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Abstract

A lexicon containing explicit mappings between words and pro-
nunciations is an integral part of most automatic speech recog-
nizers (ASRs). While many ASR components can be trained or
adapted using data, the lexicon is one of the few that typically
remains static until experts make manual changes. This work
takes a step towards alleviating the need for manual interven-
tion by integrating a popular grapheme-to-phoneme conversion
technique with acoustic examples to automatically learn high-
quality baseform pronunciations for unknown words. We ex-
plore two models in a Bayesian framework, and discuss their
individual advantages and shortcomings. We show that both are
able to generate better-than-expert pronunciations with respect
to word error rate on an isolated word recognition task.

Index Terms: grapheme-to-phoneme conversion, pronuncia-
tion models, lexical representation

1. Introduction
In many ways, the lexicon remains the Achilles heel of modern
automatic speech recognizers (ASRs). Unlike stochastic acous-
tic and language models that learn the values of their parameters
from training data, the baseform pronunciations of words in an
ASR vocabulary are typically specified manually (usually along
with the basic phoneme inventory itself), and do not change, un-
less they are tweaked by an expert.

A more desirable solution would be one whereby the basic
linguistic units of a language, and the associated lexical pronun-
ciations could be determined automatically from a large amount
of speech data. While there has been some research oriented
in this direction, there has also been research that addresses
an important practical problem having to do with generating
pronunciations for new words. One common approach is to
use some form of letter-to-sound generation model to predict
pronunciations of new words [1, 2, 3]. An extension of this
idea is to incorporate spoken examples to refine the pronuncia-
tion [4, 5, 6, 7].

In this work, we also explore the use of spoken examples of
new words to improve upon the pronunciation generated by an
initial letter-to-sound model. Our research differs from previ-
ous work in the stochastic learning framework. In our case, we
use an n-gram graphone-based model as the basis for our initial
estimate of a pronunciation [3]. The graphone model is used as
a form of prior to condition our expectation of possible pronun-
ciations of a new word, given its spelling. We then use spoken
examples to further refine the pronunciations, and explore two
different stochastic pronunciation models: the first cascades all
the examples to find a single best pronunciation, while the sec-
ond creates a pronunciation mixture model (PMM) to consider
multiple pronunciations. We compare both approaches on the
telephone-based PhoneBook corpus of isolated words and find

that they are able to recover expert-level pronunciation base-
forms with relatively few example utterances.

In order to show the inherent robustness of the parallel
PMM approach, we also collect a noisy set of Internet-based
spoken examples using a crowdsourced data recording method.
Despite the acoustic mismatch and varied quality of this corpus
compared to the clean PhoneBook speech, we observe that pro-
nunciations generated from the PMM formulation are still able
to achieve a significant reduction in word error rate (WER) over
manually created baseforms.

2. Grapheme-to-Phoneme Conversion
Following the work of [1, 3], we construct an n-gram model
over graphone sequences. We let w denote a grapheme se-
quence drawn from the set of all possible grapheme sequences
W and b denote a phoneme sequence drawn from the set of all
possible phoneme sequences, or baseforms B. A joint model of
the letter-to-sound task can be formalized as:

b∗ = arg max
b∈B

P (w,b) (1)

A graphone, g = (w, b) ∈ G ⊆ (W∪{ε})×(B∪{ε}), is a sub-
word unit that maps a grapheme subsequence, w, to a phoneme
subsequence, b. In this work, we restrict our attention to singu-
lar graphones, in which a mapping is made between at most one
grapheme and at most one phoneme (omitting the ε to ε map-
ping). Taken together, a sequence of graphones, g, inherently
specifies a unique sequence of graphemes w and phonemes b;
however, there may be multiple ways to align the pair (w, b)
into various graphone sequences g ∈ S(w,b). The following
table shows two possible graphone segmentations of the word
“couple”.

w = c o u p l e

b = k ah p ax l
= k ah p ax l

g1 = c/k o/ah u/ε p/p ε/ax l/l e/ε
g2 = c/k o/ε u/ah p/p ε/ax l/l e/ε

Given this ambiguity, employing graphones in our joint
model requires us to marginalize over all possible segmenta-
tions. Fortunately, the standard Viterbi approximation has been
shown to incur only minor degradation in performance [3].

