weak equivalence.

(3) If � : a �! b is a weak equivalence of operads and A is a co�brant a-algebra, then A �! �

�

�

�

A

is a weak equivalence.

Proof. Since any co�brant a-algebra is a retract of an almost free a-algebra, we may suppose that

A = T(a; V; d) is an almost free a-algebra. Let t be the map of b-algebras

T(b;T(a; V ))

T(b;T(a;�V ))

��������! T(b;T(a;T(a; V ))):

It is easily seen that t is a contraction for the above parallel pair, and that it is compatible with the

di�erential on A, proving (1).

To prove (2), suppose that A and B are co�brant a-algebras. Applying the homology functor to

the split coequalizers which de�ne �

�

A and �

�

B, we see that the rows of the diagram of graded

vector spaces

H

�

(T(b;T(a; A)))

������!

������!

H

�

(T(b; A)) ����! H

�

(�

�

A)













H

�

(T(b;T(a; B)))

������!

������!

H

�

(T(b; B)) ����! H

�

(�

�

B)

are split coequalizers. Since a and b are exact, the functors T(a) and T(b) preserve weak equiv-

alences, hence the vertical arrows in this diagram are isomorphisms. From this, it follows that

H

�

(�

�

A)

�

=

H

�

(�

�

B).

To prove (3), suppose that A is a co�brant a-algebra. Again, we see that the rows of the diagram

of graded vector spaces

H

�

(T(a;T(a; A)))

������!

������!

H

�

(T(a; A)) ����! H

�

(A)













H

�

(T(b;T(a; A)))

������!

������!

H

�

(T(b; A)) ����! H

�

(�

�

�

�

A)

are split coequalizers and the vertical arrows are isomorphisms, and hence H

�

(A)

�

=

H

�

(�

�

�

�

A).

Corollary 4.11. Let � : a �! b be a map of operads. The total derived functors

L�

�

: HoM

a


HoM

b

: R�

�

form an adjoint pair.

If � is a weak equivalence of operads, then the functors L�

�

and R�

�

induce an equivalence of

homotopy categories.

The category of a-algebras M

a

is a proper closed model category.

Proof. We will verify the hypotheses of Theorem 4.2 for the adjoint pair of functors �

�

and �

�

. It is

evident that �

�

carries �brations and weak equivalences inM

b

to �brations and weak equivalences

in M

a

. Let i : A �! B be a co�bration of a-algebras. If p : X �! Y is an acyclic �bration of

b-algebras, then i has the LLP with respect to �

�

p. But since �

�

is left adjoint to �

�

, �

�

i has the
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LLP with respect to p, showing that �

�

i is a co�bration. Finally, if f : A �! B is a weak equivalence

of co�brant objects, then �

�

f is a weak equivalence by part (2) of Proposition 4.10.

Now, suppose that � : a �! b is a weak equivalence of operads. We must show that if A is a

co�brant a-algebra and B is a (necessarily �brant) b-algebra, and if f : �

�

A �! B is a map, then

the composition

A �! �

�

�

�

A

�

�

f

��! �

�

B

is a weak equivalence if and only if the map f is a weak equivalence; here A �! �

�

�

�

A is the unit

of the adjunction �

�

:M

a


M

b

: �

�

applied to the a-algebra A. Since �

�

f is a weak equivalence

if and only if f is, this will follow by CM2 if we can show that A �! �

�

�

�

A is a weak equivalence

for co�brant a-algebras A. But this is part (3) of Proposition 4.10.

Let us show thatM

a

is a proper closed model category. Axiom P (ii) follows by Lemma 4.3 from

the fact that all a-algebras are �brant. We have just veri�ed Axiom P (i): given a pushout

A

f

����! X

i

?

?

y

?

?

y

B ����! Y

with i : A �! B a co�bration and f : A �! X a weak equivalence, we may think of Y as the

a[X]-algebra a[f ]

�

B. Since a[f ] : a[A] �! a[X] is a weak equivalence of operads, it follows that

B �! a[f ]

�

a[f ]

�

B = a[f ]

�

Y is a weak equivalence.

The proof of CM5 (ii) provides us with an explicit de�nition of the functor L�

�

applied to an

a-algebra A, as a certain almost free b-algebra with underlying free b-algebra T(b; B(a; A)). The

special case where � is the augmentation " : a �! 11 of a is especially important.

De�nition 4.12. The homology of a-algebras is the total left derived functor of the indecompos-

ables map

L"

�

: HoM

a

�! HoM:

It is realized by the functor A 7! B (a; A).

The homology functor L"

�

provides us with a general notion of homology for a-algebras, generaliz-

ing the Hochschild homology of associative algebras and the Andr�e-Quillen homology of commutative

algebras. If a is Koszul, then B(a; A) is weakly equivalent to B (a; A), and thus it provides a small

complex calculating the Andr�e-Quillen homology in the category of a-algebras.

We also see that the Andr�e-Quillen homology in the category of Lie algebras L"

�

L is represented by

the L

?

-coalgebra B(L; L), whose underlying graded vector space is �

�1

T

1

(�L), the desuspension

of the Chevalley-Eilenberg complex of L. Note that T

1

(�L) is just the exterior algebra of L if L is

concentrated in degree 0.

If � : w �! z is a map of connected cooperads, there is an adjoint pair of total derived functors

L�

�

: HoM

w


HoM

z

: R�

�

;

which de�ne an equivalence of homotopy theories if � is a weak equivalence. If z is a coaugmented

operad, the total derived functor R�

�

: HoM

z

�! HoM is called the Andr�e-Quillen cohomology,

where � : 11 �! z is the coaugmentation of z.
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4.4. Algebras over an almost free operad. In this section, we study the category of A-algebras,

where A is an almost free operad.

Theorem 4.13. Let A be an almost free operad, let B be an A-algebra let f : A �! B be an acyclic

�bration of chain complexes. Then there exists an A-algebra structure on A such that the map

f : A �! B is a map of A-algebras.

Proof. Write A as a colimit A = colim

n�!1

A

n

, where A

n+1

is a pushout

Tv

n

f

����! A

n

Ti

n

?

?

y

?

?

y

Tw

n

����! A

n+1

and i

n

: v

n

�! w

n

is a pushout of S-modules. By induction, we suppose that A has been made into

an A

n

-algebra. To extend this structure to that of an A

n+1

-algebra on A, we use the LLP in the

category of chain complexes of the co�bration S(i; A) : S(v

n

; A) �! S(w

n

; A), in the diagram

S(v

n

; A) ����! A

S(i;A)

?

?

y

f

?

?

y

S(w

n

; A) ����! B

Here, the map S(v

n

; A) �! A is induced by the structure map T(A

n

; A) �! A of the A

n

-algebra

structure on A, while the map S(w

n

; A) �! B is the composition of the map S(w

n

; f) : S(w

n

; A) �!

S(w

n

; B) with the map S(w

n

; B) �! B induced by the A

n+1

-algebra structure on B.

The interest of this result comes from the fact that if a is an exact dg-operad and A �! a is an

almost free resolution of a, for example A = B

�

Ba, the results of the last section show that the

homotopy theories of a-algebras and A-algebras are the same.

Let us give an example of the use of Theorem 4.13. Suppose that A is a chain complex over a

�eld K and that there is given an a-algebra structure on the homologyH

�

(A) of A. Choose a basis

of H

�

(A), lift each element of this basis to A, and extend this to a basis of all of A. This allows

us to de�ne an acyclic �bration A �! H

�

(A). If A �! a is an almost free resolution of the operad

a, then we conclude that A has a A-algebra structure, compatible with the a-algebra structure on

H

�

(A).

If the almost free operad A has the form B

�

z for some operad z, we see from Proposition 2.15 that

a A-algebra structure on A is the same as a di�erential on the cofree z-coalgebra C(z; A). Applying

this result to the operad B

�

a

?

, where a is a Koszul operad, we are led to the following de�nition.

De�nition 4.14. If a is a Koszul operad, a homotopy a-algebra structure A is an a

?

-codi�erential

on the cofree a

?

-coalgebra C(a

?

; A), or equivalently, the structure of a B

�

a

?

-algebra structure on

A, where B

�

a

?

is the almost free resolution of a.

There is a faithful embedding of the category of a-algebras in the category of homotopy a-algebras,

induced by the functor which sends an a-algebra A to B(a; A).

Since the n-algebra operad e

n

is Koszul, we may de�ne a homotopy n-algebra to be a graded

vector space A together with an n-codi�erential on C

n

(A). A morphism of homotopy n-algebras

A �! B is a homomorphism of z

n

-coalgebras C

n

(A) �! C

n

(B) which respects the n-codi�erentials.

Similarly, a homotopy Lie algebra is a graded vector space L together with an L

?

-codi�erential

on

C(L

?

; L) = C(�

�1

e

�

1

; L)

�

=

�

�1

S(e

�

1

;�L);
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or equivalently a codi�erential on the graded commutative coalgebra S(e

�

1

;�L). This de�nition of

a homotopy Lie algebra coincides with that of Drinfeld [12], Hinich and Schechtman [25] and Lada

and Stashe� [30].

5. Homotopy n-algebras

In the �rst three sections of this chapter, we study three operads: A

1

, introduced by Stashe�

[49], B

1

, which we abstract from the work of Baues [7], and C

1

, considered by Kadeishvili [27] and

Kontsevich [29]. We de�ne these operads in a uniform way: an algebra over one of these operads is

a chain complex A together with additional algebraic structure on the free coalgebra generated by

�A: for A

1

-algebras, the structure of a dg-coalgebra, for B

1

-algebras that of a dg-bialgebra, and

for C

1

-algebras that of a dg-bialgebra with product equal to the shu�e product.

The operads A

1

and C

1

are almost free, isomorphic to B

�

z

1

and B

�

z

1

, and thus describe

homotopy associative and homotopy commutative algebras respectively. The case of B

1

is a little

di�erent, since it is not almost free. However, as we explain below, there is an almost free operad

E

2

, resolving e

2

, of which B

1

is a quotient.

Baues has shown that the space of singular cochains on a topological space is a B

1

-algebra [7].

In Section 5.2, we show that if A is an A

1

-algebra, then the space of Hochschild cochains C

�

(A;A)

is a B

1

-algebra. Interpreting the complex C

�

(A;A) as the \homotopy centre" of the A

1

-algebra

A, this result takes on the following familiar form: the homotopy centre of a homotopy associative

algebra is a homotopy commutative algebra.

In Section 5.4, we construct almost free resolutions E

n

�! e

n

; in fact, the operad E

n

is de�ned

over the integers, and is generated by a free Z[S]-module. The chain complex E

n

(k) is the cellular

chain complex associated to an equivariant regular cell decomposition of the space F

n

(k). We call

an algebra over E

n

a homotopy n-algebra. The operads of the �rst three sections are related to these

operads in the following way: the operads A

1

and E

1

are isomorphic, B

1

is a quotient of E

2

, and

C

1

is a quotient of E

1

. Finally, we show that the singular cochain functor S

�

(X) takes values in

the category of E

1

-algebras: in another paper, we will apply this to obtain an explicit model for

the chains on 


n

X.

