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ABSTRACT: 
 
The Direct Linear Transformation (DLT) model requires 3-D object space control points to estimate the full set of its parameters that 
can be used to recover exterior orientation parameters. The use of DLT in a planar object space leads to a rank deficient model. This 
rank deficient model leaves the DLT defined up to a 2-D projective transformation, which makes the explicit solution of the exterior 
orientation parameters or a single photo-resection represented by the camera position and orientations, a non-trivial task. This paper 
presents a new closed form solution to a single photo-resection in a planar object space based on homogenous coordinate 
representation and matrix factorization. Homogenous coordinate representation offers a direct matrix correspondence between the 
parameters of the 2-D projective transformation and the collinearity model. This correspondence lends itself to a direct matrix 
factorization to solve the photo-resection problem. The matrix factorization starts by recovering the elements of the rotation matrix 
and then solving for the camera position. It will be shown that an incomplete representation of the rotation matrix is captured by the 
2-D projective parameters but the actual physical parameters of the rotation matrix still can be recovered explicitly and without any 
ambiguity. These elements were used to build a complete rotation matrix, which in turn facilitates the correct solution of the camera 
position. The developed solution can serve as a complementary companion to the classical DLT model. In this paper, a detailed 
derivation of the proposed solution will be presented, accommodated with two simulated examples to demonstrate its validity. The 
first example simulates aerial photography and the second one simulates close range photogrammetric application.     
 

1. INTRODUCTION 
 

The DLT model was introduced to the photogrammetric 
community by (Abdel-Aziz and Karara, 1971). It has gained 
a wide popularity in close-range photogrammetry, computer 
vision, robotics, and biomechanics. The wide popularity of 
the DLT is due to the linear formulation of the relationship 
between image and object coordinates. Namely the following 
characteristics are associated with the DLT model: image 
coordinates can be expressed in a non-orthogonal system 
with unequal scales, the position of the coordinate system is 
arbitrary, and the principal distance can be unknown and 
vary from image to image, see (Kraus, 1997). 

  
The DLT model requires 3-D object space control points to 
estimate the full set of its parameters. The use of DLT in a 
planar object space leads to a rank deficient model. This rank 
deficient model leaves the DLT defined up to a 2-D 
projective transformation, which makes the explicit recovery 
of the photo resection parameters, represented by the camera 
attitudes and position, a non-trivial task. 
 
Several approaches are used to relate the parameters of the 2-
D projective transformation to the physical parameters of the 
collinearity model using a term-wise correspondence 
formulation, which essentially leads to a set of sequential 
equations to recover the exterior orientation parameters, see 
(Kobayashi and Mori, 1997; Melen, 1993). We argue that 
these methods are not practical. For example, in (Melen, 
1993) many special cases have to be considered, otherwise 
ambiguous solutions will show up. 
  

 This paper presents a new linear approach to recover the 
exterior orientation parameters in a planar object space. This 
approach is based on homogenous coordinate representation 
and matrix factorization. Homogenous coordinate 
representation offers a direct matrix correspondence between 
the parameters of the 2-D projective transformation and the 
collinearity model. This correspondence lends itself to a 
direct matrix factorization to solve for the exterior orientation 
parameters. Algorithmically, the developed approach is a 
cooperative strategy between the 2-D projective 
transformation and a linear version of the collinearity model. 
The 2-D projective transformation supplies the orientation 
parameters, which serve as input in the linear version of the 
collinearity model to determine the camera position. 

 
 The proposed approach assumes that the interior orientation 
parameters of the camera are known, which is a safe 
assumption in many practical applications. The presented 
approach can accommodate horizontal and vertical planes, 
but with minimal effort this approach can be extended to 
tilted planes. 

 
This paper is organized as follows. Section 2 presents the 
proposed approach. Section 3 presents the experimental 
results and some discussions. Finally, section 4 concludes the 
paper.      

 
2. THE PROPOSED APPROACH 

 
This section starts with a quick review for the projective and 
collinearity models and then proceeds to develop the 
proposed approach.  

_____________________________________ 
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The following mathematical model can capture the 
relationship between a planar object space and image space 
using homogeneous coordinates: 
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where 
 x, y: are the image coordinates. 
 X, Y: are the object space coordinates. 
 L1...L8: are the projective transformation parameters. 
 
