
Dialogue Management Based on Entities and Constraints

 Yushi Xu Stephanie Seneff

Spoken Language Systems Group
MIT Computer Science and Artificial Intelligence Laboratory

 United States

 {yushixu, seneff}@csail.mit.edu

Abstract

This paper introduces a new dialogue man-

agement framework for goal-directed conver-

sations. A declarative specification defines the

domain-specific elements and guides the di-
alogue manager, which communicates with the

knowledge sources to complete the specified

goal. The user is viewed as another knowledge

source. The dialogue manager finds the next

action by a mixture of rule-based reasoning

and a simple statistical model. Implementation

in the flight-reservation domain demonstrates

that the framework enables the developer to

easily build a conversational dialogue system.

1 Introduction

Conversational systems can be classified into

two distinct classes: goal-directed and casual

chatting. For goal-directed systems, the system is

usually more “knowledgeable” than the user, and

it attempts to satisfy user-specified goals. The

system’s conversational strategies seek the most

efficient path to reach closure and end the con-

versation (Smith, Hipp, & Biermann, 1995).

 An essential commonality among different

goal-directed applications is that, at the end of a

successful conversation, the system presents the

user with a “goal” entity, be it a flight itinerary, a

route path, or a shopping order. Different con-

versations result from different properties of the

goal entities and different constraints set by the

knowledge sources. The properties define the

necessary and/or relevant information, such as
flight numbers in the flight itinerary. Constraints

specify the means to obtain such information.

For examples fields “source”, “destination” and

“date” are required to search for a flight. Once

the properties and constraints are known, dialo-

gue rules can easily map to dialogue actions.

 This paper introduces a dialogue management

framework for goal-directed conversation based

on entity and knowledge source specification.

The user is viewed as a collaborator with the di-

alogue manager, instead of a problem-raiser. The

dialogue manager follows a set of definitions and

constraints, and eventually realizes the goal enti-

ty. It also incorporates a simple statistical engine

to handle certain decisions.

2 Related Work

In recent years, statistical methods have gained

popularity in dialogue system research. Partially

Observable Markov decision processes have

been the focus of a number of papers (Levin,

Pieraccini, & Eckert, 1997; Scheffler & Young,

2001; Frampton & Lemon, 2006; Williams &

Young, 2007). These approaches turn the dialo-

gue interaction strategy into an optimization

problem. The dialogue manager selects actions

prescribed by the policy that maximizes the re-

ward function (Lemon & Pietquin, 2007). This

machine learning formulation of the problem

automates system development, thus freeing the

developers from hand-coded rules.

 Other researchers have continued research on

rule-based frameworks, in part because they are

easier to control and maintain. One common ap-

proach is to allow developers to specify the tasks,
either using a conditioned sequential script (Zue,

et al., 2000; Seneff, 2002), or using a task hie-

rarchy (Hochberg, Kambhatla, & Roukos, 2002).

In (Bohus & Rudnicky, 2003)’s work, a tree of

dialogue agents, each of which handles different

dialogue actions, is specified to control the di-

alogue progress. The knowledge has also been

specified either by first order logic (Bühler &

Minker, 2005) or ontology information (Milward

& Beveridge, 2004).

3 Dialogue Manager

Figure 1 illustrates the architecture of the pro-

posed dialogue management framework. Com-

munication with the dialogue manager (DM) is

via “E-forms” (Electronic forms), which consist

of language-independent key-value pairs. The

language understanding and language generation

components mediate between the DM and vari-

ous knowledge sources (KS), including the user,

to interpret the output from the KS and generate

input that the KS can understand. Each KS han-

dles one or more sub-domains. For example, a

date/time KS can resolve a date expression such

as “next Tuesday” to a unique date; a flight data-

base can provide flight information. The KSes

are provided by the developer. They can be local

(a library) or external (a separate executable).

Within this architecture, the user is viewed as

a special KS, who understands and speaks a nat-

ural language, so that the whole architecture is

completely DM-centered, as shown in Figure 1.

An external language understanding system

parses the original input into an E-form, and an

external language generation component con-

verts the output E-form into the desired natural

language. Each particular communication with

the user is analogous to other communications

with the various KSes. The user is always

ranked the lowest in the priority list of the KSes,

i.e., only when other knowledge sources cannot
provide the desired information does the DM try

to ask the user.

Figure 1. System Framework.

For example, in the flight reservation system,

suppose the DM first tries to determine the

source airport. If there exists a KS that contains

this user’s home airport information, the DM will

adopt it. If no other KS can provide the informa-

tion, the DM asks the user for the departure city.

3.1 Entity-Based Specification

Our framework uses an entity-based declarative

domain specification. Instead of providing the

action sequence in the domain, the developer

provides the desired form of the goal entity, and

the relationships among all relevant entities.
 The specification is decomposed into two parts.

