Lecture dedicate to the 70th birthday of professor Paul Rabinowitz

Index and Stability of Symmetric Periodic Orbits in Hamiltonian Systems with Application to Figure-Eight Orbit

Xijun Hu Department of Mathematics Shandong University, P.R.C.

Shanzhong SUN Department of Mathematics Capital Normal University, P.R.C.

Period solution of n-body problems

• n particles with masses $m_i >$ 0, position $q_i \in \mathbf{R}^d$

$$m_i \ddot{q}_i = \frac{\partial U}{\partial q_i}, \quad i = 1, ..., n,$$
 (1)

$$U(q) = \sum_{1 \le i < j \le n} \frac{m_i m_j}{\|q_i - q_j\|}.$$
 (2)

• Euler-Lagrange equation of

$$\mathcal{A}(q(t)) = \int_0^T \left[\sum_{i=1}^n \frac{m_i \|\dot{q}_i(t)\|^2}{2} + U(q(t))\right] dt$$

on $W^{1,2}(\mathbf{R}/T\mathbf{Z},\widehat{\mathcal{X}})$,

$$\widehat{\mathcal{X}} := \{ q \mid \sum_{i=1}^{n} m_i q_i = 0, \ q_i \neq q_j, \ \forall i \neq j \}$$

• Find critical point of $\mathcal{A}(q(t))$, minimizer under topological constrain and symmetry constrain.

Linear stability

• Corresponding Hamiltonian systems

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}$$
(3)
$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}},$$
(4)
$$\sum_{n}^{n} ||p_{i}||^{2} - U(\alpha)$$

$$H(p,q) = \sum_{i=1}^{n} \frac{\|p_i\|^2}{2m_i} - U(q)$$

• Sp(2n) = {
$$M \in GL(2n, \mathbf{R}) | M^T JM = J$$
},
where $J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

$$\dot{z}(t) = JH'(t, z(t))$$
(5)

$$z(0) = z(T) \tag{6}$$

• Its fundamental solution $\gamma \equiv \gamma(t)$ is

$$\dot{\gamma}(t) = JH''(t, z(t))\gamma(t)$$
 (7)

$$\gamma(0) = I_{2n}. \tag{8}$$

- Fundamental solution $\gamma(t) \in \text{Sp}(2n)$, $t \in [0,T]$
- Spectral stability $\sigma(\gamma(T)) \in \mathbf{U}$
- Linear stability $\|\gamma(T)^k\|$ is bounded for $k \in \mathbb{N}$

• Linear stability implies $\gamma(T)$ splits into two dimensional rotations.

This from Y.Long, normal from, basic normal form analysis or paper of W. Ballman, G.Thorbergsson and W.Ziller

- Difference of Spectral and linear stability
- First integral: Momentum, angle momentum, energy
- Reduction the system
- Spectral stability is same, linear stability from the essential part
- Problem for the angle momentum?

The Figure-Eight orbit

- Fixed period *T*, the Klein group $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ with generators σ and τ acts on $\mathbf{R}/T\mathbf{Z}$ and on \mathbf{R}^2 as follows: $\sigma \cdot t = t + \frac{T}{2}, \ \tau \cdot t = -t + \frac{T}{2},$ $\sigma \cdot (x, y) = (-x, y), \ \tau \cdot (x, y) = (x, -y).$
- (Chenciner and Montgomery) There exists an "eight"-shaped planar loop $q : (\mathbf{R}/T\mathbf{Z}, 0) \rightarrow (\mathbf{R}^2, 0)$ with the following properties:
- (i) for each t,

$$q(t) + q(t + T/3) + q(t + 2T/3) = 0;$$

(ii) q(t) is equivariant with respect to the actions of $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ on $\mathbf{R}/T\mathbf{Z}$ and \mathbf{R}^2 above:

 $q(\sigma \cdot t) = \sigma \cdot q(t)$ and $q(\tau \cdot t) = \tau \cdot q(t);$

The Figure-Eight orbit

(iii) the loop $x: \mathbf{R}/T\mathbf{Z} \to \widehat{\mathcal{X}}$ defined by

x(t) = (q(t + 2T/3), q(t + T/3), q(t))

is a zero angular momentum T-periodic solution of the planar three-body problem with equal masses.

