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ABSTRACT 
 
This paper presents a fully automated system for area detection based on satellite images and topographic 
features from a database. The surfaces issued from the database are refined using active contours (also called 
snakes) according to updated information provided by the multi-spectral images. The snake is reformulated 
using finite elements, allowing for the processing of smaller structures thus low time processing. We propose a 
new external energy measure through a formula by combining statistical and radiometry features. Usually the 
snake model is controlled by various parameters that are difficult to set by a trial-and-error process. We propose 
an automatic setting of these parameters and an update of the snake topology. The proposed updates allow the 
snake to be deformed in order to provide accurate localization. Our approach is validated in a series of tests on 
LANDSAT7 images.  
 
 
1 INTRODUCTION 
 
Spatial databases are gaining popularity as a reference tool in many fields of application. The spatial information 
providers are currently concerned by how to maintain data updated and also how to increase its accuracy with 
limited resources. This problem could be overcome through image processing techniques, which allows 
increasing accuracy of both geometric and temporal features. 
 
An increasing number of methods to update spatial information based on image processing began to appear in 
the latest years. From the proposed methods, we are mostly interested with those based on the snakes. The 
proposed approaches deal with different type of images, mainly with single band images issued from satellite or 
airborne and from different type of sensors such as radar or optical (Auclair-Fortier et al 2001, Bentabet et al 
2001, Horritt, 1999). The snake model is defined according to the geometry of the target feature. Some works 
present linear snakes to search linear features such as roads (Auclair-Fortier et al 2001, Bentabet et al 2001) and 
others present closed snakes to obtain a description of area features such as water regions (Horritt, 1999). 
 
In this paper, we propose a method to update existing area features from a given spatial database by the use of 
multi-spectral images. The available database vectors provide an interesting initialization for the area 
localization process. In this context, the closed snake approach was presented as a natural solution. The first 
contribution of this work is the formulation of the external energy of the snake that combines statistical and 
radiometry information. Secondly, the snake parameters are fixed automatically from the spatial database and are 
updated during the localization process. Finally, an efficient implementation of the snake using finite elements 
provides accurate localization with low time processing. 
 
2 APPROACH 
 
A snake is defined as a parametric curve v(x,y)=v(x(s,t),y(s,t)) which is allowed to deform from some arbitrary 
initial location within an image towards the desired final location. Thus, the use of snakes involves a two steps 
process being an initialization and the iterative minimizing process. To initialize the snake, we first perform the 
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discretization of the database vectors. This operation is performed using a finite element method together with 
the approximation of the snakes with Hermite polynomials. The final snake location is obtained through 
minimization process acting upon an internal and an external energy function defined as follows (Kass et al 
1988). 
 
 ( ) ( ) ( )tEtEtE exttot += int  (1)  

 
where Eext(t) is the external energy, Eint(t) the internal energy. As described in classical snake modeling approach 
(Auclair-Fortier et al 2001, Bentabet et al 2001, Horritt, 1999, Kass et al 1988), the internal energy acts as a 
stabilizer to the external data irregularities. The standard internal formulation is given as follow: 
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where α and β are respectively the elasticity and rigidity parameters. In this paper, we will elaborate in more 
detail about the external energy and the setting of the snake parameters. 
 
 
3 EXTERNAL ENERGY 
 
The external energy represents the image forces Eext(t) attracting the snake. This energy is calculated as follow: 
 
 ( ) ( )( )∫= dstsvFtE extext ,  (3)  

 
where Fext(v(s,t)) is the calculated force attracting the snake towards the boundary of the region. In our case, this 
force is defined through a combination of radiometry and statistical information. The radiometry feature is 
obtained from a multi-band edge detector (Drewniok, 1994). This detector takes as input all bands of the multi-
spectral image and provides a single edge map.  
 
The statistical properties of the targeted area are computed assuming the regions of interest being normally 
distributed. If we consider a population given by the pixels within the initial area provided by the database 
through n bands, the mean vector and the covariance matrix will be defined as follow: 
 
 { } ( )( ){ }TECE mxmx    xm and −−==  (4) 
 
where x is a radiometry vector of dimension n, E{arg} is the expected value of the argument, T indicates vector 
transposition. The dimension of the matrix C is n×n. Considering the radiometry and statistical information 
issued for the image, we observe the advantages and drawbacks of each feature. Indeed, the edge detector allows 
accurate location of area boundaries, but gives false edges for textured regions and week response inside the 
region. The statistical feature, it provides a good model for textured regions, but week localization of area 
boundaries. Within the actual framework, the two features are complementary in their strength and weakness. 
Indeed, the statistical information gives good information inside the region compared to the edge map that 
provides accurate location of the region limits when we get closer to the contour. Considering these facts, the 
external forces applied on the snake are obtained by a weighted combination of both statistical and radiometry 
based values. For clarity in the following formulas, we will work for a given time t=t0 and omit this time 
argument. The external force at the curvilinear abscise on the snake is defined as follows: 
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where τ ∈ [0,1] is a calculated weighting combination value, Grad(v(s)) is the multi-band edge detector 
response, Gradmean is the mean value of the gradient evaluated for the specific type of region according to the 
hole image. The Dist(v(s)) evaluates the proximity of a pixel to the statistical properties of the region. From this 
formulation, we can observe that when a measure of the external energy is taken inside the region, the first term 
of equation (6) (radiometry measure) is close to one. Thus, the statistical measure is prioritized. Also, when the 
measure is taken near a high edge value, the first term is close to zero and cancels the effect of statistical. This 
observation allows the following dynamic formulation for the τ argument: 
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where k ∈ [0,1] is a weighting constant. The Dist(v(s)) function in equation (6) can be defined using the 
Mahalanobis distance. The Mahalanobis distance not only looks at variations (variance) between the range for 
one spectral band, but also at the inter-spectral level (covariance). Thus, the Mahalanobis distance defines a 
multi-dimensional metric space whose boundaries determine the range of variation that is acceptable for 
unknown samples to be classified as members of the population. This Mahalanobis distance for a sample x from 
m is defined as follow: 
 