5.1. A

1

-algebras. Let V be a chain complex. The bar coalgebra of V is the direct sum

BV =

1

M

k=0

(�V )

(k)

;

and following the usual practice, we denote the element (�a

1

) 
 : : :
 (�a

n

) 2 BV by [a

1

j : : : ja

n

].

The coproduct of BV is given by the formula

�[a

1

j : : : ja

k

] =

k

X

i=0

[a

1

j : : : ja

i

]
 [a

i+1

j : : : ja

k

]:

Denote by � : 11 �! BV the coaugmentation map given by the inclusion of the 0-chain [ ] in BV , and

by

�

BV its cokernel, the non-counital coalgebra

�

BV =

1

M

k=1

(�V )

(k)

:

There is a bijective correspondence between coassociative coalgebras C and connected 1-coalgebras

�C, under which the bar coalgebra

�

BV is identi�ed with the cofree 1-coalgebra C

1

(V )

�

=

�

�1

�

BV .

A Hochschild cochain is an element of C

�

(V; V ) = Hom(BV; V ). Proposition 2.14 gives a bijection

from Hochschild cochains c 2 C

�

(V; V ) to coderivations �(c) of BV , given by the formula

�(c)[a

1

j : : : ja

k

] =

X

0�i<j�k

(�1)

(jcj+1)(ja

1

j+���+ja

i

j+i)

[a

1

j : : : ja

i

jc[a

i+1

j : : : ja

j

]ja

j+1

j : : : ja

k

]:
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Note that j�(c)j = jcj+ 1.

Gerstenhaber [16] has introduced an operation c

1

� c

2

of degree 1 on C

�

(V; V ):

(c

1

� c

2

)[a

1

j : : : ja

k

] =

X

0�i<j�k

(�1)

(jc

2

j+1)(ja

1

j+���+ja

i

j+i)

c

1

[a

1

j : : : ja

i

jc

2

[a

i+1

j : : : ja

j

]ja

j+1

j : : : ja

k

]:

The commutator [c

1

; c

2

] = c

1

� c

2

� (�1)

(jc

1

j+1)(jc

2

j+1)

c

2

� c

1

of this operation is a Lie bracket of

degree 1, as is shown by the formula

�([c

1

; c

2

]) = �(c

1

)�(c

2

) � (�1)

(jc

1

j+1)(jc

2

j+1)

�(c

2

)�(c

1

):

A coderivation of BV of degree �1 is a codi�erential if and only if the corresponding Hochschild

cochain m (of degree �2) satis�es the formulam�m = 0. The following de�nition is due to Stashe�

[49] (see also [20]).

De�nition 5.1. An A

1

-algebra structure on a graded vector space A is one of the two equivalent

data:

(1) a Hochschild cochain m 2 Hom(BA;A) of degree �2 such that m �m = 0;

(2) a codi�erential on BA such that �[ ] = 0, or equivalently, an element of Coder

�

(z

1

;C

1

(A)).

The Hochschild cochain m 2 Hom(

�

BA;A) de�ning an A

1

-structure may be viewed as a sequence

of multilinear maps m

k

: A

(k)

�! A, k � 1, of degree k � 2, de�ned by the formula

m

k

(a

1

; : : : ; a

k

) = (�1)

(k�1)ja

1

j+(k�2)ja

2

j+���+ja

k�1

j

m[a

1

j : : : ja

k

]:

The equation m � m = 0 translates to a sequence of identities generalizing those satis�ed by a

dg-algebra: in fact, A

1

is isomorphic to the operad B

�

z

1

whose algebras are homotopy associative

algebras in the sense of Section 4.4.

In the next section, we will need a sequence of operations c

0

fc

1

; : : : ; c

k

g on the space of Hochschild

cochains of a chain complex, constructed in [18], generalizing Gerstenhaber's operation c

0

fc

1

g =

c

0

� c

1

, given by the formula

(1) cfc

1

; : : : ; c

k

g[a

1

j : : : ja

`

] =

X

0�i

1

�j

1

�����i

k

�j

k

�`

(�1)

�

i

1

jc

1

j+���+�

i

k

jc

k

j

c[a

1

j : : : ja

i

1

jc

1

[a

i

1

+1

j : : : ja

j

1

]ja

j

1

+1

j : : : ja

i

k

jc

k

[a

i

k

+1

j : : : ja

j

k

]ja

j

k

+1

j : : : ja

`

];

where �

i

= ja

1

j+ � � �+ ja

i

j+ i. If A is an A

1

-algebra, its space of Hochschild cochains C

�

(A;A) is

an A

1

-algebra, with di�erential [m;�] and higher products M

k

, k > 1, given by the formula

M

k

(c

1

; : : : ; c

k

) = mfc

1

; : : : ; c

k

g:

If A is a dg-algebra, this A

1

-structure on C

�

(A;A) reduces to a dg-algebra structure, with product

(c

1

[ c

2

)[a

1

j : : : ja

k

] =

k

X

i=0

c

1

[a

1

j : : : ja

i

] c

2

[a

i+1

j : : : ja

k

]:

5.2. B

1

-algebras. A dg-bialgebra (or Hopf algebra) is a coalgebra A which also carries the struc-

ture of a dg-algebra, in such a way that the product A 
 A �! A is a morphism of coalgebras and

the di�erential � : A �! A is a coderivation.

De�nition 5.2. A B

1

-algebra is a chain complex A together with the structure of a dg-bialgebra

on BA.
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A B

1

-algebra A has an underlying A

1

-structure, obtained by discarding the product on BA,

and retaining only the dg-coalgebra structure. As in the last section, this A

1

-structure may be

described by a sequence of multilinear maps m

k

: A

(k)

�! A, k > 0, of degree k � 2, satisfying

certain identities generalizing those of a dg-algebra. Similarly, we will see that the product [ on BA,

where A is a B

1

-algebra, may be described by a sequence of multilinear maps m

k;`

: A

(k+`)

�! A,

k; ` > 0, of degree k+ `� 1, satisfying certain identities which are equivalent to the associativity of

this product on BA and its compatibility with the codi�erential on BA.

In order to do this, we must analyse the structure of bilinear maps � : BA
BA �! BA compatible

with the coproduct on BA. Such maps are determined by the composition of � with the projection

pr : BA �! �A,

BA
 BA

�

�! BA

pr

�! �A:

Indeed, the composition of the bilinear map � with the projection BA �! (�A)

(k)

is given in terms

of pr �� by the formula

BA
 BA �! (BA)

(k)


 (BA)

(k)

�

=

(BA
 BA)

(k)

(pr ��)

(k)

������! (�A)

(k)

:

Thus, the bilinear map � is determined by a sequence of maps m

k;`

: A

(k+`)

�! A, k + ` > 0, of

degree k + `� 1, such that

m

k;`

(a

1

; : : : ; a

k

; b

1

; : : : ; b

`

) =

(�1)

(k�1)ja

1

j+(k�2)ja

2

j+���+ja

k�1

j

(�1)

(`�1)jb

1

j+(`�2)jb

2

j+���+jb

`�1

j

(pr ��)([a

1

j : : : ja

k

]; [b

1

j : : : jb

`

]):

We may apply this analysis to the product [ on BA, where A is a B

1

-algebra. In order for

the zero-chain [ ] 2 BA to be a unit for [, it is necessary and su�cient that m

1;0

and m

0;1

be the

identity map of A and m

k;0

= m

0;k

= 0 for k > 1. The equations among the products m

k;`

which

are equivalent to the associativity of [, and among the products m

k;`

and m

k

which are equivalent

to the di�erential of BA being a derivation of [, are rather complicated, but it is clear that they

could be written down if necessary.

In order to make the structure of B

1

-algebras a little more familiar, we will now show explicitly

that the homology of a B

1

-algebra is a 2-algebra. This also follows from the fact, proved in Section

5.4, that B

1

is a quotient over an almost free resolution of the operad e

2

. We adopt the notations

�a for m

1

(a), ab for m

2

(a; b), and a � b for m

1;1

(a; b).

The product of two one-chains in BA is given by the formula

[a][ [b] = [ajb] + (�1)

(jaj+1)(jbj+1)

[bja] + [a � b]:

Applying the di�erential of BA to both sides, we see that

ab� (�1)

jaj jbj

ba = (�1)

jaj

(�a) � b� a � (�b)� (�1)

jaj

�(a � b);

showing that ab descends to a graded commutative product on H

�

(A).

De�ne a bilinear operation of degree 1 on A by the formula

[a; b] = a � b� (�1)

(jaj+1)(jbj+1)

b � a:

It is automatic that this operation is a Lie bracket of degree 1, since it is related to the commutator

of two one-chains by the formula

[a] [ [b]� (�1)

(jaj+1)(jbj+1)

[b][ [a] = [ [a; b] ]:

Taking the di�erential of both sides of this formula, we see that

�[a; b] = [�a; b] + (�1)

jaj+1

[a; �b];

so that the bracket descends to H

�

(A).
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It remains to prove the Poisson formula relating the products ab and [a; b]. Using the fact that

BA is a bialgebra, we see that the product [ajb][ [c] is given by the formula

[ajb][ [c] = [ajbjc] + (�1)

(jbj+1)(jcj+1)

[ajcjb] + (�1)

(jcj+1)(jaj+jbj)

[cjajb]

+ (�1)

(jbj+1)(jcj+1)

[a � cjb] + [ajb � c] + (�1)

jaj

[m

2;1

(a; b; c)]:

Similarly, the product [c][ [ajb] is given by the formula

[c][ [ajb] = [cjajb] + (�1)

(jcj+1)(jaj+1)

[ajcjb] + (�1)

(jcj+1)(jaj+jbj)

[ajbjc]

+ [c � ajb] + (�1)

(jcj+1)(jaj+1)

[ajc � b] + (�1)

jaj

[m

1;2

(c; a; b)]:

If we subtract (�1)

(jaj+jbj)(jcj+1)

times the second equation from the �rst, we see that

[ajb][ [c]� (�1)

(jaj+jbj)(jcj+1)

[c][ [ajb] = (�1)

(jbj+1)(jcj+1)

[[a; c]jb]+ [aj[b; c]]+ (�1)

jaj

[n(a; b; c)];

where n(a; b; c) = m

2;1

(a; b; c) � (�1)

(jaj+jbj)(jcj+1)

m

1;2

(c; a; b). Since the di�erential of BA is a

derivation with respect to the product [, we see that

[ab; c]� a[b; c]� (�1)

jbj(jcj+1)

[a; c]b

= �(n(a; b; c)) + n(�a; b; c) + (�1)

jaj

n(a; �b; c) + (�1)

jaj+jbj+1

n(a; b; �c):

This proves the Poisson relation for the product ab and the odd bracket [a; b].