- Figure-Eight is minimizer in the D_6 -invariant loop space
- linear stable by Kapela and Simó, also Roberts use computer assisted proof
- Can't understand why it is stable
- Motivated by Maslov-type index. Y.Long,.....
 We study the linear stability from variation property

Symmetry period orbits in n-body problems

• Type I: (Cyclic Symmetry) $Q, S \in Sp(2n) \cap O(2n), SJ = JS$ and $S^m = Q$. $E = \{z \in W^{1,2}(\mathbb{R}/T\mathbb{Z}, \mathbb{R}^{2n}) \mid z(t) = Qz(t+T)\}.$

 \mathbf{Z}_m -group action with generator $g \in \mathbf{Z}_m$:

$$g: E \rightarrow E,$$

 $z(t) \mapsto Sz(t + \frac{T}{m}),$

- hence $g^m = id$.
- Hamiltonian function $H(t, z) \in \mathbb{C}^2(\mathbb{R} \times \mathbb{R}^{2n}, \mathbb{R})$ satisfies H(t-T/m, Sz) = H(t, z) (H(Sz) = H(z) in autonomous case),
- $f(z) = \int_0^T [(-J\frac{dz(t)}{dt}, z(t)) H(t, z(t))]dt$ is \mathbf{Z}_m -invariant.

Symmetry period orbits in n-body problems

• Type II: (Brake Symmetry) Let $S, N \in O(2n)$, and satisfy SJ = JS, $N^2 = id_{2n}$, NJ = -JN, $N = N^T$, $NS^T = SN$.

 $E = \{z \in W^{1,2}([0,T], \mathbb{R}^{2n}) \mid z(0) = Sz(T)\}$ time-reversal Z₂-group action given by then

$$g: E \rightarrow E,$$

 $z(t) \mapsto Nz(T-t),$

- H(t, z) satisfies H(T-t, Nz) = H(t, z) (H(Nz) = H(z) in autonomous case).
- functional f(z) is \mathbb{Z}_2 -invariant. $V^{\pm}(SN)$ and $V^{\pm}(N)$ are Lagrangian subspaces of $(\mathbb{R}^{2n}, \omega)$

Symmetry Hamiltonian systems

- These two group actions are motivated by the periodic solutions of the *n*-body problems appearing in recent literature A. Chenciner, Chen, D. L. Ferrario, S. Terracini,.....
- find critical point of f(z) in \mathbf{Z}^m invariant loop space by Palis principle
- Hamiltonian equation on the fundamental domain with corresponding boundary condition.
- Type I x(0) = Sx(T/m), Type II $x(0) \in V^+(SN)$, $x(T/2) \in V^+(N)$
- boundary condition given by $(x(0), x(T)) \in \Lambda$, Λ is lagrangian subspace of $(\mathbf{R}^{2n} \oplus \mathbf{R}^{2n}, -\omega \oplus \omega)$

Maslov index

- Maslov index of a path of Lagrangian subspaces V(t) with respect to a fixed Lagrangian subspace Λ (Cappell, Lee, Miller)
- $\Sigma_{\Lambda} = \{ V \in Lag(2n) | dim V \cap \Lambda \neq 0 \}$
- Maslov index $\mu(\Lambda, V(t))$ is intersection number of $e^{-\varepsilon J}V(t)$ with Σ_{Λ} , $0 < \varepsilon \ll 1$
- Positive direction is given by $e^{J(t-t_0)}V(t_0)$
- $V(t) = Gr(\gamma(t))$ is Lagrangian subspace $(\mathbf{R}^{2n} \oplus \mathbf{R}^{2n}, -\omega \oplus \omega)$

•
$$\mu(z) = \mu(\Lambda, V(t))$$

10

Bott-type iteration formula

- In 1956, Bott got his celebrated iteration formula for the Morse index of closed geodesics, and it was generalized by Ballmann, Thorbergsson, Ziller,.....
- The precise iteration formula of general Hamiltonian system was established by Long.
- the iteration could be regarded as a special group action (Type I) $Q = S = I_{2n}$.
- brake symmetry iteration formula has studied by Long, Liu, Zhang, Zhu. It is special case of Type II