 ( ) ( )mm x-Cx- 1T −  (8) 
 
Since we assume that x follows a gaussian distribution, we know that the Mahalanobis distance follow a 2χ  
distribution (Saporta, 1990) with n degrees of freedom (n being the number of bands for the multi-spectral 
image). Thus, we can set a threshold value based on some confidence value (1% for instance). This threshold 
value will serve to normalize the calculated Mahalanobis distance for tested samples and also to identify outliers. 
Thus, the Dist(v(s)) function is defined as follow: 
 

 ( )( ) ( )( ) ( )( )
istthresholdD
svCsvsvDist

T mm 1 −−
=

−

 (9) 

 
where thresholdDist is given by the 2χ  table value according to the dimension of the data and to the desired 
confidence value. 
 
4 FINITE ELEMENTS 
 
As mentioned earlier, the database vectors serve to initialize the snake using a finite elements approach. The 
finite elements approach offers accurate discritization of derivatives and optimizes time processing since it has 
fewer elements to cope with. The interested reader will find all details in Bentabet et al (2001). To summarize, 
the discretizing of the parametric curve v(s) into finite elements leads to an expression for each element given 
by: 
 ( ) ( ) [ ]ee VsNsv ⋅=  (10) 

 

where L  denotes row vectors and [ ]L  matrices or column vectors. N(s) is the set of interpolation curves. In 

our case, we used a Hermite basis functions ( ) ( ) ( )sNsNsN m,,, 21 K  defining the form of the interpolating 

curve. Ve is a two-column matrix [ ]ee YX ,  of control nodes inserted at regular intervals of the initial curve 
issued from the database. The global energy minimization is performed using the Euler Lagrange equation 
(∇Etot=0). This leads to the following differential equation: 
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where γ controls the speed of evolution of the snake. Equation (11) is discretized using the finite elements 
detailed in Bentabet et al (2001). The final iterative equation is given as follow: 
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where I is the N×N identity matrix. K is an N×N matrix which depends on α, β and the shape of the interpolating 
curves. The Hermite polynomial base determine the elements of K. e

nTV  gives the location of the element nodes 
at iteration n. 
 
 
5 SNAKE PARAMETERS 
 
From the experience of existing works, it has been established that it is difficult to set the rigidity and the 
elasticity parameters of the internal energy of the snake correctly (Horritt, 1999). Indeed, they are usually fixed 
within a lengthy trial-and-error testing process. In this work, we estimate the rigidity parameter β from the 
average curvature of the initial database vectors as follow: 
 
 ( )curv⋅−⋅= 21maxββ  (13) 
 
where βmax is the maximum value assigned to the rigidity parmeter, curv  is a measure of the average curvature 
of the snake initialization using the segment of the database. β is evaluated knowing that the rigidity parameter is 
inversely proportional to the snake curvature. This parameter setting method was proposed and is described in 
more detail by Bentabet et al (2001). The elasticity parameter α is set to a value near zero in order to allow the 
snake to stretch according to the external energy only. While the minimization process is running, the snake 
parameters are decreased in parallel in order to enable the snake to fit accurately to the high curved parts of the 
area borders. Multiplying them with a constant factor smaller than one (0.75 for instance) allows the decrease of 
the snake parameter values. Also, updating the control nodes of the snakes optimizes the iterative energy 
minimization process. Indeed, three principal operations are performed: addition of new control points as the 
snake expands, deletion of control points according to the local curvature of the snake and lastly, the stopping of 
control points when the optimal locations are reached. 
 
 
6 ALGORITHM 
 
The proposed algorithm takes as input the area vector database coordinates and a multi-spectral image of the 
same region. This algorithm can be summarized as follow: 
 
 Perform multi-spectral edge detection; 
 For every area vector to update from the database: 

 Compute the statistics of the region using equation (4); 
 Set the initial α parameter and compute the initial β parameter using equation (13); 
 Until the snake energy is not minimum: 

 Compute the external force of the snake from equation (6);  
 Compute the new location of the region using equation (12); 
 Decrease the snakes parameters; 
 If needed: 

 Adjust the snake topology by re-sampling control points and/or stopping control points. 
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7 EXPERIMENTAL RESULTS 
 
The proposed approach was experimented on Landsat7 images using 7 bands to update features of the Canadian 
National Topographic Database (NTDB). The presented results in figure 1 show two kinds of patterned areas. 
The region 1 and 2 represent water regions that are characterized by a low variance and a high value for the 
gradient. In contrast, region 3 defines a clearing in a forested area. This surface is characterized by a high 
variance and low gradient. The flexibility of weighting between statistics and gradient allowed us to deal with 
these two kinds of patterned areas providing greater localization accuracy. The final snake locations are drawn 
over the fourth radiometric band of the Landsat image portion. To visually evaluate these results, one should 
consider that other radiometric bands of the image might contain complementary information that cannot be seen 
on the image where the results are displayed. 
 
8 CONCLUSION 
 
Our work demonstrates the importance of using snakes and multi-spectral images for updating existing spatial 
area information. We combined statistics and radiometry for the external energy. An efficient implementation 
using finite elements has been proposed providing accurate localization. 
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Figure 1: Experimental results with Landsat 7 images for two types of area. 
 Departement of Natural Resources Canada. All rights reserved. 
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