 A linear version of the system of equations depicted in (1) 
can be represented by the following equations: 
 

xxx eYLexXLexLYLXLx +−−−−++= 87321 )()(              (2) 
 

yyy eYLeyXLeyLYLXLy +−−−−++= 87654 )()(           (3) 
 
where     ex and ey  are the true unknown errors associated 
with the image coordinates measurements. 
 
We should denote that, the representation of the 2-D 
projective transformation presented in equations (2) and (3) 
induces a stochastic non-linearity, but the model retains its 
linearity since very good approximations can be obtained by 

neglecting the stochastic component at the beginning and 
then proceed iteratively.   
Now, we shift our focus to the collinearity model. First, we 
show the representation of the collinearity model for the 
horizontal and vertical planes. Then, we write a homogenous 
coordinate version of the collinearity model, which is a 
corner stone in our development. 
 
A horizontal plane along the XY plane of the object space 
coordinate system using the collinearity model can be stated 
as follows:      
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where  xp, yp: are  the coordinates of the principal point. 
            rij:  elements of the rotation matrix. 
            f: is the focal length of the camera. 
            Xo, Yo, Zo:  is the camera position. 
            ex and ey:  are the true unknown errors associated 
with the image coordinate measurements. 
 
We should denote that, in the horizontal version of the 
collinearity model, the Z value is either equal to   zero or a 
constant and similarly the vertical version is nothing but Y is 
equal to zero or a constant.  

 
The rotation matrix can be captured by the following 
representation: 
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where    s1: sin ω, s2: sin ϕ, s3: sin κ   
              c1: cos ω, c2: cos ϕ, c3: cos κ    
             ω: is the primary rotation around the x-axis. 
              ϕ: is the secondary rotation around the y-axis. 
              κ: is the tertiary rotation around the z-axis. 
 
In a homogenous coordinate representation equation (4) and 
(5) can be captured by the following system of equations: 
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where 
λ: is the scale factor. 
K: is the calibration matrix. 
 
From equation (1) and (7) we can write the following 
equivalency: 
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From equations (8) we can deduce the following: 
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Analyzing the information content of the right hand side 
matrix depicted in (9) one can easily see that the effect of the 
calibration matrix is cancelled out, but still there is scale 
factor that needs to be eliminated. A simple normalization 
process can provide a complete remedy to eliminate the scale 
factor 
 
Then, the final representation of system of equations 
depicted in (9) can be written as: 
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The rationale behind the normalization process can be 
explained as follows: 

a- After multiplying by the inverse of the calibration 
matrix, the information content of the projective 



transformation contained in (9) are the elements of 
the rotation matrix coupled with a scale factor. 

b- Taking the norm of the first or the second column 
of the matrix on the right hand side of (9) can be 
stated mathematically as follows: 
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From the above analysis, the normalization process is 
nothing more than the computation of the scale factor. 
  
By relating the elements of the matrix in (10) to the elements 
of the rotation matrix presented in (6), the camera attitudes 
can be retrieved explicitly. For instance, the element of the 
rotation matrix for the horizontal plane can be derived as 
follows: 
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Similar relationships can be derived for the vertical plane.  
  
From equations (4) and (5) a linear version of the collinearity 
model was derived as listed below: 
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In the linear version of the collinearity, the only unknowns 
are the camera position since the rotation matrix will be 
recovered from the 2-projective transformation.  
 
The basic steps of the proposed approach can be stated as 
follows: 

1. Compute the parameters of the projective 
transformation using equations (2) and (3). 

2. Compute the normalized C matrix using equation 
(10). 

3. Compute the elements of the rotation matrix using 
equations (12), (13) and (14). 

4. Form the complete rotation matrix using equation 
(6). 

5.  Compute the camera translations using equations 
(15) and (16). 

 
 
 

3. EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

 
The developed approach was tested on two examples that 
simulate two typical photogrammetric applications. The first 
example simulates normal aerial photography and the second 
one simulates close range application. Tables 1, 2, and 3 
show the relevant information to the aerial example. Tables 
7, 8, and 9 show the relevant information of the close range 
example. The corresponding image coordinates are obtained 
by a simple back-projection using equations (4) and (5). The 
image coordinates are treated as error free data. 

 
X m Y m Z m X m Y m Z m 
-200 -200 100 2200 -200 100 
-200 2200 100 2200 1000 100 
2200 2200 100 200 1000 100 

 
Table 1: The ground control points used to simulate the aerial 
example. 
 
