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ABSTRACT: 
 
Remotely Operated underwater Vehicles (ROVs) play an important role in a number of operations conducted in shallow and deep 
water (e.g.: exploration, survey, intervention, etc.), in several application fields like marine science, offshore construction, and 
underwater archeology. ROVs are usually equipped with different imaging devices, both optical and acoustic. Optical sensors are 
able to generate better images in close range and clear water conditions, while acoustic systems are usually employed in long range 
acquisitions and do not suffer from the presence of turbidity, a well-known cause of coarser resolution and harder data extraction. 
In this work we describe the preliminary steps in the development of an opto-acoustic camera able to provide an on-line 3D 
reconstruction of the acquired scene. Taking full advantage of the benefits arising from the opto-acoustic data fusion techniques, the 
system was conceived as a support tool for ROV operators during the navigation in turbid waters, or in operations conducted by 
means of mechanical manipulators.  
The paper presents an overview of the device, an ad-hoc methodology for the extrinsic calibration of the system and a custom 
software developed to control the opto-acoustic camera and supply the operator with visual information. 
 

1. INTRODUCTION 

During the last few years, there has been growing interest for 
the development of efficient methodologies and systems in the 
underwater research area, in order to deal with the challenging 
problems of monitoring, survey and data gathering. 
In the field of cultural heritage,  the scientific community and 
the international Cultural Heritage safeguarding bodies have 
established the need to promote, protect, and preserve, possibly 
in-situ, the submerged artefacts and sites. 
The CoMAS project, started in 2011, aims to develop new 
materials and technologies for supporting the restoration, 
conservation and documentation of underwater cultural 
heritage. The project goal is the definition of a conservation 
methodology that includes several stages: documentation, 
cleaning, restoration, maintenance and monitoring. 
One of the most challenging aspects of this project is the set-up 
of a special ROV (Remotely Operated Vehicle) devoted to the 
monitoring, routine cleaning (through the use of a custom 
mechanical manipulator), and 3D mapping of the submerged 
archeological structures. These specific tasks require the 
accurate localization of the vehicle within the operational 
environment and, above all, a clear representation of the 
underwater scene in presence of low visibility conditions. 
ROVs are usually equipped with different imaging devices both 
optical and acoustic. The acoustic systems typically give good 
results in long-range acquisition and do not suffer from the 
water turbidity, but the resulting data are affected by low 
resolution and accuracy. The optical systems, in contrast, are 
more suited for close-range acquisitions and allow for gathering 
high-resolution data and target details, but the results are 
constrained by a limited visibility range.  
Hence, the fusion of data captured by these two types of 
systems stands as a promising technique in underwater 
applications, as it allows for compensating their respective 
limitations. Since the two categories of sensors are based on 
different physical principles, they provide, in general, different 
information of the scene to be acquired, and different methods 

are employed to process the data. Therefore, the integration of 
the two types of data gathered from these sensors is a very 
promising and interesting field that calls for new solutions.  
Despite the difficulty of combining two modalities that operate 
at different resolutions, technological innovation and advances 
in acoustic sensors have progressively allowed for the 
generation of good-quality high-resolution data suitable for 
integration, and the related design of new techniques and 
systems for underwater scene reconstruction. 
The aim of this work is to describe the preliminary steps in the 
development of an opto-acoustic camera able to provide on-line 
3D reconstructions. Taking full advantage of the benefits arising 
from the opto-acoustic data fusion techniques, the system was 
conceived as a support tool for ROV operators during the 
navigation in turbid waters or in operation conducted by means 
of mechanical manipulators. The operator will be able to choose 
the most suitable visualization technique (optical, acoustic) 
according to the working conditions or, if needed, to fuse both 
of them in a single image where the missing parts of the 
acquired optical data are covered by the acoustic acquisitions. 
The remainder of this paper is organized as follows: Section 2 
presents the state-of-the-art concerning the integration of optical 
and acoustic sensors in the field of underwater applications, and 
the solutions adopted to fuse the data. Section 3 deals with the 
system configuration and the hardware specifications of the 
sensors that constitute the opto-acoustic camera. In Section 4 we 
formalize the extrinsic calibration problem of the system and 
provide a methodology to solve it. The conclusive section 
presents the main features and a first prototype of the user 
interface. 
 

2. RELATED WORKS 
 
Multisensor data fusion is a technology aimed to enable the 
combination of information coming from several sources, in 
order to form a unified picture. It represents a research field 
which has been extensively covered in the scientific 
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4. EXTRINSIC CALIBRATION OF THE SYSTEM  