In practice, a restricted class of B

1

-algebras appears to arise most frequently, in which the

operations m

k;`

vanish if k > 1. This condition leads to a great simpli�cation in the equations

for the cup product on BA. Denoting m

1;k

(a; a

1

; : : : ; a

k

) by afa

1

; : : : ; a

k

g, the formula for the cup

product on BA is

[a

1

j : : : ja

k

] [ [b

1

j : : : jb

`

] =

X

0�i

1

�j

1

�����i

k

�j

k

�`

(�1)

�

i

1

ja

1

j+���+�

i

k

ja

k

j+�

1

+���+�

k

[b

1

j : : : jb

i

1

ja

1

fb

i

1

+1

; : : : ; b

j

1

gjb

j

1

+1

j : : : jb

i

k

ja

k

fb

i

k

+1

; : : : ; b

j

k

gjb

j

k

+1

j : : : jb

`

];

where �

i

= jb

1

j+ � � �+ jb

i

j+ i and �

i

= (�1)

(j

i

�i

i

�1)jb

i

i

+1

j+(j

i

�i

i

�2)jb

i

i

+2

j+���+jb

j

1

�1

j

. It is easy to see

that the product is associative precisely when, in the same notation,

(cfa

1

; : : : ; a

k

g)fb

1

; : : : ; b

`

g =

X

1�i

1

�j

1

�����i

k

�j

k

�`

(�1)

�

i

1

ja

1

j+���+�

i

k

ja

k

j+�

1

+���+�

k

cfb

1

; : : : ; b

i

1

; a

1

fb

i

1

+1

; : : : ; b

j

1

g; b

j

1

+1

; : : : ; b

i

k

; a

k

fb

i

k

+1

; : : : ; b

j

k

g; b

j

k

+1

; : : : ; b

`

g;

and that it is compatible with the di�erential on BA when the map from A to C

�

(A;A) given by

sending a 2 A to the inhomogeneous cochain

P

1

k=0

afb

1

; : : : ; b

k

g is a map of A

1

-algebras.

Baues [7] has shown that the complex of singular cochains S

�

(X) on a topological space X (with

coe�cients in any ring) is a B

1

-algebra of this type: the di�erential is the usual one, the product

is the cup product, and the operations m

1;k

(a; b

1

; : : : ; b

k

) are multilinear analogues of Steenrod's

operation m

1;1

(a; b) = a [

1

b.

Another example of a B

1

-algebra is given by the space of Hochschild cochains C

�

(A;A) on an

A

1

-algebra. As we saw in Section 5.1, this is an A

1

-algebra; the products m

k;`

vanish if k > 1,

while m

1;k

(c; c

1

; : : : ; c

k

) = cfc

1

; : : : ; c

k

g is given by (1). As we mentioned in the introduction to this

chapter, this result may be interpreted as saying that the centre of an A

1

-algebra is a B

1

-algebra.
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5.3. C

1

-algebras. A C

1

-algebra is a B

1

-algebra such that the products m

k;`

vanish if k+ ` > 1;

equivalently, it is an A

1

-algebra such that the codi�erential � is a derivation with respect to the

shu�e product on BA. We will show in this section that this is the same thing as an A

1

-algebra

whose multiplication cochain m 2 C

�

(A;A) is a Harrison cochain. It will follow that the operad C

1

is isomorphic to B

�

z

1

, whose algebras are homotopy commutative algebras in the sense of Section

4.4.

If k; ` � 0, let S(k; `) be the set of all (k; `)-shu�es, that is, permutations of f1; : : : ; k+`g such that

�(1) < � � � < �(k) and �(k+1) < � � �< �(k+`). The shu�e product (�V )

(k)


(�V )

(`)

�! (�V )

(k+`)

is de�ned by the formula

[a

1

j : : : ja

k

] � [a

k+1

j : : : ja

k+`

] =

X

�2S(k;`)

�[a

�(1)

j : : : ja

�(k+`)

];

where the sign is chosen according to the sign convention for permuting the elements �a

i

2 �V . This

product is associative and graded commutative, and gives BV the structure of a (unital, counital)

bialgebra. The following result is clear.

Proposition 5.3. The shu�e product of BV is the unique associative product making the coalgebra

BV into a bialgebra for which m

1;0

and m

0;1

are the identity map of V , and m

k;`

= 0 for k+ ` > 0.

If A is a bialgebra, denote by

�

A the kernel of the counit " : A �! 11, or the cokernel of the unit

map � : 11 �! A: these two spaces are naturally isomorphic, since "� : 11 �! 11 is the identity. Denote

by � the product and by � the coproduct of A. There are two �ltrations on any bialgebra A (see

Milnor and Moore [35] and Quillen [42]).

(1) The descending �ltration F

i

A, where F

0

A = A and F

i

A is the i-th power of

�

A if i � 1.

(2) The ascending �ltration F

i

A, where F

0

A = 0 and F

i

A is the kernel of the iterated coproduct

map A

�

(i�1)

����! A

(i)

�!

�

A

(i)

for i � 1.

If A is a bialgebra which is �nite dimensional in each degree, then its dual A

�

is again a bialgebra.

The two �ltrations on A are dual, in the sense that (F

i

A

�

)

?

= F

i

A.

If A is a bialgebra, the quotient QA = F

1

A=F

2

A is the space of indecomposables of A, while the

quotient PA = F

2

A=F

1

A is the space of primitives; clearly, P (A

�

) = (QA)

�

.

De�nition 5.4. If A is a graded vector space, a Harrison cochain is a Hochschild cochain which

vanishes on the image of the shu�e product and on the counit [ ]: the space of Harrison cochains

may be identi�ed with Hom(QBA;A) � Hom(BA;A)

�

=

C

�

(A;A).

By the associativity of the shu�e product, we see that the operation c

1

�c

2

on C

�

(A;A) maps Har-

rison cochains into Harrison cochains. Thus, Hom(QBA;A) is a graded Lie subalgebra of Coder(BA).

Proposition 5.5. The coderivation �(c) of the coalgebra BA corresponding to a Hochschild cochain

c is a derivation of the bialgebra BA if and only if c is a Harrison cochain.

Proof. A derivation � of the bialgebra BA induces a linear map from F

p

BA to itself, for each

p > 0. Since F

2

BA \ �A = 0, the corresponding cochain D 2 Hom(BA;A), which is obtained by

composing � with the projection from BA onto �A, must vanish on F

2

BA; this shows that it lies in

Hom(QBA;A).

Conversely, if c is a Harrison cochain, it is easily seen that the associated coderivation �(c) is a

derivation with respect to the shu�e map.
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Ree has studied the bialgebra U dual to ours [43]. Its underlying algebra is the tensor algebra

T

+

1

(V ) of a connected vector space V , with coproduct the sum over unshu�es

�(a

1


 : : :
 a

n

) =

n�1

X

k=1

X

�2S(k;n�k)

�(a

�

�1

(1)


 : : :
 a

�

�1

(k)

)
 (a

�

�1

(k+1)


 : : :
 a

�

�1

(n)

):

Since this bialgebra is connected and cocommutative, it follows by the structure theorem of Milnor

and Moore [35] that it is isomorphic to the universal enveloping algebra U (L) of a connected graded

Lie algebra L. Ree shows that this bialgebra is isomorphic to the universal enveloping algebra

U (T

L

(V )) of the free Lie algebra T

L

(V ) of V , and under this isomorphism, the ascending �ltration

on U is given by powers of the free Lie algebra T

L

(V ), thought of as a subspace of T

+

1

(V ):

F

p

U =

X

q�p�1

T

L

(V )

q

:

This �ltration induces an ascending �ltration F

p

e

1

of the S-module underlying the operad e

1

, in

which F

p

e

1

(k) consists of elements of the subspace F

p

of the free associative algebra generated by

fa

1

; : : : ; a

n

g in which each letter occurs just once. This may be identi�ed with words which may be

written as a product of at most p � 1 Lie words.

The analogous �ltrations of the S-modules underlying e

n

, n > 1, may be de�ned by

F

p

e

n

(k) =

M

i�(n�1)(k�p+1)

H

i

(F

n

(k)):

Note that F

p

e

n

= 0 for p < 2. The reindexed �ltration

G

p

e

n

= F

p+2

e

n

gives e

n

the structure of a �ltered operad: the structure map � preserves the �ltration, in the sense

that it sends G

p

(e

n

� e

n

) to G

p

e

n

. The associated graded operad gr

G

e

n

is naturally isomorphic to

e

n

for n > 1, while for n = 1 it is isomorphic to the Poisson operad p.

Dualizing the results of Ree, we see that

�QBV

�

=

C

1

(V );

and that there is a bijection between 1-codi�erentials on C

1

(V ) and di�erentials of the bialgebra

BV with shu�e product. This proves the following result.

Proposition 5.6. A C

1

-algebra is equivalent to a graded vector space A together with a di�erential

on the bialgebra BA, or equivalently, an A

1

-algebra whose multiplication cochain is a Harrison

cochain.

An antipode on a bialgebra is a map S : A �! A of degree 0 such that the composition

A

�

�! A 
A

A
S

���! A
 A

�

�! A

is the identity. The following lemma is easily proved by induction with respect to the �ltration

degree.

Lemma 5.7. If the ascending �ltration F

i

A of a bialgebra A is complete, there is a unique antipode

S on A, and all derivations � of A commute with S.

Proof. The proof is by induction on the ascending �ltration F

i

A of A; S is trivial to de�ne on F

0

A,

since F

0

A = 0. Assume that S has been constructed on F

i�1

A, and that x 2 F

i

A. Then

�x = x
 1 +

X

i

y

i


 z

i

+ 1
 x;
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where y

i

and z

i

lie in F

i�1

A, and

S(x) = �x �

X

i

y

i

S(z

i

):(�)

Since the ascending �ltration F

i

A is complete, the antipode S is completely determined.

If � is a derivation on A, we will show that �S(x) = S(�x) by induction on x 2 F

i

A. For F

0

A,

this is clear. Applying the derivation � to Eq. (�) with x 2 F

i

A, and using the induction hypothesis

that S(�y) = �S(y) for y 2 F

i�1

A, we see that

�S(x) = ��x�

X

i

(�y

i

)S(z

i

) �

X

i

(�1)

jy

i

j

y

i

�S(z

i

):

On the other hand, since � is compatible with �,

�(�x) = (�x)
 1 +

X

i

(�y

i

) 
 z

i

+

X

i

(�1)

jy

i

j

y

i


 (�z

i

) + 1
 (�x);

from which we see that

S(�x) = ��x�

X

i

(�y

i

)S(z

i

) �

X

i

(�1)

jy

i

j

y

i

S(�z

i

):

But by induction, �S(z

i

) = S(�z

i

), and we see that �S(x) = S(�x).

