
Human papillomavirus (HPV) causes cervical

cancer

HPV infections are very common and it has been
estimated that the lifetime risk for genital HPV infection
is over 50% for sexually active women.1 Human
papilloma viruses are the main etiological agent in
cervical cancer and more than 99% of cervical cancers
contain human papillomavirus DNA.2 Worldwide it is
estimated that there are about 500,000 cancers of the
cervix uteri diagnosed each year and 270,000 deaths,
mainly in developing countries. Cervical cancer is the
second most common malignant disease in women,
with nearly 80% of the cases arising in developing
countries3. Despite the fact that millions of women have
papillomavirus infection every year, most of them clear
the infection within 18 months (Fig 1).4-6

More than 100 different HPV types have been described
and they can be grouped into high and low-risk types,
depending on their oncogenicity.7 Of these, about 30
types infect genital tract or other mucosal sites. In
cervical cancer, HPV16 is the most prevalent (50-60%),
followed by types 18, 31, 33 and 458-10.  Papillomavirus
infection can also lead to anal, vulvar, penile, oral and
tonsillar cancers.11-12

Papillomavirus oncogenes as targets for

immunotherapy

Human papillomaviruses are small DNA viruses that
infect the basal cell layer of epidermis and their protein
coding sequences (open reading frames) can be divided
into early (E1-7) and late (L1, 2) according to their
expression in the viral life cycle. L1 and L2 code for viral
capsid proteins and are expressed only in differentiating
keratinocytes. HPV has two major oncogenes, E6 and E7.
These genes are expressed early in the basal layer of the
epidermis and are the major targets for therapeutic
approaches. E7 has been shown to be more highly
expressed in cancer cells and is more immunogenic than
E6 and is widely used in therapy models.13

The effectiveness of human papillomavirus oncogenes
lies in the fact that they prevent the infected epithelial
cells from differentiating. E6 protein binds to p53 and E7
to pRb preventing exit from the cell cycle. Cells continue
to divide, permitting ongoing replication of the virus
genome. Papillomavirus is a non-lytic virus that divides
only in epithelial keratinocytes and encodes mainly
short-lived proteins in the cells in which the virus
replicates. These characteristics make it a hard target
for immunotherapy. 

Prophylactic vaccines (Gardasil® HPV6/11/16/18;
Cervavix® HPV16/18), in which L1 capsid protein of the
virus is used as an antigen, have been so far efficacious
in clinical trials, providing 100% protection against
infection with the HPV types incorporated in the
vaccines.14 About 30% of cervical cancers are due to
HPV types other than HPV16/18. However, these
vaccines do not assist with the virus in already infected
women. The duration of protection is not currently
known and there are millions of HPV-infected women in
the world who cannot benefit from the prophylactic
vaccine. HPV is prevalent already in newborn babies and
the effect of this early infection on prophylactic vaccine
efficacy is unknown.16-18

An HPV therapeutic vaccine would therefore assist to
help reduce the global burden of papillomavirus-related
cancers. There are several challenges for development
of therapeutic vaccines. These include viral and tumour
determined immune escape mechanisms, poor
immunogenicity of some viral antigens and the immuno-
compromised state of cancer patients.   

Advantages of immunotherapy

The main advantage of antigen specific immunotherapy
is that it is specific towards tumour cells and does not
harm healthy cells. The body’s immune system can, in
principle, recognise a tumour as non-self and attack
cells expressing tumour specific antigen. Systemic
immune responses can target microscopic metastases
anywhere in the body. William Coley is often regarded
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as the father of immunotherapy and developed
immuno-therapeutics which activate the innate immune
system.19 He treated sarcomas with massive bacterial
infection and immune effector mechanisms associated
with bacterial infection were able to control tumour
growth. After his time, several researchers tried to 
treat cancers with similar non-antigen specific
immunotherapy with limited success. Animal models of
specific immune compromise have however,
established that the innate and adaptive immune
systems play a role in controlling the development of
some tumours.20-21

What would be the clinical opportunity for using a HPV
therapeutic vaccine? Cervical cancer develops through
precancerous lesions, called cervical intraepithelial
neoplasia (CIN). Most CIN1 lesions regress
spontaneously and some CIN2 lesions regress. New
vaccines are relatively expensive and the cost/benefit-
ratio might be very high if early CIN lesions, that could
regress naturally, are treated. However, trials of HPV
therapeutic vaccines in cervical cancer have shown poor
results and this may be due to initiation of treatment
when patients are already severely immuno-
compromised. Recent vaccine trials have aimed to treat
CIN2/3 lesions and have shown more encouraging
results. It could be beneficial to direct immunotherapy to
CIN2/3 lesions since after conventional surgical excision,
recurrence occurs in about 5-20% of patients.30-31