The first part is the declaration of the knowledge

sources. Each KS may contain one or more sub-

domains, and an associated “nation” defines the

language processing parameters.

 The second part is the entity type definition.

For a particular domain, there is one goal entity

type, and an arbitrary number of other entity

types, e.g., two entity types are defined in the

flight reservation system: “itinerary” and “flight.”

The definition of an entity type consists of a set

of members, including their names, types and

knowledge domain. A logical expression states

the conditions under which the entity can be re-

garded as completed; e.g., a completed itinerary

must contain one or more flights. The entity de-

finition can also include optional elements such

as comparative/superlative modifiers or custo-

mized command-action and task-action map-

pings, described in more detail later.

The entity-based specification has an advan-

tage over an action-based specification in two

aspects. First, it is easier to define all the entities

in a dialogue domain than to list all the possible

actions, so the specification is more compact and

readable. Secondly, the completion condition and

the KS’s constraints capture the underlying mo-

tivation of the dialogue actions.

Figure 2. The Main Loop of the DM.

3.2 Dialogue Execution

Similar to the Information-State-Update (Larsson

& Traum, 2000) idea, the DM maintains an in-

ternal state space with all up-to-date information

about the entities. It also keeps a task list tree

with a root task “complete goal.” In task execu-

tion, subtasks (child node) and/or subsequent

(right sibling node) tasks are issued. Each time

the left-most leaf task is executed, and when a

task is completed, the DM checks all tasks and

removes those that have been rendered obsolete.

 Ten basic tasks are pre-defined in the DM,

including complete_entity, inquire_ks, and some

other tasks related to entity manipulation. A

complete_entity task evaluates the completion

Dialogue

Manager

Language

Generation

Language

Understanding

External KS Local KS User

Domain Specification

 E-form in

Extract

Information

Issue New

Tasks

Retrieve Left-

Most Task

Execute Task

Remove

Obsolete Tasks

Pause?

E-form out

User Command?
Y

N

Y
N

conditions and issues appropriate tasks if they

are unmet. An inquire_ks task handles communi-

cation with the KSes, and issues subtasks if the

query does not satisfy the constraints. A default

action associated with each task can be replaced

by customized task-action mappings if needed.

Figure 2 shows the main loop of the DM. The

process loops until a “pause” is signaled, which

indicates to await the user’s spoken response. An

example will be given in Section 4.

3.3 Statistical Inference

To cope with situations that rules cannot handle

easily, the framework incorporates a simple sta-

tistical engine using a Space Vector Model. It is

designed only to support inference on specific

small problems, for example, to decide when to

ask the user for confirmation of a task. Models

are built for each of the inference problems. The
output label of a new data point is computed by

weighting the labels of all existing data by their

inverse distances to the new data point.

 Equations (1) to (3) show the detailed math of

the computation, where x is the new data point

and d
j
 is the j-th existing data point. α is a fading

coefficient which ranges from 0 and 1. β, a cor-

rection weight, has a higher value for data points

resulting from manual correction. δ(∙) is 1 when

the two inputs are equal and 0 otherwise. sim(x,

d) defines the similarity between the new data

point and the existing data point. Function dis(∙)
indicates the distance for a particular dimension,

which is specified by the developer. The weight

for each dimension wi is proportional to the

count of distinct values of the particular dimen-

sion c(Di) and the mutual information between

the dimension and the output label. ���� = argmax� � ���������, �� � ∙ �������, ���� (1)

�����, � = ! "#∑ %� ∙ ��&���, ��� � ≠
) � = * (2)

+� ∝ -�.��/�.�, ��.�� (3)

4 Implementation in Flight Domain

The framework has been implemented in the

flight reservation domain. A grammar was used

to parse the user’s input, and a set of generation

rules was used to convert the DM’s output E-

form into natural language (Seneff, 2002). Two

local KSes are utilized: one resolves complex

date and time expressions, and one looks up air-

port/city codes. A local simulated flight DB will
be replaced by a real external one in the future.

 Figure 3 illustrates the logic of the flight res-

ervation domain. The database has two alterna-

tive sets of conjunctive constraints “destination

& source & date” and “flight# & date”. Two

entity types are defined. The itinerary entity type

contains a list of flights, a number of expected

flights and a price, with completion condition

“#flights > 0”. The flight entity type contains

members: flight number, date, source, destination,

etc., with completion condition “flight# & date”.

 Table 1 illustrates dialogue planning. In the

execution of flight.complete_entity(), the DM

determines that it needs a flight number accord-

ing to the entity’s completion condition. Howev-

er, a destination is required to search the flight

DB. No other KS offers this information, so the

system turns to the user to ask for the destination.

 The statistical engine currently supports infe-

rence for two problems: whether the execution of

a task requires the user’s confirmation, and

whether the pending list is in focus.