P (w,b) =
X

g∈S(w,b)

P (g) ≈ max
g∈S(w,b)

P (g) (2)

In our work, we use the open source implementation pro-
vided by [3], which runs the Expectation-Maximization (EM)
algorithm on a training corpus of word-pronunciation pairs to
automatically infer graphone alignments. We then train a stan-
dard 5-gram language model over the automatically segmented
corpus of graphones. This configuration has been shown to pro-
duce good results for singular graphones [8].
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3. Graphone-guided Phonetic Recognition
We begin by exploring a model which incorporates one example
utterance with the graphone model to find a single high proba-
bility baseform. Given a word or grapheme sequence w and
an example utterance, u, of w we deduce the baseform for b∗

using a similar framework to that described in [4].

b∗ = arg max
b∈B

P (b|w, u) = arg max
b∈B

P (b,w)p(u|b,w) (3)

We replace the decision tree originally described in [4]
with a graphone n-gram model. For each word, w, a rec-
ognizer, Rw, can be constructed using weighted finite-state-
transducers (FSTs) to model the mapping of acoustic model
labels to phoneme sequences, weighted by graphone language
model parameters. Given an FST, C, to map context-dependent
models to phones, and an FST, P , of phonetic rules to map
phones to phonemes, we construct Rw = C ◦ P ◦ PLMw,
where PLMw is a phoneme language model created by trans-
forming graphones to phones for both the input and output of
a w-constrained graphone language model. Decoding during
recognition of the single example utterance can be performed
using a forward Viterbi search and a backward A∗ search.

The procedure described above only incorporates a sin-
gle example utterance into the pronunciation generation frame-
work. The following sections introduce two methods of utiliz-
ing a set of M example utterances, uM

1 , of a given word, w.

3.1. Cascading Recognizers

As in equation 3, we apply Bayes rule with the additional as-
sumption of independence between example utterances given
their pronunciations to model the probability of a baseform
given the data:

b∗ = arg max
b∈B

P (b,w)

MY

i=1

p(ui|b,w)

This multiple utterance recognizer can be implemented as
a cascade of single utterance recognizers. Recognition can be
conceptualized as composing acoustic information, A, with Rw

for each utterance to produce a hypothesis lattice U . These
lattices can also be represented as FSTs, and projecting their
outputs to the inputs (denoted [. . .]oo) allows us to effectively
multiply in a subsequent p(ui|b,w) term:

U1 = A1 ◦ Rw and Ui = Ai ◦ [Ui−1]oo

In practice, this formulation introduces concerns regarding
the path-pruning performed by the beam-search in the recog-
nizer, but we defer the discussion of this phenomenon for the
moment.

3.2. Pronunciation Mixture Model

A second formulation of pronunciation generation informed by
multiple example utterances is that of a pronunciation mix-
ture model (PMM). We parameterize our model with θb,w =
P (b,w) under the assumption that a particular word w and
baseform b have some joint probability, however small, of map-
ping to one another. In a setup similar to the work described
in [6], the EM algorithm is used to update these parameters
based on the data (uM

1 ,w). Whereas Li et al. optimize gra-
phone language model parameters, our goal here is to directly
learn weights for word pronunciations, hence the PMM charac-
terization. We begin by characterizing the log-likelihood of the
data.