Bott-type iteration formula

• Theorem 1. Let z be a solution fundamental solution $\gamma(t)$. for type I symmetry

$$\mu(Gr(Q^{T}), Gr(\gamma(t)), t \in [0, T]) = \sum_{i=1}^{m} \mu(Gr(\exp(\frac{i}{m}2\pi\sqrt{-1})S^{T}), Gr(\gamma(t)), t \in [0, T/m]), (9)$$

Type II symmetry

$$\mu(Gr(S^{T}), Gr(\gamma(t)), t \in [0, T]) =$$

$$\mu(V^{+}(N), \gamma(t)V^{+}(SN), t \in [0, \frac{T}{2}])$$

$$+\mu(V^{-}(N), \gamma(t)V^{-}(SN), t \in [0, \frac{T}{2}]). (10)$$

 We have noticed that the k-th iteration formula for brake symmetry is studied by Liu, Zhang by a different way.

Relation of Morse index and Maslov index

- n-body problem is also a second order system. Its solution, as the critical point of the action functional (on the symmetry loop space), has also Morse index.
- The relation between Morse index of solution of Lagrangian system and Maslov index of corresponding solution in Hamiltonian is an intriguing problem, has studied by many author, Duistermaat,...
- especially for the period case by An, Long, Viterbo,...
- No one is suitable for our use

Relation of Morse index and Maslov index

• Boundary condition of type I

$$x(0) = \bar{S}x(T/m), \bar{S} \in O(n)$$

Туре II

$$x(0) \in V_1, x(T/2) \in V_2,$$

 V_1 , V_2 are subspace of \mathbf{R}^n

• Corresponding boundary condition in Hamiltonian systems, Type I

$$\Lambda = Gr(S)$$
, with $S = \begin{pmatrix} \bar{S} & 0 \\ 0 & \bar{S} \end{pmatrix}$

• Type II, let $\bar{\Lambda}_i = V_i \oplus V_i^\perp \in \mathbf{R}^{2n}$, i = 1, 2, $x(0) \in \bar{\Lambda}_1, x(T) \in \bar{\Lambda}_2$

14

Relation of Morse index and Maslov index

- Theorem 2. For a critical point x of lagrangian function, with $\gamma(t)$ is the fundamental solution of the corresponding solution in Hamiltonian system
- under boundary condition Type I, $m^{-}(x) + \nu_{1}(\bar{S}) = \mu(Gr(S^{T}), Gr(\gamma(t))),$ where $\nu_{1}(\bar{S}) = \dim \ker(\bar{S} - I_{n}).$
- Under boundary condition Type II, $m^{-}(x) + \dim V_{1}^{\perp} \cap V_{2}^{\perp} = \mu(\bar{\Lambda}_{2}, \gamma(t)\bar{\Lambda}_{1}).$

•

Relation with the Maslov-type index

- Masov-type index (Conley, Ekeland, Long, Zehnder,....) for symplectic matrix path is a successful theory in study the stability of period solution in Hamiltonian systems
- $\operatorname{Sp}(2n)^{0}_{\omega} = \{M \in \operatorname{Sp}(2n) | \det(M I_{2n}) = 0\}, \omega \in \mathbf{U}$
- $\gamma(t) \in \text{Sp}(2n)$, $i_{\omega}(\gamma)$ is the intersection number of $e^{-\varepsilon J}\gamma(t)$ with $\text{Sp}(2n)^{0}_{\omega}$ (minus n if $\omega = 1$)
- Let $\tilde{\gamma}(t) = S\gamma(t), \ \xi(t) \in \text{Sp}(2n)$ be any path connected I_{2n} to S
- $\mu(Gr(\omega S^T), Gr(\gamma)) = i_{\omega}(\tilde{\gamma} * \xi) i_{\omega}(\xi)$

stability criteria

- Let e(M) the total algebraic multiplicity of all eigenvalues of M on U.
- $M \in \text{Sp}(2n)$, for any symplectic path η from I_{2n} to M, define $\mathcal{D}_{\omega}(M)$ for $\omega \in \mathbf{U}$ by

$$\mathcal{D}_{\omega}(M) = i_{\omega}(\eta) - i_1(\eta). \tag{11}$$

Following book of Long, this definition is independent of the choice of $\boldsymbol{\eta}$