Route and adjuvants

Muscle is not well provided with antigen presenting
cells and novel methods are being considered to create

better immune response for therapeutic vaccines.32

Since skin and mucosa contain greater numbers of
dendritic cells, the transdermal route may be a better
method of vaccine delivery. Many of the recent clinical
trials (Table 1) have used subcutaneous immunisation.  

Most vaccines have adjuvants that enhance the
immunogenicity of the vaccine. Proteins and peptides
are weakly immunogenic and adjuvants are needed to
stimulate a strong immune response and possibly to
help break the tolerance to tumour antigens. Aluminium
hydroxide is widely used in prophylactic vaccines, but
biases immune responses toward antibody production,
and new adjuvants will be needed for therapeutic
approaches, which will require activation of cytotoxic T
lymphocyte (CTL)  responses. QS-21, a refined saponin
from the bark of Quillaja Saponaria, can induce strong T
Th1 (T helper 1) type responses in animal models.33

Certain cytokines (eg. IL-2,IFNy) that direct T cells
towards a Th1 type response, might also be considered.  

Clinical trials against HPV-induced diseases

Previously, clinical trials have been done in late stage
cervical cancer patients who are often already immuno-
suppressed and results from these trials have been
poor; no clinically significant responses have been seen
and immune responses were worse than with later
clinical trials.20-21,30-35 Nowadays, the clinical trials have
been directed to earlier, pre-cancerous CIN lesions. 

One problem with clinical trials for therapy for CIN is that
after the vaccination period, patients with high grade CIN
cannot be observed long before treatment for CIN lesion
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Figure 1: The development of cervical cancer

After papillomavirus infection, most infections clear between 9-18 months. A small group of women either get
persistent infection or the virus gets integrated into the genome. It is unclear how these two events impact each other
or which comes first more often. It is not known if and how cells, where virus has been integrated, are cleared. Part
of persistent infections progress to cervical precancerous lesions. Of these, most CIN1 lesions regress, also some of
CIN2 lesions, but few CIN3 lesions regress and eventually this leads to cervical cancers years or decades later.
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Table 1. Clinical trials with HPV therapeutic vaccines from latest three years. 

Patients Controls/placebo Vaccine How efficacy Results in Reference
was measured patients

30 males 20 males with flat MVA E2 Colposcopy, histology, 28/30 clearance Albarran
with flat condylomas (vaccinia virus HPV test, ab response, of condylomas, et al 200722

condylomas Ankara [MVA] CTL response against 30/30 had ab 
expressing the HPV+ cancer cells against vaccine, 
E2 gene no recurrence in 
*VV a year. In control 

group, 13/20 
clearance, 
3 recurrences in 
3 months, no abs 
were detected

58 women None Hsp(65)E7 Histology, colposcopy 13/58 responded Einstein 
with CIN3 (SGN00101) (to CIN1 or et al 200723

*P clearance), 32/58 
reduction of 
lesion size, 1
1/58 no response 

26 women  13 women with HPV16L1E7 Histology, Ab response 5/23 showed CTL Kaufmann 
with CIN2/3 CIN2/3. All were *P for L1, CTL response response against et al 200724

(14 high dose HPV16+ against E7, HPV test E7. All had ab 
and 12 against L1, 
low-dose seroconversion in 
vaccine). 10/25, none in 
All were placebo group, 
HPV16+ 10/17 showed 

reduction in lesion
size in vaccine 
group, 3/5 in 
placebo group, 
HPV16 DNA 
clearance in 6/16
in vaccine group,
1/7 in placebo
group

21 women None Hsp(65)E7 Histology, HPV test 7/20 clearance, Roman 
with CIN2/3 (SGN00101) 1/20 regression to et al 200725

*P CIN1, 11/20 no 
response, 1/20 
progression, 
IFNg-ELISPOT 
positive 9/20 

29 women None Prime TA-CIN, Histology, visual 1/29 clearance,  Fiander 
with AGIN3, boost TA-HPV measurement of size 5/29 reduction of et al 200626