The antipode of the Hopf algebra BV with shu�e product determined by Lemma 5.7 is given by

the formula

S[a

1

j : : : ja

n

] = �[a

n

j : : : ja

1

];

the sign is given by the sign rule for the permutation

�

1 : : : n

n : : : 1

�

, and equals (�1)

n(n�1)=2

if all

of the elements a

i

have even degree. The commutativity of a homotopy commutative algebra is

reected by the fact that the di�erential � commutes with the antipode.

We may now prove a theorem of Barr [5] and Quillen [41], which identi�es the Harrison homology

of a commutative algebra in characteristic zero with its Andr�e-Quillen homology.

Theorem 5.8. Let A be a commutative algebra over a �eld of characteristic zero. There is a natural

homotopy equivalence of complexes

L"

�

A

�

=

(C

1

(A); �);

where � is the 1-codi�erential on C

1

(A)

�

=

QBA induced by the Hochschild codi�erential on BA.

Proof. This follows immediately from the identi�cation of B

1

(A) with �QBA, with di�erential

induced by �.

Barr's proof of this theorem is an application of what is now known as the Hodge �ltration of the

shu�e bialgebra, whose existence is a reection of Ree's theorem. The descending �ltration F

p

BV

induces a descending �ltration of the S-module z

1

, and Ree's theorem identi�es z

1

with F

1

z

1

=F

2

z

1

.

Over a �eld of characteristic zero, the Poincar�e-Birkho�-Witt theorem shows the existence of a family

of commuting idempotents on z

1

splitting this �ltration (Solomon [48]; see also Hanlon [24] and

Reutenauer [44]). The induced idempotents on the bar coalgebra BA commute with the Hochschild

di�erential if A is a C

1

-algebra, and we obtain the Hodge decomposition of BA (Gerstenhaber-

Schack [17] and Loday [31]). The simplest of these idempotents, which Barr constructed by hand,

projects from the Hochschild complex to the Harrison complex, permitting us to show that the

Harrison complex of a free commutative algebra is a resolution of its space of indecomposables.
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5.4. The lexicographical decomposition of the con�guration space of R

n

. In this section,

we show how the Fulton-MacPherson operad F

n

of Chapter 3 may be given a regular cell decompo-

sition. This permits the de�nition of dg-operads E

n

which are almost free and resolve the Koszul

operads e

n

studied in Chapter 3. The operad E

1

(k) = colim

n�!1

E

n

(k) acts on the singular cochains

S

�

(M ) of a topological space M , and each cell in F

1

(k) may be thought of as a k-linear cochain

operation: for example, F

1

(2)

�

=

�

F

1

(2)

�

=

S

1

has its standard S

2

-equivariant cell decomposition,

and the associated operations are Steenrod's [

i

-products.

De�nition 5.9. A preorder � on a set S is a reexive transitive relation � on S such that if a; b 2 S,

either a � b or b � a.

A preorder determines an equivalence relation on S (a � b i� a � b and b � a) and induces a

total order on the quotient S=�. Denote by j�j the number of equivalence classes. Preorders on

S form a poset: �

1

� �

2

if a �

2

b implies that a �

1

b for all a; b 2 S. The maximal elements of

this poset are the total orders of S, for which the equivalence relation is discrete. If f : S �! T is a

surjective map and � is a preorder on T , there is an induced preorder f

�

� on S; this map preserves

the partial order on the set of preorders.

A map f : S �! R

n

determines a ag of preorders �

1

� � � � � �

n

of S in the following manner.

Let f

k

, 1 � k � n, be the composition of f with projection (x

1

; : : : ; x

n

) 7! (x

1

; : : : ; x

k

) from R

n

to

R

k

. The image of f

k

is a �nite set, totally ordered by the lexicographical ordering of R

k

: this is

the total order such that (x

1

; : : : ; x

k

) < (y

1

; : : : ; y

k

) if there exists j such that x

i

= y

i

for i < j and

x

j

< y

j

. The preorder �

k

is the pull-back by f

k

of this total order. Note that if f is an embedding,

�

n

is a total order on S.

We may now decompose the con�guration space F

n

(S) into convex cells. (In the special case n = 2,

the decomposition which we describe may be found in Fox-Neuwirth [14], though the description of

the boundary given there is incorrect.) Denote by (�

1

� � � � � �

n

) � Map(S;R

n

) the convex set

consisting of those maps f : S �! R

n

such that the induced ag of preorders on S is �

1

� � � � � �

n

.

This cell is contained in F

n

(S) if and only if �

n

is a total order.

Lemma 5.10. The set (�

1

� � � � � �

n

) � Map(R

n

; S) has dimension

P

n

i=1

j�

i

j. The group of

bijections S(S) acts transitively on the cells, through its action on the poset of preorders of S.

The translation group preserves the lexicographical order of R

n

, and thus preserves the cells

(�

1

� � � � � �

n

). We denote the quotient of the cell [�

1

� � � � � �

n

] by the translation group by

�(�

1

� � � � � �

n

): it is a cell of dimension

P

n

i=1

j�

i

j � n. Denote by Z

n

(S) the free S(S)-module

spanned by this collection of cells. As S varies, we obtain a free S-module Z

n

; note that Z

n

(1) is

one-dimensional, spanned by a unique 0-dimensional cell, while Z

n

(0) = 0.

A ag of preorders �

1

� � � � � �

n

such that �

n

is a total order may be denoted in the following

way. First, we write the elements of S in the order determined by �

n

, and surround them by

brackets. Between each neighbouring pair of elements a and b, we place n� i+1 bars, where i is the

number of preorders in the ag �

1

� � � � � �

n

such that a �

i

b. The total number of bars is then

the dimension of the associated cell in Z

n

. For example, F

2

(3) is decomposed into cells [�

1

j�

2

j�

3

],

[�

1

jj�

2

j�

3

], [�

1

j�

2

jj�

3

] and [�

1

jj�

2

jj�

3

], where � 2S

3

.

The generating function for the number of cells c

n

(k; d) in F

n

(k) of dimension d is

1

X

d=k�1

x

d

c

n

(k; d) = k!(x+ � � �+ x

n

)

k�1

;

Summing over k, we see that the generating function for the number of cells of Z

n

is

1

X

k=1

t

k

k!

1

X

d=k�1

x

d

c

n

(k; d) =

t

1� t(x+ � � �+ x

n

)

:
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In the limit n �! 1, this formula converges to

1

X

k=1

t

k

k!

1

X

d=k�1

x

d

c

1

(k; d) =

t � tx

1� (1 + t)x

:

The cases n = 1 and n = 2 are of special interest. If n = 1, a ag �

1

� � � � � �

n

reduces to a

single datum, a total order on S, and Z

1

(k) has k! cells, each of dimension k � 1. If n = 2, a ag

�

1

� � � � � �

n

reduces to a pair of data, a total order on S and a preorder � re�ning this total

order. For each 1 � j � k, there are k!

�

k�1

j�1

�

cells in Z

2

(k) of dimension k + j � 2, labelled by

decompositions k

1

+ � � �+ k

j

= k with k

i

� 1.

Let

�

F

n

(S) be the quotient of the con�guration space F

n

(S) by the group of translations and

dilatations G(n). This space has a decomposition into cells �(�

1

� � � � � �

n

), the quotients of the

cells �(�

1

� � � � � �

n

) by the dilatation group R

�

+

. As S varies, the spaces

�

F

n

(S) form an S-module:

we de�ne

�

F

n

(0) and

�

F

n

(1) to be empty.

As explained in Chapter 3, Fulton and MacPherson construct a compacti�cation F

n

of theS-space

�

F

n

, such that F

n

(S) is a manifold with corners containing

�

F

n

(S) as its unique open stratum. The

S-space F

n

is obtained by gluing the free operad T

�

F

n

. In particular, the cell decomposition of

�

F

n

induces a cell decomposition of F

n

. The following lemma is clear from Fulton and MacPherson's

description of the gluing maps of their compacti�cation.

Lemma 5.11. This cell decomposition of F

n

is a regular cell complex, on which Sacts freely. The

structure maps of the operad F

n

are cellular.

The cells of F

n

(S) are labelled by the following data:

(1) a tree S 2 T (S);

(2) a total order on in(v) for each vertex (so that S is a planar tree);

(3) a partition of the vertices of S into two sets, called the microscopic and macroscopic vertices.

In addition, it is required that the root is a macroscopic vertex, and each ascending chain of micro-

scopic vertices is of length less than n.

Let us �rst consider the case in which there is a unique macroscopic vertex, the root of S. The

vertices connected to the root by an ascending chain of length i + 1 determine a preorder �

i

on S,

since they are totally ordered and determine an evident partition of S labelled by the set of vertices

themselves. In this way, we obtain a ag of preorders �

1

� � � � � �

n

, such that �

n

is a total order.

It is clear that we obtain in this way a bijection between planar trees on the set S such that an

ascending chain of vertices (possibly including the root) has length at most n and cells of

�

F

n

(S).

This representation may be extended to cells of F

n

(S), since such a cell is labelled by a tree on S,

together with a choice of cell in

�

F

n

(2 (v)) for each vertex v of this tree. By inserting the corresponding

planar tree in place of the vertex in the original tree, in such a way that the root is macroscopic and

the remaining vertices are microscopic, we obtain the representation whose existence was asserted.

De�nition 5.12. Let E

n

be the almost free dg-operad obtained by taking the cellular chain complex

of the cellular operad F

n

. We call an E

n

-algebra a homotopy n-algebra.

The S-module Z

n

spanned by the cells �(�

1

� � � � � �

n

) is augmented by the map " : Z

n

�! 11

which projects onto the unique cell in Z

n

(1). We see that the free operad underlying E

n

is T�

�1

�

Z

n

,

where

�

Z

n

(k) =

(

Z

n

(k); k > 1;

0; k � 1;

is the kernel of the augmentation, and that the graded space of generators �

�1

Z

n

corresponds to

the cells of

�

F

n

� F

n

. It would be very satisfactory if Z

n

was a cooperad and E

n

was its cobar operad
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B

�

Z

n

. Unfortunately, except for n = 1, where Z

1

= z

1

, this is not the case. However, in the same

way that a homotopy coalgebra C is a chain complex C with coaugmentation � : 11 �! C together

with a di�erential � on the free algebra T�

�1

�

C, where

�

C = coker(�), we may de�ne a homotopy

cooperad z to be an S-module with coaugmentation � : 11 �! z together with a di�erential on the

free operad T�

�1

�
z, where

�
z = ker(").