• For function g(w) on [a, b], define its variation by

$$var(g(w), [a, b]) = \max\{\sum_{j=0}^{k-1} |g(w_{j+1}) - g(w_j)|, a = w_0 < \dots < w_k = b \text{ is any partition}\}.$$

stability criteria

$$e(M)/2 \ge var(\mathcal{D}_{\exp(\sqrt{-1}\theta)}(M), \theta \in [0, \pi]),$$
 by book of Long

• For period solution with type I symmetry, $\gamma(T) = (S\gamma(T/m))^m$

• let

$$f(\theta) = \mu(Gr(\exp(\sqrt{-1}\theta)S^T), Gr(\gamma_z(t)), \\ t \in [0, T/m]) + \mathcal{D}_{\exp(\sqrt{-1}\theta)}(S),$$

• Theorem 3.

 $e(\gamma_z(T))/2 \ge var(f(\theta), \theta \in [0, \pi]).$ (12)

18

linear instability criteria

 Observation: M ∈ Sp(2n) is linearly stable, then

$$\det(e^{-\varepsilon J}M - I_{2n}) > 0.$$
 (13)

- Theorem 4. For period solution with Type I symmetry, then the solution is linearly unstable if $\mu(Gr(S^T), Gr(\gamma_z(t)), t \in [0, T/m])$ is odd.
- we need to consider the affect of first integral if it has
- a simple criteria could given to judge the linear instability of closed geodesics

Application to Figure-Eight orbits

$$D_6 = \langle g_1, g_2 | g_1^6 = I_6, g_2^2 = I_6, g_1g_2 = g_2g_1^{-1} \rangle$$

- g_1 generator \mathbf{Z}_6 group is type I, g_2 type II
- fact 1. Figure-Eight nondegenerate and is local minimizer in the \mathbf{Z}_2 , \mathbf{Z}_3 invariant loop space
- fact 2. the symplectic Jordan form corresponding to the angular momentum of the monodromy matrix is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- Theorem 5. The Figure-Eight is linear stable under the condition of the above fact.

The Figure-Eight orbits

- We had verified the fact by matlab
- some question proposed by Chenciner: 1. Prove the Figure-Eight is the ${\bf Z}_3$ minimizer with a topology constrain
- \bullet 2. Figure-Eight is minimizer on the \mathbf{Z}_6 invariant loop space
- 3. Figure-Eight is minimizer on $D_3(\mathbf{Z}_3$ with the brake symmetry) invariant loop space
- the symplectic Jordan form corresponding to the angular momentum also studied by Chenciner, Féjoz, and Montgomery (numerical for detail form)

Idea of Prof Theorem 5.

• Configuration space

$$\mathcal{X} = \{x = (x_1, x_2, x_3) \in (\mathbb{R}^2)^3 | x_1 + x_2 + x_3 = 0\},\$$

• Z_6 group generator g_1 on \mathcal{X} is $(\tilde{g}_1 \circ u)(t) = \tilde{S}u(t+T/6)$ (14)

$$\tilde{S} = \begin{pmatrix} 1/2 & 0 & \sqrt{3}/2 & 0 \\ 0 & -1/2 & 0 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 0 & 1/2 & 0 \\ 0 & \sqrt{3}/2 & 0 & -1/2 \end{pmatrix},$$

• Set
$$S = \begin{pmatrix} \tilde{S} & 0 \\ 0 & \tilde{S} \end{pmatrix}$$

• Set
$$M = S\gamma(T/6)$$
, $\gamma(T) = M^6$

22

Symplectic normal form

- Configuration space
- x(t) is a period T solution of the Newton system, then $h^{-2/3}x(ht)$ is also a solution with period T/h
- energy is negative, differential with h get the corresponding normal form $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- normal form for angle momentum of M is $\begin{pmatrix} -1 & b \\ 0 & -1 \end{pmatrix}$, b = 1, -1, 0.
- b = -1 by fact 2. the essential matrix M_2 is 2×2

idea of proof

•
$$\forall \omega \in \mathbf{U}$$
 define
 $\mu(\omega) := \mu(Gr(\omega S^T), Gr(\gamma(t)), t \in [0, T/6]),$

- By Theorem 1. and 2., fact 1, $\mu(\omega) \ge 0$, $\mu(1) = \mu(-1) = 0$, $\mu(\exp(2\pi\sqrt{-1}/3)) = 1$
- $\mathcal{D}_{\omega}(S) = 0, \omega \in \mathbf{U}^+ \setminus \{\exp(\pi\sqrt{-1}/3), \exp(2\pi\sqrt{-1}/3)\}$ and

$$\mathcal{D}_{\exp(\pi\sqrt{-1}/3)}(S) = \mathcal{D}_{\exp(2\pi\sqrt{-1}/3)}(S) = -1.$$

• detail analysis could get Theorem 5.