27 of them *P,VV lesion, 18/29 no 
HPV16+ change, 5/29 

progression. 
4/29 clear from 
HPV DNA

34 women None MVA E2 Colposcopy, histology, Colposcopy:19/34 Garcia-
with CIN2/3 *VV Ab response for E2, clearance, 11/34 Hernandez

CTL response against reduction of et al 200627

cancer cells, HPV test lesion, 4/34 
minimal reduction,
histology: 20/34 
clearance, 11/34 
reduction in lesion 
size, 3 downgrade 
to CIN2/1, ab 
against E2 in all 
patients, CTL 
response against 
cancer cells in all 
patients, HPV 
viral load reduced
in all patients 



has to be undertaken for ethical reasons. Generally,
patients are vaccinated and after a short follow-up
period, they are treated with conventional methods eg.
loop excision of the cervix transformation zone. 

Table 1 shows some recent clinical trials of HPV
immunotherapy for women with CIN2 or CIN3 or genital
warts. Where placebo controls have been used, there
has been no evidence of significant efficacy.
Comparison between trials is difficult since responses
are measured with different indicators. In general, the
results have not been astounding and many therapeutic
approaches that have succeeded in animals (murine
models), have failed in humans.  

Vaccine types

There are several vaccine strategies available today.
Below, a few of the strategies are discussed briefly.

Peptide-based vaccines

Peptide-based vaccines have been used in clinical trials
against human cancers,36,37 however the problem is their
weak immunogenicity, generating low affinity CTL
responses and Th1 stimulation. Peptides from either E6
or E7 oncogenes are used in therapeutic vaccines
against HPV-related cancers and pre-cancers. Recently,
animal models have shown that cytokines might serve
as effective adjuvants, increasing the efficacy of the
vaccine.38 This has also been detected in clinical trials
with peptide-based melanoma vaccines.39 Vaccines with
long E6 and E7 peptides have been successfully tested
with animals,40-41 and a phase I trial of immunogenicity
and safety of these vaccines in humans has just been
published.42 The trial showed that more than 50% of
patients had specific CTL response against E6_E7 long
peptides, but of 43 patients only one had complete
response and five remained stable with a disease.

Protein vaccines

Protein vaccines have mainly used E7 protein fused to
heat-shock protein (hspE7) or HPV L2 and E6 (TA-CIN)

and they are safe vaccines. Several trials have been
done recently,13,43-44 however the clinical results have not
been plausible. Studies by Frazer and Hallez showed
reduction in HPV DNA and viral load was seen as well as
some CTL responses, however this didn’t correlate with
clinical outcome (1/23 in CIN2/3 at Frazer, 0/5 in CIN3 at
Hallez, cleared the lesion). Goldstone and colleagues
showed that three out of 14 patients with warts cleared
the lesion.     

Dendritic cell vaccines

Dendritic cell (DC) vaccines are cell-based vaccines
where patients own naïve antigen presenting cells are
pulsed with antigens and cultured to maturity with
specific cytokines. These mature dendritic cells are
introduced to the patient and theoretically they have the
potential to induce both tumour-specific effector and
memory T cells. The basics of DC therapy have been
reviewed elsewhere.45 DC vaccines are highly effective
at inducing immunity but difficult and expensive to
produce. Animal experiments with DC vaccines against
cervical cancer have given poor results.46 Two small DC
therapy trials have been conducted against cervical
cancer, CTL and/or antibody responses were seen in
3/1147 or 4/448 patients, however neither study showed
any clinical responses, possibly due to late stage of the
disease. Recently, a phase I clinical trial has been done
in cervical cancer patients to test the efficacy and safety
of DC therapy vaccine (Table 1)29 and it remains to be
seen if DC therapy proves to be effective in treatment
of CIN lesions or early stage cervical cancer.   

Plasmid DNA and recombinant viral vector

vaccines

Plasmid DNA and recombinant viral vector vaccines
contain protein-coding DNA that produces
immunologically active antigens in live cells. These
vaccines can induce antibody and CD4+ T cell helper
responses and they induce strong CD8+ T cell
responses because they express antigens intra-
cellularly, introducing them directly into the MHC class I

CancerForum Volume 32 Number 2 July 2008

FORUM
Table 1. Clinical trials with HPV therapeutic vaccines from latest three years (continued)

Patients Controls/placebo Vaccine How efficacy Results in Reference
was measured patients