L(θ) =
MX

i=1

log p(ui,w; θ) =

MX

i=1

log
X

b∈B
θw,b · p(ui|w,b)

The parameters, θ, are initialized to our graphone n-gram
model scores and multiple iterations of the EM algorithm are
run. The following equations specify the expectation and max-
imization steps respectively:

E-step: P (b|ui,w; θ) =
θw,b · p(ui|b,w)P
p θw,p · p(ui|p,w)

M-step: θ∗w,b =
1

M

MX

i=1

P (b|ui,w; θ)

Although in principle we could apply these weights in a
stochastic lexicon, for this work we simply pick the baseform(s)
b with the highest probability as the pronunciation of w.

b∗ = arg max
b∈B

P (w,b; θ∗) = arg max
b∈B

θ∗w,b (4)

4. Experimental Setup
To experiment with the two pronunciation models, we use a
landmark-based speech recognizer [9]. MFCC averages are
computed over varying durations around hypothesized acoustic-
phonetic landmarks to generate 112-dimensional feature vec-
tors, which are then whitened via a PCA rotation. The first 50
principal components are kept as the feature space over which
diphone acoustic models are built. Each model is a diagonal
Gaussian mixture with up to 75 mixture components trained
on a separate corpus of telephone speech. The search space
in the recognizer is modeled using a flexible weighted FST
toolkit [10].

The pronunciation models were evaluated on the task of iso-
lated word recognition using the PhoneBook corpus [11]. To
ensure adequate data for our baseline experiments, we chose a
random 2,000 word subset that each had example spoken utter-
ances from at least 13 distinct speakers. We also ensured that
expert pronunciations existed in our lexicon. We held out two of
the 13 utterances, one from a male speaker and the other from a
female speaker, to generate a 4,000 utterance set.

While the individual recognition experiments described in
the next section are limited to the 2,000 selected words, a far
larger lexicon was used to train the initial graphone language
model parameters. For this work we used an internal dictionary
that contains over 150,000 manually generated entries. To sim-
ulate the out-of-vocabulary scenario for which graphones are
typically employed, we removed the 2,000 trial words from our
lexicon, and further pruned similarly spelled words using a sim-
ple edit distance criterion. We then trained a 5-gram graphone
language model according to the procedures described in [8].

We conducted two baseline experiments to frame our re-
maining results. The first was a graphone-only baseline in
which we performed isolated word recognition over the 4,000
test utterances using the 2,000 word pronunciation lexicon gen-
erated from the graphone model alone according to equation 2.
Since no acoustic information was used, this provided us with
an initial unsupervised WER of 16.7%. The second baseline
was again the 2,000 word-recognition task; however, this time
we explicitly used the manually generated pronunciations orig-
inally found in our lexicon, giving us a target WER of 12.4%,
achievable directly by experts.
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Figure 1: Word Error Rate (WER) as a function of the number
of example utterances used to adapt the underlying lexicon.

It should be noted that about 160 words in the expert-
lexicon had multiple baseforms associated with them. For ex-
ample, the word “youths” was represented as both y uw dh z and
y uw th s. Initial experiments indicated that allowing multiple
baseforms could give an advantage to the expert-lexicon that
could be leveraged in the other frameworks. We begin however
by choosing only a single pronunciation for inclusion in an au-
tomatically generated lexicon. Even so, were able to show the
feasibility of recovering and even surpassing the performance
of manually generated baseforms.

5. Experimental Results
Having established our baseline experiments, we evaluated both
the cascading recognizer approach and the PMM by varying the
number of training utterances for each, and evaluating the WER
of the test set against the lexicons produced under each condi-
tion. The resulting plot is shown in figure 1. It is encouraging
to note that both models perform admirably, achieving expert-
level pronunciations with just three example utterances.

5.1. Cascading Recognizers

The cascading recognizer approach of section 3.1 improves
slightly faster than the PMM technique. With seven utterances,
this model surpasses the expert baseform WER by nearly 1%.

An inherent assumption of this model is that there is a sin-
gle, correct underlying pronunciation. This fact may explain the
slight advantage that this approach has, since our experimental
design only allows a single baseform for each word in our auto-
matically generated lexicon. A model which directly computes
the single most likely baseform given the data is thus particu-
larly well-suited to the task.

Ideally, a pronunciation generation model would be able to
cope with words that have multiple pronunciations, such as “ei-
ther”. It probably does not make sense, for example, to be mul-
tiplying the acoustic scores of one utterance pronounced iy dh
er with a second pronounced ay dh er.