It is then clear that the S-module Z

n

is a homotopy cooperad, by the existence of the almost free

operad E

n

. We may think of E

n

as the cobar operad of the homotopy cooperad Z

n

: when n = 1,

Z

1

= z

1

is a true cooperad, and E

1

is isomorphic to the operad A

1

.

Since the free homotopy 2-algebra T(E

2

; V ) is given by the formula

T(E

2

; V ) =

1

M

k=1

H

�

(B

k

; V

(k)

);

we call a homotopy 2-algebra a braid algebra. A braid algebra has products m

k

1

;:::;k

q

of degree

k

1

+� � �+k

q

+q�3 for each sequence k

i

� 1, where the only non-vanishing product with k

1

+� � �+k

q

= 1

is m

1

, the di�erential of A. As we saw in Section 5.2, a B

1

-algebra has products m

k

and m

k;`

.

In fact, the B

1

-operad is the quotient of E

2

, in which the products m

k

1

;:::;k

q

, q > 2, and their

di�erentials, are set to zero.

Observe that there is a natural embedding of dg-operads E

n

,! E

n+1

induced by the inclusion

F

n

,! F

n+1

, and we denote by E

1

the colimit lim

n�!1

E

n

. The cellular basis of E

1

is labelled by

planar trees with a choice of macroscopic vertices as above (in particular, the root is macroscopic),

but without any condition on the length of ascending chains of microscopic vertices.

There is a map from the operad E

n

to e

n

, induced by sending the cell [ajb] to the operation x

a

x

b

in e

n

(2), the cell [a

n

j b] with n bars to the operation fx

a

; x

b

g = (�1)

jx

a

j

[x

a

; x

b

] in e

n

(2), and all

other generators of E

n

to zero. This map is a weak equivalence, since H

�

(E

n

(k))

�

=

e

n

(k) for all

k � 1, and e

n

(2) generates e

n

as an operad. Thus, E

n

is an almost free resolution of the operad e

n

.

Using the results of Smirnov [46] and Hinich and Schechtman [25], it now follows that the singular

cochain functor S

�

(X) lifts to a functor from the category of topological spaces to the category of

homotopy 1-algebras. Let E be the Eilenberg-Zilber operad, such that E(k) is the complex of

natural transformations from the cosimplicial chain complex Z
 �

�

of chains on the cosimplicial

space �

�

to its k-th tensor power (Z
�

�

)

(k)

. The cup-product induces a surjective map E �! e

1

,

which is a weak equivalence. It is easily seen that the singular cochain functor S

�

(�) lifts to a

functor from the category of topological spaces to the category of E-algebras. (Note that the operad

E is not bounded below, but this does not cause any di�culty with the argument.)

Since the operad E

1

is almost free, and the map E �! e

1

is an acyclic �bration, there is a lift

E

1

�! E in the diagram

E

E

1

e

1

?

-

p

p

p

p

p

p

p

p

p

�

and this map is again a weak equivalence. This shows that there is a natural transformation from

the category of E-algebras to the category of homotopy1-algebras.

The space F

n

(2) is di�eomorphic to S

n�1

, and its cell decomposition is the usual S

2

-invariant

one, into cells [1

i

j 2] and [2

i

j 1] of dimension i � 1, for 1 � i � n. The above argument may be

modi�ed to ensure that the map of operads E

1

�! E is chosen in such a way that the element [1

i

j 2]

with i bars of E

1

(2) maps to Steenrod's operaton [

i

, and that the operations m

k

1

;:::;k

q

generating

E

2

maps to the operations constructed by Baues (and in particular vanish except for m

1;k

). It might
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be interesting to construct a weak equivalence of operads E

1

�! E explicitly, extending Baues's

argument to higher levels of commutativity.

The above argument may be applied with the Eilenberg-Zilber operad E replaced by the operad

C

1

. The resulting weak equivalence E

1

�! C

1

is given by an explicit formula, in which all of the

generators of E

1

other than m

k

, k � 1, are sent to zero.

Recall from Section 3.3 that there is a map of operads �e

n+1

�! e

n

induced by the Gysin map

of the embedding F

n

,! F

n+1

. This map lifts to a map of operads �E

n+1

�! E

n

, de�ned in the

following way. It su�ces to de�ne the map on the S-module of generators ��

�1

�

Z

n+1

of E

n+1

. Given

a planar tree representing a basis element of Z

n+1

, its image is non-zero only if the valence of the

root equals 1, in which case its image in �

�1

�

Z

n

is represented by the tree obtained by removing the

root: the root of the new planar tree is the parent of the old one. For example, the cell [1

i

j 2] of

��

�1

Z

n+1

(2) with i bars maps to the cell [1

(i�1)

j 2] of E

n+1

(2) with i � 1 bars.

Geometrically, the map �E

n+1

�! E

n

corresponds to the operation of projecting cells of F

n+1

(k)

onto f(x

1

; : : : ; x

n+1

) 2 R

n

j x

1

= 0g; if the resulting projection does not correspond to a cell in

F

n

(k), because two points have the same projection, the element of �E

n+1

(k) spanned by the cell of

F

n+1

(k) is mapped to zero in E

n

(k). This representation makes it clear that the map thus de�ned

intertwines the di�erentials of the operads �E

n+1

and E

n

.

Taking n �! 1, we obtain a map of operads ! : E

1

�! �

�1

E

1

. In another paper, we will

prove the following version of a theorem of Smirnov [46]. This theorem strengthens the theorem of

Adams [1] identifying the cohomology of 
X, for X a simply connected topological space, with the

Hochschild homology of S

�

(X).

Theorem 5.13. The functors L!

�

S

�

(X) and �

�1

S

�

(
X) from the homotopy category of simply

connected topological spaces to the homotopy category of E

1

-algebras are equivalent.

We close this section with a discussion of the di�erential of E

n

. This di�erential is of course

determined by its restriction to �

�1

Z

n

� E

n

. The di�erential induced on �

�1

Z

n

by projection

from E

n

to �

�1

Z

n

may be identi�ed with the boundary of the relative cell complex (F

n

(k); @F

n

(k)).

To determine the signs, we orient the cells of

�

F

n

(k), ordering their coordinates as follows: �rst the

coordinates x

1

of the equivalence classes of �

1

in increasing order, next the coordinates x

2

of the

equivalence classes of �

2

, also in increasing order, and so on. For example, this rule leads to the

following formula for the boundary of the cell [1jj2jj3] in Z

2

(3):

@[1jj2jj3] = [1j2jj3]� [2j1jj3]� [1jj2j3]+ [1jj3j2]:

Similarly, we have

@[1j2jj3] = [1j2j3]� [1j3j2]+ [3j1j2];

@[1jj2j3] = [1j2j3]� [2j1j3]+ [2j3j1]:

Using these formulas, it is easily seen that @

2

[1jj2jj3] = 0.

There is an elegant way to describe the di�erential on Z

n

in terms of the functor B

1

�

=

�

�1

�

B

on the category of commutative dg-algebras. The functor B

n

1

�

=

�

�n

�

B

n

from commutative di�er-

ential graded algebras to chain complexes obtained by iterating this functor n times is central to

Eilenberg and MacLane's approach to the homology of K(�; n) [13]. The following result follows

straightforwardly from our description of the boundary in Z

n

.

Proposition 5.14. There is a natural equivalence of endofunctors on the category of chain com-

plexes

T(Z

n

; V )

�

=

B

n

1

V

�

=

�

�n

�

B

n

V:
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This relationship between Eilenberg and MacLane's functor �

�n

�

B

n

and the theory of con�gura-

tion spaces does not appear to have been observed before.

The formula for the full di�erential @ : E

n

�! E

n

may also be described in terms of planar trees,

but we leave its explicit description to another paper.

6. n-algebras and iterated integrals of double loop spaces

In this chapter, we show how almost free resolutions may be applied to the calculation of the total

left derived functor L"

�

of the indecomposables of an n-algebra. Recall from Section 4.3 that this

functor may be represented by the almost free n-coalgebra B

n

(A) = B(e

n

; A). We call the homology

of B

n

(A) the n-homology of A, and denote it by H(n;A).

In Section 6.1, we recall the theory of Hopf operads, due to Ginzburg and Kapranov (unpublished).

Just as a Hopf algebra is an algebra in the monoidal category of coalgebras, so a Hopf operad is

an operad a in the monoidal category of coalgebras: we show that if a is a Hopf operad, there is

a natural a-algebra structure on the tensor product of two a-algebras. In the same way that the

homology of a topological monoid is a Hopf algebra, the homology of a topological operad is a Hopf

operad: this shows, for example, that the operads e

n

are Hopf operads.

In Section 6.2, we prove a K�unneth theorem: if A

1

and A

2

are n-algebras, the n-homology of

A

1

�A

2

is given by the formula

�

n

H(n;A

1

� A

2

) ' �

n

H(n;A

1

) ��

n

H(n;A

2

);

here V �W = V �W � (V 
W ). This is proved by explicitly constructing an almost free resolution

of A

1

� A

2

from almost free resolutions of A

1

and A

2

.

In Section 6.3, we calculate the n-homology of a commutative algebra A considered as an n-

algebra: we prove that

�

n

B

n

(A)

�

=

T

1

(�

n

B

1

(A)):

We also show how, given a minimal model for A as a commutative algebra, we may construct a

minimal model for A as an n-algebra.

The results of this chapter may be applied to the de Rham functor A

�

(M ) of a pointed manifold

M , where A

�

(M ) is algebra of di�erential forms A

�

(M ) which vanish at the base-point. If M is a

compact n-connected manifold, the cochain algebra A

�

(M ) is weakly equivalent to an n-connected

cochain algebra A

�

[n]

(M ): if V

n+1

is a complement to the subspace dA

n

(M ) � A

n+1

(M ), then

A

i

[n]

(M ) =

8

>

>

<

>

>

:

0; i � n;

V

n+1

; i = n+ 1;

A

i

(M ); i > n+ 1:

This allows us to replace the unbounded complex B

n

(A

�

(M )) by the weakly equivalent cochain com-

plex B

n

(A

�

[n]

(M )). However, we will speak of the n-homologyH(n;A

�

(M )) rather than H(n;A

�

[n]

(M )).

Let ~�

�

(M ) be the cokernel of the mapZ�! �

�

(M ) induced by inclusion of a base-point inM , and

let ~�

�

(M; C ) = Hom(~�

�

(M ); C ) be the reduced cohomotopy of M with coe�cients in C . Quillen's

and Sullivan's work in rational homotopy theory shows that, for compact simply connected manifolds,

the Andr�e-Quillen homology of A

�

(M ) is naturally equivalent to ~�

�

(M; C ). This is an1-coalgebra,

since �

�

(M ) carries a Lie bracket of degree 1, the Whitehead product, and the isomorphism between

the Andr�e-Quillen homology of A

�

(M ) and ~�

�

(M; C ) is an isomorphism of 1-coalgebras.