During the development of the proposed 3D opto-acoustic 
camera was the alignment of the optical and acoustic 3D data, 
defined as sensor calibration problem, which allows data from 
one sensor with the corresponding data of the other sensor. 
Data alignment, that is, their transformation from each  local 
frame into a common reference frame for both sensors, is of 
critical importance for the successful deployment of the opto-
acoustic fusion system, since the 3D data generated by such 
sensors are so different from each other that they should be 
precisely matched in order to detect the spatial coordinates of a 
given point belonging to an object in both representations.  
Up to now, the works presented in literature concerning the 
integration between several types of sonar (single beam 
sounder, multibeam, 3D acoustic camera) and optical cameras 
adopt a sensor fusion approach, which is mapping-oriented, 
according to the classification proposed in (Nicosevici et al., 
2008). This means that the data acquired from the two sensors 
are described through geometric relationships (position and 
orientation), and the data fusion is performed by means of 
geometrical correspondences and registration.  
The alignment of 3D data is usually solved by performing the 
extrinsic calibration of the integrated system, i.e. by searching 
for the fixed - but unknown - rigid transformation which relates 
the local reference frame of the stereo optical subsystem with 
that of the acoustic camera, thereby obtaining the relative pose 
(position and orientation) between the two sensors.  
Now, let us assume that the two cameras have already been 
calibrated independently. In particular, with regard to the stereo 
optical system, the assumption is that both the intrinsic 
parameters of each optical camera (focal length, principal point, 
optical distortions and skew) and those of the extrinsic stereo 
pair (relative position between the two reference frames) have 
been determined. Downstream of this calibration process, it is 
possible to know the 3D coordinates of any point of the scene 
acquired by the optical subsystem with respect to its local 
reference frame (typically attached to the left camera of the 
stereo pair). 
Therefore, assuming that a point ݌௢ ൌ ሾݔ௢, ,௢ݕ  ௢ሿ்of the opticalݖ
reference frame corresponds to a point ݌௔ ൌ ሾxୟ, yୟ, zୟሿ்of the 
acoustic reference frame, the rigid transformation that relates 
the two coordinate systems may be expressed as: 

 
௢݌                                       ൌ ௔݌ࡾ ൅  (1)                                      ݐ

 
where  R =   3 x 3 orthonormal rotation matrix from the acoustic 

camera to the stereo optical camera reference 
frame 

                   t =  3D translation vector from the acoustic camera to 
the stereo optical camera reference frame 

 
Equivalently, indicating with ݌௢෦ and ݌௔෦ the homogeneous 
coordinates of the points ݌௢ and ݌௔ respectively, the 
aforementioned relation can be expressed as: 

 

                                     p୭෦ ൌ ቂ܀ t
0 1

ቃ
ୟ
	

୭
pୟ෦                               (2) 

 

where ቂࡾ ݐ
0 1

ቃ
௔
ൌ

௢
௢܂ ௔  = 4 x 4 homogeneous transformation 

matrix from the acoustic camera to 
the stereo optical camera reference 
frame 

 
Therefore, our goal is to develop a methodology for the 
calculation of the extrinsic parameters R and t, which define the 

orientation and the position of the acoustic subsystem against 
the optical one, respectively. 
Usually, the calibration methods are highly dependent on the 
sensors that compose the system and especially on the type of 
data they provide. In our case, the particular nature of the data 
acquired by the systems (3D point clouds) makes it possible to 
implement a methodology for extrinsic calibration based on a 
"direct" computation of the rigid transformation matrix that 
relates the reference systems associated with the optical and 
acoustic sensors. This is achieved through a simple registration 
of each pair of optical and acoustic 3D point clouds of a planar 
pattern, which is used as a target in the calibration procedure 
and acquired in different poses. Finally, the ability to obtain 
multiple estimates of the transformation matrix allows for 
implementing an appropriate optimization technique, in order to 
obtain more accurate results. 
The implemented methodology is composed of two separate 
data-processing threads that are related to the two sensory 
channels, which eventually merge in the last stages of the 
proposed solution. 
Starting from the synchronous acquisition of the n poses of the 
calibration panel during the early stage of the process, the entire 
methodology is aimed to obtain n pairs of 3D point clouds, 
where the n-th pair is formed by the optical ࡼ௢,௡ and the 
acoustic ࡼ௔,௡ 3D point clouds, in order to calculate, by means 
of coarse and fine registration algorithms, n estimates ܂୭ ௔,௡ of 
the rigid transformation matrix. At the end of the process, the 
final transformation matrix ܂௢ ௔

∗ is obtained by processing the 
dataset composed of n transformation matrices ܂௢ ௔,௡ obtained 
downstream of the previous registration stage. 

4.1 Acoustic image processing 

The 3D image provided by the acoustic camera can be corrupted 
either by false reflections caused by the secondary lobes of the 
receiving array or by the noise present in the acquisition phase 
of the backscattering signals. The latter is modelled as speckle 
noise. The secondary lobes are responsible for the blurring of 
the object, while the speckle noise causes a low response or no 
response at all within the object itself. 
So it is evident that the operations of filtering (noise reduction 
and the elimination of possible outliers) and segmentation 
(differentiation of objects and background in the observed 
scene) are to be considered as preliminary and mandatory steps 
for the execution of all fusion algorithms to be applied to this 
specific type of data (Murino et al., 2000a). 
While in literature there are a number of algorithms for filtering 
and segmentation with variable results and degrees of 
automation (Murino, 2001b), the solution adopted in this 
calibration method for the processing of the acoustic 3D point 
clouds representing the calibration panel in its different poses, 
provides for a completely manual filtering and segmentation 
procedure, performed through the open source software 
CloudCompare (CloudCompare, 2014), as the implementation 
of an automated procedure would require further, more focused 
research.  
 
4.2 Optical stereo images processing 

This subsection describes the procedures for the creation of a 
3D point cloud representing the optical calibration panel in its 
different poses, starting from the acquisition of a pair of stereo 
images. 

4.2.1 Image enhancement Underwater images are 
generally affected by degradations caused by the attenuation of 
light during its propagation in water (mostly due to absorption 
and scattering), such as low contrast, uneven lighting, blurring, 
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