161 patients 159 patients with HPV6L2E7 Photography of warts, No change of Vandepapeliere
with anogenital anogenital warts *P HPV test, ab response recurrence rate et al 200528

warts positive positive for against L2E7 was seen in 
for HPV6/11 HPV6/11 vaccine v 

placebo groups. 
All vaccinated 
patients had ab 
response to L2E7 

10 patients None DC pulsed with ELISA, ELISPOT, DTH 10/10 showed ab Santin et al
with CC HPV16 or against E7, 5/10 200829

(stage IB) HPV18 E7 and had no previous 
KLH (as carrier ab, 5/10 showed 
protein) increase in E7 ab 
*DC levels, 10/10 

showed ab 
against KLH

*VV=HPV antigens delivered by viral vectors, P=protein vaccine, DC=dendritic cell vaccine 



antigen processing and presentation pathway. Most
promising results have been achieved with these viral
vector vaccines, however only a few studies have been
published. 

A group of women were treated with MVA E2 (modified
virus Ankara + E2, recombinant papillomavirus vaccine)
vaccine and 20/34 showed complete response and
11/34 reduction in lesion size. All patients showed CTL
and ab responses.27 In another study, 30 males with
condylomas were treated with the same vaccine (MVA
E2) and 28/30 showed complete responses; all had
antibody responses and no recurrences were detected
within a year.22

However, all vaccines face the need to break
immunological tolerance by vaccination, MHC class I
and antigen loss on tumour cells, systemic defects in
dendritic cells and secretion of immunosuppressive
cytokines etc.49 More basic immunology studies are
needed to clarify the immunological reactions behind
the tumour development.

Animal models for cervical cancer vaccine 

There are currently three animal models commonly
used for studying cervical cancer immunotherapy. Most
studies have been done with a model in which E6 and
E7 expressing transformed mouse cells (TC-1) are
injected into mice.50 These cells form tumours in normal
mice and vaccines can be tested for their ability to
prevent, or more preferably to cure, tumours. A problem
with the TC-1 model is that it is “too successful”;
therapeutic protocols have worked with this mouse
model but human studies with the same therapy have
shown very poor results. 

A further animal model is a mouse that expresses
papillomavirus oncogenes E6 or E7 or the whole HPV16
genome in epithelial cells from the keratin 14 promoter.
Mice develop spontaneous tumours in old age,51 and
tumours can be also induced by estrogen treatment. A
problem with this mouse model is that the viral genes
are expressed in all basal epithelial cells of all organs,
including the thymus. The animals are therefore partially
tolerant of these proteins52-53 and the model is a tough
test for a vaccine.

A third model is a skin graft model where skin from E7
transgenic mice (previous model) is grafted on to a normal
mouse. E7 skin grafts are not rejected. Since E7 is
presented to the immune system in HPV infections, it is
used in this setting as a model antigen. Therapeutic
approaches are tested for ability to reject E7 skin graft. A
problem in this model is the site of lesion (skin instead of
cervix). However, we believe it is a good model to study
some of the requirements for, and effectiveness of
immunotherapy, because the antigen is expressed in the
correct cell types, without the problems of tumour induced
immunosuppression, and the efficacy of immunotherapy
can be evaluated over the life of the animal.54-55

Future directions for therapeutic vaccines

against cervical cancer

Efficacy of therapeutic vaccines for cervical cancer
remains to be demonstrated by clinical trials. However,

there are several approaches that might increase the
success of therapeutic vaccines which are discussed
below.

1. Increasing effector T cell functions

Cytotoxic T cells specific to tumour antigens are the key
players in tumour regressions. Enhancing the effector T
cell function by either increasing the efficacy or the
number of tumour specific T cells might lead to better
eradication of the lesion. It is also possible to use
cytokines, like IL-15, that prolong the life span of T cells.56

2. Overcoming the suppressive effect of regulatory

T cells and macrophages 

It is widely accepted that regulatory T cells (Treg) exist
and prevent effective immune responses. Treg cells
have been described to control autoimmune diseases,
infection and transplantations and to regulate immune
responses of tumours.57 They suppress immune
responses either through direct cell to cell contact or
through secreting suppressive cytokines such as IL10.58

A further regulatory population of myeloid suppressor
cells seen in epithelial cancer are also able to prevent T
cell effector function.