IfM is a pointed compact manifold, the n-fold loop space 


n

M is the space of di�erentiable maps

from R

n

to M equal to the basepoint of M outside a bounded set in R

n

. The following theorem

generalizes results of Adams [1] and Chen [10] in the case n = 1.
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Theorem 6.1. The n-fold suspension of the n-homology of A

�

(M ) is isomorphic to the reduced

cohomology of the n-fold loop space of M ,

�

n

H(n;A

�

(M ))

�

=

~

H

�

(


n

M; C ):

Proof. By the results of Section 6.3,

�

n

H(n;A

�

[n]

(M ))

�

=

T

1

(�

n

H(1;A

�

[n]

(M )))

�

=

T

1

(�

n

~�

�

(M; C )):

This is isomorphic to

~

H

�

(


n

M; C ), since for any connected H-space X,

~

H

�

(X; C )

�

=

T

1

(~�

�

(X; C ));

while ~�

�

(


n

M )

�

=

�

n

~�

�

(M ), since M is n-connected.

This isomorphism preserves the natural co-Hopf e

�

n

-coalgebra structures on both sides: the

e

�

n

-coalgebra structure of

~

H

�

(


n

M; C ) corresponds to the n-algebra structure of

~

H

�

(


n

M; C ) in-

duced by the action of the little n-cubes operad F

n

on 


n

M , while the e

�

n

-coalgebra structure of

�

n

H(n;A

�

(M )) is induced by the n-coalgebra structure of B

n

(A

�

(M )). In fact, these are commu-

tative co-Hopf e

�

n

-coalgebras: it is shown in Section 6.3 that �

n

B

n

(A) is a commutative co-Hopf

e

�

n

-coalgebra for any commutative algebra A, while

~

H

�

(


n

M; C ) is a commutative co-Hopf e

�

n

-

coalgebra with the cup product as its product.

Chen has realized the isomorphism �

n

H(n;A

�

(M ))

�

=

~

H

�

(


n

M ), for n = 1, by de�ning an

explicit map, the iterated integral

�B

1

(A

�

(M )) �! A

�

(
M );

which is a homomorphism of commutative algebras (and indeed of commutative Hopf algebras), and

a weak equivalence if M is simply connected. (As we saw in Section 5.1, �B

1

(A

�

(M )) is isomorphic

to the bar complex BA

�

(M ) in the usual sense.) In Section 6.4, we de�ne an analogous iterated

integral map

�

2

B

2

(A

�

(M )) �! A

�

(


2

M );

which is a homomorphism of commutative co-Hopf e

�

2

-coalgebras, and a weak equivalence if M is

2-connected. An iterated integral map for n > 2 would be substantially more complicated to de�ne,

since the con�guration spaces F

n

(k) are formal only for n = 1; 2;1 (Kontsevich, unpublished).

If M and N are two n-connected manifolds, there is a weak equivalence of commutative algebras

A

�

(M ) �A

�

(N ) ' A

�

(M � N ), and the K�unneth theorem of Section 6.2 amounts to the K�unneth

theorem for the cohomology of 


n

(M �N )

�

=




n

M � 


n

N :

�

n

B

n

(A

�

(M �N )) ' �

n

B

n

(A

�

(M )� A

�

(N ))

' �

n

B

n

(A

�

(M ))� �

n

B

n

(A

�

(N ))

' A

�

(


n

M )�A

�

(


n

N )

' A

�

(


n

M �


n

N ) = A

�

(


n

(M � N )):

Sullivan has given a prescription for constructing a minimalmodel for Map

f

(N;M ), where M and

N are di�erentiable manifolds and Map

f

(N;M ) is the space of continuous maps in the component

of a map f : N �! M (Section 11 of [50]). Applied with N = S

2

, we obtain a model for 


2

M quite

di�erent from our model �

2

B

2

(A

�

(M )). For example, our model carries a co-Hopf e

�

2

-coalgebra

structure reecting the fact that 


2

M is a double loop space, while it is not clear how this information

might be gleaned from Sullivan's model.
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6.1. Hopf operads and co-Hopf cooperads. In any symmetric monoidal category, de�ne the

augmented tensor product:

V �W = V �W � (V 
W ):

This is again a symmetric monoidal structure. In the category of commutative algebras, the coprod-

uct A

`

B has as its underlying chain complex the augmented tensor product A� B.

If A and B are n-algebras, we may use the explicit description of n-algebras given in Theorem

1.6 to give their augmented tensor product A�B an n-algebra structure: indeed, there is a unique

n-algebra structure such that the product of a 2 A with b 2 B is the tensor product a 
 b, and the

bracket of a and b equals zero. There is a more elementary construction of this monoidal structure on

the category of n-algebras, not requiring the explicit structure of n-algebras as contained in Theorem

1.6: this makes use of Ginzburg and Kapranov's notion of a Hopf operad. In particular, this theory

will apply to the operad e

n

, which is the homology of the topological operad F

n

.

Denote by Alg(C) the category of algebras in a symmetric monoidal category; this is itself a sym-

metric monoidal category, with respect to the tensor product �
� of C. An algebra is commutative

if the product commutes with the symmetry V 
V �! V 
 V of C. In what follows, algebras do not

have units, unless they are speci�cally referred to as unital.

Dually, denote by Coalg(C) the category of coalgebras over a symmetric monoidal category; this

is again a symmetric monoidal category, with respect to the augmented tensor product of C. A

coalgebra is cocommutative if the coproduct commutes with the symmetry V 
 V �! V 
 V of C.

Coalgebras will not have counits, unless they are speci�cally referred to as counital.

De�nition 6.2. A Hopf operad in a symmetric monoidal category C is an operad a in the category of

coalgebras Coalg(C) over C. A Hopf algebra over a Hopf operad a is an a-algebra A in Coalg(C). The

operad a and the algebra A are counital (respectively cocommutative) if their underlying coalgebras

are.

A co-Hopf cooperad in a symmetric monoidal category C is a cooperad z in the category of algebras

Alg(C) over C. A co-Hopf coalgebra over a co-Hopf cooperad z is a z-coalgebra C in Alg(C). The

cooperad z and the coalgebra C are unital (respectively commutative) if their underlying algebras

are.

For example, a Hopf operad such that a(S) = 0 for jSj 6= 1 is a Hopf algebra in the usual sense.

The following result generalizes the fundamental property of the category of modules over a Hopf

algebra.

Proposition 6.3. If a is a Hopf operad, the category of a-algebras is a monoidal category with

respect to the augmented tensor product A�B, and is symmetric if a is cocommutative.

Proof. If A and B are a-algebras, the structure map of A � B is de�ned in the same way as for

modules over Hopf algebras, by the composition

T(a; A� B) �! T(a; A)� T(a; B) � T(a 
 a; A
B) ,! T(a; A) � T(a; B) �! A �B:

We also have the dual result.

Proposition 6.4. If z is a co-Hopf cooperad, the category of z-coalgebras is a monoidal category

with respect to the augmented tensor product A� B, and is symmetric if z is commutative.

If the symmetric monoidal structure of C is cartesian (the tensor product of C is the product),

operads in C have a canonical structure of a cocommutativeHopf operad, with coproduct the diagonal

map. Thus, any topological operad is a cocommutative Hopf operad, and if F is a topological operad,

the dg-operad a(S) = H

�

(F(S);K) is a cocommutative Hopf operad. (This generalizes the fact that

the homology of a topological monoid is a cocommutative Hopf algebra.) In particular, the operads
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e

n

of Section 1.3 are cocommutative Hopf operads. This shows that the tensor product of two

n-algebras is in a natural way an n-algebra. On the other hand, the Lie operad L is not a Hopf

operad: the tensor product of two Lie algebras is not in general a Lie algebra.

6.2. The K�unneth theorem. The augmented tensor product A�B of two commutative algebras

is their coproduct in the category of commutative algebras. This allows us to calculate the Andr�e-

Quillen homology of A�B using the following result.

Proposition 6.5. If a is an exact dg-operad and A

1

and A

2

are a-algebras, there is a natural weak

equivalence from B (a; A

1

`

A

2

) to B (a; A

1

)� B (a; A

2

).

Proof. The result is true for almost free algebras, so it su�ces to resolve A

1

and A

2

by almost free

algebras and observe that B (a) is a homotopy functor.

For n < 1, the calculation of the n-homology of an augmented tensor product is more compli-

cated. We now show how, given two almost free n-algebras T

n

(V

1

; d

1

) and T

n

(V

2

; d

2

), their aug-

mented tensor product T

n

(V

1

; d

1

)� T

n

(V

2

; d

2

) has a natural resolution by an almost free n-algebra

T

n

(V

1

� V

2

��

n

(V

1


 V

2

); d).

Denote the element �

n

(v

1


 v

2

) of �

n

(V

1


 V

2

) by (v

1

; v

2

). There is a unique extension of (�;�)

to a bilinear operation on T

n

(V

1

� V

2

� �

n

(V

1


 V

2

)) satisfying the following conditions:

(1) (a; b) = 0 if both a and b lie in V

1

or V

2

;

(2) (a; b) = 0 if a or b lie in �

n

(V

1


 V

2

);

(3) (a; b) = (�1)

jaj jbj+n

(b; a);

(4) for each a 2 T

n

(V

1

� V

2

� �

n

(V

1


 V

2

)), the map b 7! (a; b) is an n-derivation of T

n

(V

1

�

V

2

��

n

(V

1


 V

2

)): that is,

(a; bc) = (a; b)c+ (�1)

(jaj+n)jbj

b(a; c);

(a; fb; cg) = f(a; b); cg+ (�1)

(jaj+n)jbj

fb; (a; c)g:

Let d be the n-derivation on T

n

(V

1

� V

2

��

n

(V

1


 V

2

)) such that dv

i

= d

i

v

i

for v

i

2 V

i

, and

d(v

1

; v

2

) = fv

1

; v

2

g+ (�1)

n

(d

1

v

1

; v

2

) + (�1)

jv

1

j+n

(v

1

; d

2

v

2

):

Lemma 6.6. d is an n-di�erential: d

2

= 0.