 Several customized task actions were defined

for the domain. For example, after adding the

first flight, a customized task action will auto-

matically create a return flight with appropriate

source and destination, unless a one-way trip has

been indicated. The implementation of the cus-
tomized task actions required only about 550

lines of code.

User: I want a flight to Chicago
create itinerary
itinerary.complete_entity()
 itinerary.add_entity(:flights)

 create flight

 flight.complete_entity()

 flight.fill_attribute(flight#)
 inquire_ks(flight_db, flight#)
 flight.fill_attribute(destination)

 inquire_ks(user, destination)

System: What city does the flight leave from?
Table 1. An example of the system's reasoning

process. Shaded lines denote statistical decisions.

5. Preliminary Evaluation

We conducted a preliminary evaluation with a

simulated flight database and a simulated user

model. The statistical inference model was

trained with 210 turns from 18 conversations. A

personality-based user simulator creates random

scenarios and simulates user utterances using a

probabilistic template-based method. In 50 con-

versations between the simulated user and the

DM, the average number of turns was 14.58,

with a high standard deviation of 8.2, due to the

variety of the scenario complexity and personali-

ties of the simulator users. Some simulated users

Figure 3. Dialogue Logic for the Flight Booking Domain.

were intentionally designed to be very uncooper-

ative. The DM was able to handle these situa-

tions most of the time.

We examined all the simulated dialogues turn

by turn. For a total of 729 turns, the DM re-

sponded appropriately 92.2% of the time. One

third of the failed turns were due to parse failures.

Another third resulted from insufficient tutoring.

These situations were not well covered in the

tutoring phase, but can be easily fixed through a

few more manual corrections. The rest of the

errors came from various causes. Some were due

to defects in the simulator.

6 Conclusions and Future Work

We have introduced a framework for goal-based

dialogue planning. It treats the user as a know-

ledge source, so that the entire framework is

DM-centered. A declarative entity-based specifi-

cation encodes the domain logic simply and

clearly. Customized task actions handle any do-

main-dependent computations, which are kept at

a minimum. A simple statistical engine built into

the framework offers more flexibility.

In the future, we will integrate the dialogue

manager into a speech-enabled framework, and

build spoken dialogue systems for flight reserva-

tions and other domains of interest.

Acknowledgments
This research is funded by Quanta Computers,

Inc., through the T-Party project.

References
Bohus, D., & Rudnicky, A. I. (2003). RavenClaw: Dialog

Management Using Hierarchical Task Decomposition

and an Expectation Agenda. Proc. Eurospeech. Geneva,
Switzerland.

Bühler, D., & Minker, W. (2005). A REASONING
COMPONENT FOR INFORMATION-SEEKING AND

PLANNING DIALOGUES. Spoken Multimodal

Human-Computer Dialogue in Mobile Environments ,

28, 77-91.
Frampton, M., & Lemon, O. (2006). Learning more

effective dialogue strategies using limited dialogue
move features. Proc. ACL, (pp. 185 - 192). Sidney,

Australia.

Hochberg, J., Kambhatla, N., & Roukos, S. (2002). A
flexible framework for developing mixed-initiative

dialog systems. Proc. the 3rd SIGdial workshop on

Discourse and dialogue , (pp. 60-63). Philadelphia,

Pennsylvania .
Larsson, S., & Traum, D. (2000). Information state and

dialogue management in the TRINDI dialogue move

engine toolkit. Natural Language Engineering , 6 (3-4),
323-340.

Lemon, O., & Pietquin, O. (2007). Machine learning for
spoken dialog systems. Proc. INTERSPEECH 2007,
(pp. 2685–2688). Antwerp, Belgium.

Levin, E., Pieraccini, R., & Eckert, W. (1997). Learning
Dialogue Strategies within the Markov Decision Process

Framework. Proc. ASRU 1997. Santa Barbara, USA.
Milward, D., & Beveridge, M. (2004). Ontologies and the

Structure of Dialogue. Proc. of the Eighth Workshop on

the Semantics and Pragmatics of Dialogue, (pp. 69-76).
Barcelona, Spain.

Scheffler, K., & Young, S. (2001). Corpus-based dialogue
simulation for automatic strategy learning and

evaluation. Proc. NAACL Workshop on Adaptation in

Dialogue. Pittsburgh, USA.
Seneff, S. (2002). Response Planning and Generation in the

Mercury Flight Reservation System. Computer Speech

and Language , 16, 283-312.

Smith, R. W., Hipp, D. R., & Biermann, A. W. (1995). An
architecture for voice dialog systems based on prolog-
style theorem proving. Computational Linguistics , 21

(3), 281-320.
Williams, J. D., & Young, S. (2007). Partially observable

Markov decision processes for spoken dialog systems.
Computer Speech & Language , 21 (2), 393-422.

Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen,
T. J., et al. (2000). JUPITER: a telephone-based
conversational interface for weather information. IEEE

Transactions on Speech and Audio Processing , 8 (1),
85-96.