Lastly, another potential pitfall of this approach is that
unless special care is taken to customize the pruning proce-
dure, acoustic variation will inherently cause the pronunciation
search space to become successively smaller as the composi-
tions prune low-probability paths. This is especially problem-
atic when considering noisy utterances. Indeed, even with the
clean speech comprising the PhoneBook corpus, by the 11th
utterance, N -best lists produced by the cascaded recognizers
contained an average of just 10.7 entries.

τ 0.2 0.1 0.05

Avg. # b per w 1.25 2.10 2.21
WER (%) 11.2 11.0 11.5

Table 1: By varying a threshold τ over the weights learned in
the PMM, we can incorporate multiple baseform pronunciations
for individual words.

5.2. Pronunciation Mixture Model

To illustrate the performance of the PMM, we plot in figure 1
the WER obtained by generating a lexicon according to equa-
tion 4 after two iterations of EM. This stopping criterion was
determined by constructing a development set of 1,500 previ-
ously discarded PhoneBook utterances and running recognition
using lexicons generated after each EM iteration. Alternatively,
EM could have been run to convergence and then smoothed,
again with the aid of a development set.

While the PMM requires slightly more data to achieve the
lowest reported WER of the cascade approach (11.5%), it is
eventually able to do so once all 11 training utterance are incor-
porated into the mix. It is clear from the figure that with only
a single training example EM begins to over-fit the acoustic id-
iosyncrasies of that particular example. Though not shown in
the figure, this effect is magnified for small amounts of training
data when EM is run for a third and fourth iteration.

One advantage of the PMM approach is that it directly mod-
els multiple pronunciations for a single word, an avenue we be-
gin to explore with a second set of preliminary experiments.
We use a simple weight threshold θw,b > τ , to choose base-
forms for inclusion. As in the single baseform case, we dis-
card the weights once the baseforms have been chosen, but we
ultimately envision them being utilized during decoding in a
stochastic lexicon.

Table 1 shows WER obtained by recognizers with lexicons
generated under varying values of τ . Choosing τ = 0.1 yields
the best reported WER of 11.0%, a 1.4% absolute improvement
over the expert-baseline. It’s interesting to note that this thresh-
old implies an average of 2.1 pronunciations per word, almost
double that of the expert lexicon which has 1.08.

5.3. Noisy Acoustic Examples

Models that incorporate acoustic information into lexicon adap-
tation become particularly useful in domains where acoustic
data is cheaper to obtain that expert input. In [6], example utter-
ances of spoken names are obtained in an unsupervised fashion
for a voice-dialing application by filtering for interactions where
the user confirmed that a call should be placed. Unfortunately,
not all domains are amenable to such a convenient context-filter
to find self-labeled utterances.

To collect arbitrary acoustic data, we turned to the Ama-
zon Mechanical Turk (AMT) cloud-service. AMT has been de-
scribed as a work-force in the cloud since it enables requesters
to post web-based tasks to any workers willing to accept micro-
payments of as little as $0.005 upon completion. The service
has become popular in the natural language processing commu-
nity for collecting and annotating corpora, and has recently been
gaining use in the speech community. In [12], we were able to
collect over 100 hours of read speech, in under four days.

In this work, we used a similar procedure to augment our
PhoneBook corpus with another 10 example utterances for each
of its 2,000 words at a cost of $0.01 per utterance. Whereas
in [12] we took care to filter the collected speech to obtain high-
quality sub-corpora, we took no such precautions when collect-
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# Utts. Iter.1 2 3 4

Phonebook 11 12.3 11.5 11.7 12.0
AMT 10 12.3 12.0 13.0 15.3
Phonebook+AMT 21 12.3 11.6 11.6 12.0

Table 2: PMM results incorporating spoken examples collected
via Amazon Mechanical Turk.