XO YO ZO ω ϕ κ 
1000 m 1000 m 2000 m 7 deg 4.5 deg 11 deg 
 
Table 2: The true exterior orientation parameters used in the 
aerial example. 
 

f xp yp 
150 mm 0. mm 0. mm 

 
Table 3: The interior orientation parameters used in the aerial 
example. 

 
L1=79.9080     L2=16.2309  L3=-87.8867    
L4=-15.5325   L5=79.4086     L6= -84.7415  
L7=-0.0427      L8=0.0661  
 
Table 4: The computed parameters of the projective 
transformation for the aerial example 
 
   The computed rotation matrix 
    0.9786    0.1988 
   -0.1902    0.9725 
    0.0785   -0.1215 
    The true rotation matrix 
        0.9786    0.1988   -0.0532 
   -0.1902    0.9725    0.1345 
    0.0785   -0.1215    0.9895 
 
Table 5:The computed and true parameters of the rotation 
matrix. 
 
 Xo              Yo             Zo 
----------------------------------- 
    1000    1000    2000  
                                           
        ω              ϕ             κ       
----------------------------------- 
    7.0000    4.5000   11.0000 
 
Table 6: The full solution of the exterior orientation 
parameters of the aerial example. 
 
 



X m Y m Z m X m Y m Z m 
0 0 0 2 0 1 
0 0 1 2 0 2 
0 0 2 2 0 3 
0 0 3 3 0 0 
2 0 0 3 0 1 

 
Table 7: The ground control points used to simulate the close 
range example. 

 
f xp yp 

6.8 mm 0.0 mm 0.0 mm 
 
Table 8: The interior orientation parameters used in the close 
range example 
 

Xo Yo Zo 
4 m -15  m 1.52 m 
   
ω ϕ κ 
82 deg -40 deg 2.5 deg 
 
Table 9: The true exterior orientation parameters used in the 
close range example. 
 
L1=0.5820   L2= 0.1017   L3=-9.7440   
L4=-0.0254  L5=0.7526    L6=0.8707    
L7=0.0726   L8= -.0119 
 
Table 10: The computed parameters of the projective 
transformation for the close range example. 
 
   The computed rotation matrix 
    0.7619     0.1331 
   -0.0333    0.9854 
   -0.6468    0.1061 
   The true rotation matrix 
    0.7619   -0.6338    0.1331 
   -0.0333    0.1670    0.9854 
   -0.6468   -0.7552    0.1061 
 
Table 11: The computed and true parameters of the rotation 
matrix 
 
  Xo                Yo                    Zo 
------------------------------------------- 
 4.0000      -15.0000            1.5200    
          ω              ϕ             κ        
------------------------------------------- 
   82.0000  -40.3000    2.5000 
 
 
Table 12: The full solution of the exterior orientation 
parameters of the close range example. 
 

In order to compute the exterior orientation parameters, in 
the aerial and close range example, the process started by the 
recovery of the 2-D projective transformation parameters, 
using equations (2) and (3), then followed by the 
computation of the normalized C matrix, using equation (10). 
The explicit retrieval of rotation parameters was done by 
using equations (12), (13), and (14). The rotation parameters 
were used to form the complete rotation matrix. In the aerial 
example, the first two columns of the rotation matrix were 
recovered, but in the close range example, the first and the 
third columns were recovered. The complete rotation matrix 
was used in a system of linear equations composed from a 
linear version of the collinearity model, as depicted in 
equations (15) and (16), to recover the camera position. The 
developed algorithm was successfully tested in the above two 
examples and the true camera parameters were recovered as 
presented in tables 6 and 12.  
 

4. CONCLUSIONS 
 

In this paper, we proposed a new linear approach to a single 
photo-resection in planar object space. 
The proposed approach can be considered as a restricted 
DLT in 2-D. It is evident in this approach that the 
normalization process is the most critical step for the final 
solution. The proposed approach can be considered as a very 
practical and important tool for the provision exterior 
orientation parameters for camera calibration in a 2-D test 
filed and 3-D object reconstruction. Algorithmically, the 
proposed approach is a cooperative strategy between the 2-D 
projective transformation and a linear version of the 
collinearity model. The 2-D projective transformation 
supplies the rotation matrix and the collinearity supplies the 
camera position. The proposed approach assumes that the 
interior orientation parameters of the camera are known, 
which is a safe assumptions in many practical applications. 
The presented approach can accommodate horizontal and 
vertical planes, but with a minimal effort it can be extended 
to tilted planes. 
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