Lagrangian solutions

- (1772 Lagrange) three bodies form an equilateral triangle, each body travels along a specific Keplerian orbit
- Sun-Jupiter-Trojan asteroids system
- The stability had studied by many authors: Gascheau, Routh, Danby, Roberts, Meyer, Schmidt, Martínez, Samà, Simó.....

•
$$\beta = \frac{27(m_1m_2 + m_1m_3 + m_2m_3)}{(m_1 + m_2 + m_3)^2}$$

- Linear stable if $\beta < 1$, eccentricity e = 0. Numerical for general
- minimizer under topology constrain
- Morse index is zero

Main Theorems

- ϕ_k Morse index of k-th iteration of the Lagrangian solution in the variational problem
- Theorem A(Hu-Sun) For the elliptic Lagrangian solution x(t),

$$2 \leq \phi_2 \leq 4 \tag{15}$$

$$\phi_2 \leq e(\gamma(T))/2. \tag{16}$$

- $\phi_2 = 4$, spectrally stable;
- $\phi_2 = 3$, linear unstable;
- $\phi_2 = 2$, spectrally stable if $\exists k \ge 3$, such that $\phi_k > 2(k-1)$.
- $\phi_k = 2(k-1)$, for all $k \in \mathbb{N}$, linear unstable.

26

Affect of First integral

• **Theorem**(Meyer and Schmidt)

$$\gamma(t) = \gamma_1(t) \diamond \gamma_2(t),$$

 $\gamma_1(t)$ is basic solution of Kepler solution, $\gamma_2(t)$ is the essential part.

- Solution is linear stable if $\gamma_2(t)$ is linear stable
- First integral of energy is clear

•

$$\gamma_1(T) = P^{-1}(N_1(1,1) \diamond I_2)P.$$

where $N_1(1,1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $P \in Sp(2n)$

• Fixed energy, all solution is periodic with same period

- Theorem(Gordon) The planar Kepler problem with prime period T is the minimizer of the action functional on the subspace of W^{1,2}(R/TZ, R²)-loops with winding number ±1 with respect to the origin.
- Local minimizer, Morse index is zero

$$i_1(\gamma_1) = 0$$

- For the Keplerian solution $\gamma_1(T) = P^{-1}(N_1(1,1) \diamond I_2)P.$
- $i_{\omega}(\gamma_1) = 2$, for $\omega \in \mathbf{U}$, $\omega \neq 1$
- Iteration formula is clear

Stability of Lagrangian solution

- Theorem (Venturelli, also Long, Zhang and Zhou) fix an element $(k_1, k_2, k_3) \in H_1(\hat{X}) \cong$ Z^3 . If $(k_1, k_2, k_3) = (1, 1, 1)$ or (-1, -1, -1), the minimizers among the loops in this homology class are the elliptic Lagrangian solutions with prime period T.
- The important of prime period is pointed by Long
- $\phi_1 = 0$
- $i_1(\gamma_2) = 0$, $i_{-1}(\gamma_2) \le 2$
- $\phi_2 = i_{-1}(\gamma_2) + 2$
- Prof of Theorem A

 I, II are linear stable, III is hyperbolic-elliptic, IV is hyperbolic with real eigenvalue, V is hyperbolic with complex eigenvalues.

- The region for $\gamma_2(2T)$ to be degenerate on boundary III
- $\phi_2 = 4$ on II, $\phi_2 = 3$ on III, $\phi_2 = 2$ on I, V, and IV
- $\phi_2 = 3$ on left boundary of III, $\phi_2 = 2$ on right boundary of III.
- $\phi_k = 2(k-1)$ on boundary of V, IV
- Normal formal or basic normal form is clear on each region