Word Dictionary Baseform Top PMM Baseform

parishoners [sic] p AE r ih sh ax n er z p AX r ih sh ax n er z
traumatic tr r AO m ae tf ax kd tr r AX m ae tf ax kd
winnifred w ih n ax f r AX dd w ih n ax f r EH dd

crosby k r ao Z b iy k r aa S b iy
melrose m eh l r ow Z m eh l r ow S
arenas ER iy n ax z AX R iy n ax z
billowy b ih l OW iy b ih l AX W iy

whitener w ay TF AX n er w ay TD n er

airsickness eh r SH ih kd n EH s eh r S ih kd n AX s
Isabel AX S AA b eh l IH Z AX b eh l

Table 3: Example baseform changes between expert dictionary
and top PMM hypothesis. Phonemes involved in the difference
have been capitalized.

ing these example utterances. Thus, in addition to other sources
of mismatch between the data and our acoustic model, this noisy
data poses a challenge to even a recognizer built on expert pro-
nunciations. Running the expert baseline recognizer over these
20,000 utterances yields a very high WER of 50.1%. Of course,
since we could make no guarantees that the worker even read
the word, the true error rate is unknown.

It might seem, then, that using this data to generate valid
pronunciations is a dubious exercise. Indeed, this data set con-
founds the cascading recognizer configuration since a single
noisy utterance can throw off the entire cascade. Fortunately,
the PMM approach has the nice property that a few noisy scores
do not significantly affect the totals.

Repeating a subset of the experiments of the previous sec-
tion, we again show four iterations of the PMM approach, using
the PhoneBook utterances alone, AMT-PhoneBook combined
utterances, and the AMT-collected corpus alone. Despite the
noisy nature of the cloud-collected corpus, table 2 shows that
there is little degradation in WER when using all 21 utterances
for every word. Perhaps more pleasing is the fact that generat-
ing pronunciations based on just the AMT-data still manages to
out-perform even the expert generated pronunciations, achiev-
ing a WER of 12.0% compared with 12.4% for the experts.

5.4. Analysis of Learned Baseforms

In order to quantify some of the differences between the expert
and learned baseforms, we ran NIST align software to tabulate
differences between the reference expert baseform, and the top
choice hypothesis of the PMM model. Of the 2000 baseform
pairs, 83% were identical, while the remainder mostly con-
tained a single substitution. Most of the substitutions involved
vowels, typically a schwa. Only 2% of the data contained an ad-
ditional insertion or deletion. Most of these involved retroflexed
vowel sequences.

Table 5.4 shows examples of common confusions includ-
ing vowel and consonant substitutions, vowel/semi-vowel se-
quence perturbations, syllable deletions, and outright pronunci-
ation corrections. Although the latter were few, it was encour-
aging to see that they did occur.

6. Summary and Future Work
This work has introduced and compared two promising ap-
proaches to generating pronunciations by combining graphone
techniques with acoustic examples. Furthermore, we have
shown that even in the presence of significant noise, a pronun-
ciation mixture model can reliably generate improved baseform
pronunciations over those generated by experts.

The improvements we have observed by allowing multiple
pronunciations in our lexicon suggests two other avenues of ex-
ploration. First, we might try to incorporate the weights learned
by a PMM directly into a stochastic lexicon. Second, rather than
relying on pronunciation rules to govern the mapping between
phonemes and phones, we might try to learn lexicon mixture
entries directly at the phonetic level.

Another area ripe for exploration is the joint training of lexi-
cal baseforms and the acoustic model. A first experiment might
hold each component fixed, while training the other, in hopes
of converging on a lexicon consistent with the acoustic models
which are in turn directly optimized for the target domain.

If these initial results extend to other domains, the possi-
bility of learning better-than-expert baseforms in arbitrary do-
mains opens up many possibilities for future work. For exam-
ple, when faced with an out-of-vocabulary word with a known
spelling, any system could programmatically post a task to
AMT and collect example utterances to generate a high qual-
ity entry in the lexicon.

Long term, the ultimate goal of this research might be to
learn pronunciations from entirely flat language models over
sub-word units. If it were feasible to simultaneously train the
lexicon, acoustic model, and sub-word language model from
scratch, large vocabulary speech recognizers could be built for
many different languages with little to no expert input, if given
enough orthographically transcribed data.
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