Tumour specific regulatory T cells

Tumour specific regulatory T cells have been identified
and cell lines established from tumour patients. CIN and
cervical cancer patients have increased Treg cell
frequencies in peripheral blood and CD4(+) T cell
fraction.59 Also, HPV E6 specific Treg cells have been
identified in cervical cancer patients.60 In a study using
TCR transgenic T cells specific for influenza virus
hemagglutinin (HA) antigen, it was shown that
immunotherapy will amplify the tumour specific
regulatory T cells and thus reduce the effectiveness of
immunotherapy.61 Similar results were obtained by using
dendritic cell immunisation and targeting antigen
through specific pathways.62

Vaccine induced T regulatory cells  

Chimeric papillomavirus like particles have been
candidate vaccines for the treatment of cervical cancer,63

however it has been demonstrated in a clinical trial that
no efficacy has been observed.24 We have shown that
vaccination with chimeric PV VLPs can induce Treg cells
and this might explain the unresponsiveness for the
therapy.64 Others have also shown that immunisation
through stimulate TLR4 also induce regulatory T cells.65

Collectively, these results suggest that immunisation
may induce and expand existing tumor specific
regulatory T cells, inhibiting cytotoxic T cell responses.
In future, it needs to be considered how to overcome
the inhibition of vaccine induced and expanded
regulatory T cells. Current methods to eliminate
regulatory T cells are to deplete these cells using
antibodies, such as anti-CD25, anti-GITR. However,
conventional T cells can change into regulatory T cells,
and as currently no specific markers for regulatory T
cells have been identified, antibody depletion might also
deplete activated cytotoxic T cells. We found that when
IL10 is neutralised at the time of vaccination, cytotoxic
cells are not inhibited by regulatory cells.64-66 Recently,
this concept has been tested in a mouse chronic viral
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infection model (HCMV), where immunisation plus
neutralising IL10 can clear HCMV infection. This may
provide a method for the development of therapeutic
vaccine against chronic HPV infection and cervical
cancer.   

3. Increasing tumour cells’ sensitivity to effector 

T cells 

Clinical trial results often show successful generation of
effector T cells that kill tumour cells in vitro but fail to
demonstrate efficacy in vivo, even when effector T cells
travel to the tumour site. Although increasing effector T
cell trafficking to a tumour site is a focus of therapeutic
vaccination, it has been well demonstrated that tumour
micro-environment is suppressive to the effector 
T cells.67-68 Tumour micro-environment contains
suppressive cells including regulatory T cells,
suppressive macrophages and high levels of IL10 and
TGF beta. Recent results have demonstrated that local
administration of pro-inflammatory agents such as TLR
agonist (like imiquimod) will boost tumour rejection,
although its effect could be at boosting effector T cell
function at effector stage.69 At the same time, sensitivity
of tumour cells to effector T cells increases, which may
be another mechanism.  

Suppressive molecules on tumour cells, PD-1/PD-L1,
belong to newly identified B7-CD28 family members
which regulate the balance between the stimulatory and
inhibitory signals for immuno-regulation.70-72 PD-L1
expression on peripheral tissues prevents
autoimmunity.73 Tumour cells can use PD-1/PD-L1
pathway to facilitate immune evasion. PD-L1 expression
on tumour cells is correlated with poor clinical prognosis
of many types of cancers and has been found in many
tumour tissues including squamous cell carcinoma;74 all
18 squamous cell carcinoma tumour samples tested
express PD-L1. Tumour derived PD-L1 can promote
tumour specific T cells apoptosis, through an
unidentified receptor on effector T cells, thus resistant
to the killing by effector T cells. More inhibitory
molecules expressed on tumour cells have been
identified and studies on how to overcome the
suppressive functions by these molecules will provide
better outcomes for therapeutic vaccines.

Interestingly, it was demonstrated that IFNg promotes
the expression of PD-L1 on tumour cells.75 IFNg is also
a critical component for tumour killing. Therefore, IFNg
may play a dual role for the rejection of established
tumour tissues. IFNg can enhance MHC class I
restricted antigen presentation by tumour cells and
increase T cell effector function. However, at the same
time, it has been demonstrated that IFNg promotes the
generation of Foxp3+ regulatory T cells, prevents
inflammatory cells trafficking and promotes Th1 cell
apoptosis in a tumour model.76-78 More recently, we have
shown that IFNg signalling promotes the secretion of
IL10 by VLPs induced regulatory T cells and prevents
the rejection of tumour antigen expressing skin graft in
our tumour model (unpublished data). More work is
needed to find out how to reduce the suppressive
signals at the same time as trying to amplify tumour
killing components like IFNg. 
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