Proof. By induction on the length of a and b, one may verify that the above formula for d(a; b)

continues to hold for all a; b 2 T

n

(V

1

� V

2

� �

n

(V

1


 V

2

)). It is then straightforward to show that

d

2

(a; b) = 0: it is true on words of length one, since d

2

1

= d

2

2

= 0, and the induction step follows

from the calculation

d

2

(a; b) = d

�

fa; bg+ (�1)

n

(da; b) + (�1)

jaj+n

(a; db)

�

= (�1)

n�1

�

fda; bg+ (�1)

jaj

fa; dbg

�

+ (�1)

n

�

fda; bg+ (�1)

jaj+n+1

(da; db)

�

+ (�1)

jaj+n

�

fa; dbg+ (�1)

n

(da; db)

�

= 0:

Theorem 6.7. The map T

n

(V

1

� V

2

� �

n

(V

1


 V

2

)) �! T

n

(V

1

) � T

n

(V

2

) de�ned by sending the

elements (v

1

; v

2

) and fv

1

; v

2

g, v

i

2 V

i

, to zero, is a weak equivalence.
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Proof. There is an isomorphism of chain complexes T

n

(V )

�

=

T

1

(�

1�n

T

L

(�

n�1

V )) by Corollary

1.7. Denoting �

n�1

V

i

by W

i

, we see that it su�ces to prove that the map

T

L

(W

1

�W

2

��(W

1


W

2

); d) �! T

L

(W

1

; d

1

)� T

L

(W

2

; d

2

)

is a weak equivalence, where the L-di�erentials d

1

, d

2

and d are induced by the corresponding

n-di�erentials.

The chain complex T

L

(W

1

�W

2

��(W

1


W

2

); d) is a direct sum of three subcomplexes

T

L

(W

1

�W

2

��(W

1


W

2

); d) = T

L

(W

1

; d

1

)� T

L

(W

2

; d

2

) � Z;

where Z is spanned by words ad(a

k

) : : :ad(a

2

)a

1

in which either some a

i

2 �(W

1


W

2

) or there

exist 1 � i; j � k such that a

i

2 V

1

and a

j

2 V

2

. We will show that the subcomplex Z is contractible.

We de�ne a descending �ltration on Z as follows. A word [a

k

; : : : ; [a

2

; a

1

] : : : ] lies in F

i

if one of

the following conditions hold:

(1) a

1

; : : : ; a

i

2W

1

;

(2) a

1

; : : : ; a

i

2W

2

;

(3) a

1

; : : : ; a

i�1

2W

1

and a

i

2 �

�1

(W

1


W

2

);

(4) a

1

; : : : ; a

i�1

2W

2

and a

i

2 �

�1

(W

1


W

2

).

It is clear that d preserves this �ltration. De�ne an operator h of degree 1 on E

0

Z by

h[a

k

; : : : ; [a

i+1

; [a

i

; : : : [a

2

; a

1

] : : : ] = (�1)

ja

k

j+���+ja

i+2

j

[a

k

; : : : ; [(a

i+1

; a

i

); : : : [a

2

; a

1

] : : : ]

if a

1

; : : : ; a

i

2 W

2

and a

i+1

2 W

1

or a

1

; : : : ; a

i

2 W

1

and a

i+1

2 W

2

, while h vanishes on other

words in Z. It is easily checked that d

0

h + hd

0

equals the identity, where d

0

is the di�erential on

E

0

: thus the complex E

0

Z is contractible. Since the spectral sequence associated to the �ltration

F

i

is convergent, the lemma follows

Corollary 6.8. If A

1

and A

2

are n-algebras, there is a homotopy equivalence

B

n

(A

1

� A

2

) ' B

n

(A

1

) � B

n

(A

2

) ��

n

(B

n

(A

1

) 
 B

n

(A

2

)):

Proof. The homotopy type of each side is not changed if A

i

is replaced by its almost free resolution




n

(B

n

(A

i

)): the result is then clear, since our results give an almost free resolution of 


n

(B

n

(A

1

))





n

(B

n

(A

2

)) by an almost free algebra of the form T

n

(B

n

(A

1

)�B

n

(A

2

)��(B

n

(A

1

)
B

n

(A

2

)); d).

This formula for B

n

(A

1

�A

2

) may be rewritten

�

n

B

n

(A

1

�A

2

) ' �

n

B

n

(A

1

)� �

n

B

n

(A

2

):

The K�unneth theorem for Hochschild homology

H

�

(A

1

� A

2

)

�

=

H

�

(A

1

) �H

�

(A

2

);

may be viewed as the limiting case n = 1, since �B

1

(A) is the bar complex of the associative algebra

A.

6.3. The n-homology of commutative algebras. In this section, we calculate the n-homology

of a commutative algebra, thought of as an n-algebra.

Theorem 6.9. If A is a commutative algebra, the n-fold suspension �

n

B

n

(A) of its n-bar complex

is a commutative co-Hopf e

�

n

-coalgebra, and there is an isomorphism of commutative dg-algebras

�

n

B

n

(A) ' T

1

(�

n

B

1

(A)).
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Proof. For n = 1, this theorem is a restatement of the results recalled in Section 5.3: the shu�e

product gives the Hochschild bar coalgebra of a commutative algebra the structure of a di�erential

graded commutative Hopf algebra.

We now turn to the case n > 1. We start by de�ning a commutative product on �

n

C

n

(V )

�

=

C(e

�

n

;�

n

V ). By Corollary 1.7 and the isomorphism of functors C

1

(V )

�

=

�

�1

S(L

�

;�V ), there is a

natural equivalence of functors

�

n

C

n

(V )

�

=

T

1

(�

n

C

1

(V )):

It is easily checked that the product de�ned on �

n

C

n

(V ) by identifying it with the free commutative

algebra T

1

(�

n

C

1

(V )) makes it into a commutative co-Hopf e

�

n

-coalgebra.

It remains to prove that if A is a commutative algebra, the di�erential d of the bar complex

B

n

(A) = C

n

(A; d) induces a derivation of the commutative product on �

n

B

n

(A). In fact, if A is a

commutative algebra, there is actually an isomorphism of complexes

�

n

B

n

(A)

�

=

T

1

(�

n

B

1

(A));

since the terms of the di�erential of �

n

B

n

(A) which do not occur in the di�erential of T

1

(�

n

B

1

(A))

all involve the Lie bracket of the n-algebra A, which vanishes if A is a commutative algebra. This

shows that the di�erential of �

n

B

n

(A) is the coderivation associated to a linear map d : �

n

B

1

(A) �!

A, and is thus a derivation of the commutative product in �

n

B

n

(A).

In the remainder of this section, we present another proof of this theorem, by constructing a

natural almost free resolution in the category of n-algebras of an almost free commutative algebra.

Given an almost free commutative algebra T

1

(V; d) such that V is �nite dimensional, let W be

the graded vector space �

�n

T

1

(�

n

V ). We will show that there is an n-di�erential D on the free

n-algebra T

n

(W ) such that the almost free n-algebra T

n

(W;D) is a resolution of the n-algebra

T

1

(V; d).

Let fv

i

j 1 � i � kg be a homogeneous basis of V , such that jv

i

j = k

i

. If � is a multi-index

(�

1

; : : : ; �

k

), denote by v

�

the element �

�n

�

(�

n

v

1

)

�

1

: : : (�

n

v

k

)

�

k

�

of W , of degree

jv

�

j =

k

X

i=1

�

i

(k

i

+ n)� n:

(Here, �

i

is an arbitrary natural number if k

i

+ n is even, and is 0 or 1 if k

i

+ n is odd.) Denote

by fx

i

g the basis of �

n

V

�

dual to fv

i

g, with jx

i

j = �k

i

� n. We introduce a generating function

v(x

1

; : : : ; x

k

) for the basis fv

�

j j�j > 0g of W by the formula

v(x

1

; : : : ; x

k

) =

X

j�j>0

x

�

v

�

;

here, we use the canonical pairing between the vector spaces V and �

n

V

�

. Thus, v is an element of

W 
 T

1

(�

n

V

�

) of degree �n. The cocommutative coproduct of W , of degree �n, is given by the

formula

�v = v 
 v:

Let f

i

(v

1

; : : : ; v

k

) be the polynomial, with jf

i

j = k

i

� 1, in the basis fv

i

g such that

dv

i

= f

i

(v

1

; : : : ; v

k

):

With the notation

f

i;j

(v

1

; : : : ; v

k

) =

@f

i

(v

1

; : : : ; v

k

)

@v

j

;

the formula d

2

v

i

= 0 is equivalent to

k

X

j=1

f

j

f

i;j

= 0:
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Observe that jf

i;j

j = k

i

� k

j

� 1.

Let v

i

be the partial derivative of the generating function v with respect to x

i

v

i

(x

1

; : : : ; x

k

) =

@v

@x

i

:

We see that v

i

(0) may be identi�ed with the basis vector v

i

of V : thus, the partial derivatives

v

i

(x

1

; : : : ; x

k

) of v are a kind of prolongation of v

i

(0).

We now de�ne an n-derivation D of the free n-algebra T

n

(W ), by the formula

Dv +

1

2

fv; vg =

k

X

i=1

(�1)

k

i

+n

x

i

f

i

(v

1

; : : : ; v

k

):(�)

Since v(0) = 0, this formula allows us to de�ne Dv

�

inductively, as a function of the generators v

�

with j�j < j�j.

Theorem 6.10. The n-derivation D is a di�erential: D

2

v = 0. The map from T

n

(W;D) to

T

1

(V; d) de�ned by sending v

i

to v

i

, and v

�

to 0 for j�j > 1, intertwines the di�erentials D and d.

The almost free n-algebra T

n

(W;D) is a resolution of the n-algebra T

1

(V; d).

Proof. We start by proving that the n-derivation D is a di�erential. The following formula is a

simple exercise in the chain rule:

Dv

j

= �fv; v

j

g+ f

j

(v

1

; : : : ; v

k

)

+

k

X

p=1

k

X

q=1

(�1)

(n�k

j

)(n�k

p

)+(n�k

j

)+(n�k

p

)

x

p

@

j

@

q

vf

p;q

:

Evaluating at 0, we see that Dv

j

(0) = f

j

(v

1

(0); : : : ; v

k

(0)). This shows that the map from T

n

(W;D)

to T

1

(V; d) de�ned by sending v

i

(0) to v

i

and v

�

to 0 for j�j > 1 intertwines D and d.

Applying D to formula (�) de�ning D, we see that

D

2

v = fv;Dvg +

k

X

i;j=1

x

i

Dv

j

f

i;j

(v

1

; : : : ; v

k

):

Inserting the formulas for Dv and Dv

j

into [v;Dv], we see that

D

2

v = �

1

2

fv; fv; vgg+

k

X

i=1

x

i

fv; f

i

(v

1

; : : : ; v

k

)g

�

k

X

i;j=1

x

i

fv; v

j

gf

i;j

(v

1

; : : : ; v

k

)

+

k

X

i;j=1

x

i

f

j

(v

1

; : : : ; v

k

)f

i;j

(v

1

; : : : ; v

k

)

+

k

X

i;j;p;q=1

(�1)

(k

j

+n)(k

p

+n)+(k

j

+n)+(k

p

+n)

x

i

x

p

@

j

@

q

vf

p;q

(v

1

; : : : ; v

k

)f

i;j

(v

1

; : : : ; v

k

)

The term proportional to fv; fv; vgg vanishes by the Jacobi identity. The next two terms cancel

each other by the Poisson relation. The penultimate term vanishes, by the identity

P

k

j=1

f

j

f

i;j

= 0.

The last term vanishes because, on exchanging the indices (i; j) with (p; q), it changes sign. This

completes the proof that D

2

v = 0.

It remains to show that the map T

n

(W;D) �! T

1

(V; d) is a weak equivalence. Filter the n-algebra

T

n

(W;D) by assigning to the generator v

�

�ltration degree j�j. The E

0

-term of the associated
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spectral sequence may be identi�ed with the n-algebra T

n

(W;D

0

) associated to the free commutative

algebra T

1

(V ), where D

0

is given explicitly by the formula

D

0

v +

1

2

fv; vg =

k

X

i=1

k

X

j=1

(�1)

k

i

+n

v

j

f

i;j

(0):

Thus, we see that it su�ces to show that the map T

n

(W;D

0

) �! T

1

(V ) is a weak equivalence in

the case of a free commutative algebra T

1

(V ).

Recall that the cooperad L

?

dual to the Lie operad L is isomorphic to �

�1

e

�

1

; in other words,

L

?

-coalgebras are the suspensions of cocommutative coalgebras. By Corollary 1.7, the graded vector

space T

n

(W ) may be rewritten as

T

n

(W )

�

=

T

1

(�

1�n

T

L

(�

n�1

W ))

�

=

T

1

(�

�n

T

L

(C(e

�

1

;�

n

V )))

�

=

T

1

(�

1�n

T

L

(C(L

?

;�

n�1

V )));

and the map from T

n

(W ) to T

n

(V ) is the result of applying the free commutative algebra functor

T

1

(�) to the map

�

1�n

T

L

(C(L

?

;�

n�1

V )) �! V:

The n-di�erential D

0

on T

n

(W ) is induced by a di�erential on T

L

(C(L

?

;�

n�1

V )), which we may

also denote by D

0

, and it su�ces to show that the map

T

L

(C(L

?

;�

n�1

V );D

0

) �! �

n�1

V

is a weak equivalence. The di�erential D

0

may be identifed with the negative of the di�erential

in the cobar complex 
(L;C(L

?

;�

n�1

V )). The weak equivalence T

L

(C(L

?

;�

n�1

V )) ' �

n�1

V

follows from the fact that the Lie operad L is Koszul.

Let us write out the almost free n-algebra T

n

(W;D) more explicitly in the simplest case, where

there is only one generator u, of degree k. The vector space �

n

V

�

is spanned by a single element x

of degree �k � n. Let us consider the two cases �k � n even and �k � n odd separately.

If �k � n is even, we may write

v(x) =

1

X

i=0

x

i

v

(i)

;

where jv

(i)

j = i(k + n) � n. Taking the coe�cient of x

i

in (�), we see that

Dv

(i)

+

1

2

i�1

X

k=1

fv

(k)

; v

(i�k)

g = 0:

If �k � n is odd, the situation is much simpler, since then W is isomorphic to V , the di�erential

D vanishes, and the map T

n

(W ) �! T

1

(V ) is an isomorphism.

6.4. The iterated integral map for 


2

M . In this section, we will realize the homotopy equiva-

lence

�

2

B

2

(A

�

(M )) �! A

�

(


2

M )

by a map of chain complexes. As explained in the introduction, the search for such an iterated

integral map motivated the construction of the bar complex B

n

(A) of n-algebras, and the proof that

it realizes the Andr�e-Quillen homology of A in the category of n-algebras.

Let us write the di�erential of B

n

(A) more explicitly. If A is an n-algebra, the complex underlying

�

n

C

n

(A) may be identi�ed with the free e

�

n

-coalgebra generated by �

n

A:

�

n

C

n

(A)

�

=

H

�

(F

n

(k))


S

k

(�

n

A)

(k)

:



OPERADS AND HOMOTOPY ALGEBRA 67

Given ! 2 H

�

(F

n

(k)) and a

i

2 �

n

A, denote the element

! 


S

k

(�

n

a

1


 : : :�

n

a

k

)

by (!ja

1

; : : : ; a

k

).

Given a map � : f1; : : : ; kg �! T , where T is a �nite set, let �

�

: e

�

n

(k) �! e

�

n

(k) be the

homomorphism of algebras such that �

�

(!

ij

) = !

ij

if �(i) 6= �(j) and zero otherwise. Let �

�

:

e

�

n

(k) �! e

�

n

(k) be the derivation of algebras over �

�

such that �

�

!

ij

= 1 if �(i) = �(j) and zero

otherwise. These de�nitions are consistent with the relations !

2

ij

= 0 (if n is odd) and

!

ij

^!

jk

+ !

jk

^!

ki

+ !

ki

^!

ij

= 0;

this may be seen by examining individually the three cases in which the cardinality of the set

f�(i); �(j); �(k)g is 1, 2 or 3.

Denote by �

ij

and �

ij

the special case of these maps where � is the quotient map which identi�es

fi; jg � f1; : : : ; kg. If A is an n-algebra, the di�erential of B

n

(A) may be identi�ed with the following

di�erential on �

n

C

n

(A):

d(!ja

1

; : : : ; a

k

) =

k

X

i=1

(�1)

j!j+"

i�1

(!ja

1

; : : : ; da

i

; : : : ; a

k

)

+

X

1�i<j�k

(�1)

j!j+"

i�1

+("

j�1

�"

i

)(ja

j

j+n)

(�

ij

!ja

1

; : : : ; a

i

a

j

; : : : ;ba

j

; : : : ; a

k

)

+

X

1�i<j�k

(�1)

j!j+"

i�1

+("

j�1

�"

i

)(ja

j

j+n)

(�

ij

!ja

1

; : : : ; fa

i

; a

j

g; : : : ;ba

j

; : : : ; a

k

);

where "

i

= ja

1

j+ � � �+ ja

i

j+ in.

Following Arnold, we may identify e

�

2

(k) with the subalgebra of the di�erential forms on the

con�guration space F

2

(k) generated by the one-forms

!

ij

=

1

2�i

dz

i

� dz

j

z

i

� z

j

; 1 � i; j � k:

Denote by A

�

(C

k

) the complex of currents on the manifold C

k

: A

i

(C

k

) is the dual of the space

A

i

c

(C

k

) of compactly supported i-forms while the boundary d

�

is the adjoint of the di�erential on

A

�

c

(C

k

):




d

�

�; �

�

= (�1)

j�j




�; d�

�

:

As a �rst step in de�ning iterated integrals for 


2

M , we construct a sequence of S

k

-equivariant

maps

pv : e

�

2

(k)

�

=

H

�

(F

2

(k); C ) �! �

�2k

A

�

(C

k

);

these may be interpreted as the principal values of the Arnold forms.

If " > 0, let C

k

"

be the closed subset of C

k

C

k

"

= f(z

1

; : : : ; z

k

) j jz

i

� z

j

j � " for all i; jg:

Given ! 2 e

�

2

(k), we now de�ne the current pv! 2 A

�

(C

k

) as the limit




pv!; �

�

= lim

"�!0

Z

C

k

"

!^�; for all � 2 A

�

(C

k

).

It is clear that this map is equivariant for the action of the symmetric group S

k

.

Lemma 6.11. d

�

(pv!) =

P

1�i<j�k

pv(�

ij

!)



68 E. GETZLER AND J.D.S. JONES

Proof. By Stokes's theorem,




d

�

(pv!); �

�

= (�1)

j!j




pv !; d�

�

= lim

"�!0

Z

C

k

"

(�1)

j!j

!^d�

= lim

"�!0

Z

@C

k

"

!^�:

The boundary @C

k

"

is a manifold with corners, whose interior is a disjoint union

[

1�p�q�k

f(z

1

; : : : ; z

k

) j jz

p

� z

q

j = ", and jz

i

� z

j

j > " for i; j such that fi; jg 6= fp; qgg:

Let @

pq

C

k

"

be the set f(z

1

; : : : ; z

k

) 2 F

2

(k) j jz

p

� z

q

j = "g. Then

Z

@C

k

"

!^� =

X

1�p;q�k

Z

@

pq

C

k

"

!^�+ O(");

and we see that




d

�

(pv !); �

�

=

X

1�p;q�k

lim

"�!0

Z

@

pq

C

k

"

!^�:

But it is easily seen that

lim

"�!0

Z

@

pq

C

k

"

!^� =




pv(�

pq

!); �

�

:

Consider the diagram

C

k

�


2

M

e(k)

����! M

k

�

?

?

y




2

M

where e(k) is the evaluation map e(k)(z

1

; : : : ; z

k

; ) = ((z

1

); : : : ; (z

k

)), while � is projection along

the second factor. Pulling back along the proper map e(k) gives a linear map

A

�

(M )

(k)

�! A

�

(M

k

)

e(k)

�

���! A

�

(C

k

� 


2

M );

where the �rst map sends a di�erential form �

1


 : : : 
 �

k

2 A

�

(M )

(k)

to the external product

�

1

� � � �� �

k

2 A

�

(M

k

). Given ! 2 e

�

2

(k), �(!j�

1

; : : : ; �

k

) is de�ned to be the di�erential form

on 


2

M de�ned by integrating e(k)

�

(�

1

� � � �� �

k

) against the current pv(!) 2 A

�

(C

k

) along the

�bres of �. In this way, we obtain an S

k

-equivariant map

e

�

2

(k)
 A

�

(M )

(k)

�! �

�2k

A

�

(


2

M ):

Summing over k, we obtain a map

� : �

2

C

2

(A

�

(M )) =

1

M

k=1

e

�

2

(k)


S

k

�

2

A

�

(M )

(k)

�! A

�

(


2

M ):

Now, A

�

(M ) is a 2-algebra with vanishing bracket. Using Lemma 6.11, we obtain the following

result.

Lemma 6.12. The iterated integral � : �

2

B

2

(A

�

(M )) �! A

�

(


2

M ) is a map of commutative dg-

algebras.

We may now prove the following theorem.
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Theorem 6.13. If M is a 2-connected manifold, the iterated integral map � is a weak equivalence

(of commutative co-Hopf 2-algebras).

Proof. Since M is a 2-connected manifold, there is a minimal model T

1

(V; d) ,! A

�

(M ) for its

algebra of di�erential forms, that is, a resolution of A

�

(M ) by an almost free commutative algebra

T

1

(V; d) generated by a graded vector space V , such that V

i

= 0 for i > �2. It is easy to see that

the diagram

�

2

V

'

����! B

1

(�

2

B

2

(A

�

(M )))







B

1

(�)

?

?

y

�

2

V

'

����! B

1

(A

�

(


2

M ))

commutes, proving that B

1

(�) is a weak equivalence. To prove that � is a weak equivalence, we

invoke the Whitehead-type theorem, that if B

1

(�) is a weak equivalence, then so is �: this is proved

by applying the functor 


1

, since 


1

B

1

is weakly equivalent to the identity.
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