Lecture dedicate to the 70th birthday of professor Paul Rabinowitz

Index and Stability of

Symmetric Periodic Orbits in Hamiltonian Systems with Application to Figure-Eight Orbit

Xijun Hu

Department of Mathematics
Shandong University, P.R.C.

Shanzhong SUN

Department of Mathematics
Capital Normal University, P.R.C.

Period solution of n-body problems

- n particles with masses $m_{i}>0$, position $q_{i} \in \mathbf{R}^{d}$

$$
\begin{align*}
m_{i} \ddot{q}_{i} & =\frac{\partial U}{\partial q_{i}}, \quad i=1, \ldots, n \tag{1}\\
U(q) & =\sum_{1 \leq i<j \leq n} \frac{m_{i} m_{j}}{\left\|q_{i}-q_{j}\right\|} \tag{2}
\end{align*}
$$

- Euler-Lagrange equation of

$$
\mathcal{A}(q(t))=\int_{0}^{T}\left[\sum_{i=1}^{n} \frac{m_{i}\left\|\dot{q}_{i}(t)\right\|^{2}}{2}+U(q(t))\right] d t
$$

on $W^{1,2}(\mathbf{R} / T \mathbf{Z}, \widehat{\mathcal{X}})$,

$$
\widehat{\mathcal{X}}:=\left\{q \mid \sum_{i=1}^{n} m_{i} q_{i}=0, q_{i} \neq q_{j}, \forall i \neq j\right\}
$$

- Find critical point of $\mathcal{A}(q(t))$, minimizer under topological constrain and symmetry constrain.

Linear stability

- Corresponding Hamiltonian systems

$$
\begin{array}{r}
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \\
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \tag{4}\\
H(p, q)=\sum_{i=1}^{n} \frac{\left\|p_{i}\right\|^{2}}{2 m_{i}}-U(q)
\end{array}
$$

- $\operatorname{Sp}(2 n)=\left\{M \in \mathrm{GL}(2 n, \mathbf{R}) \mid M^{T} J M=J\right\}$,
where $J=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$.

$$
\begin{align*}
\dot{z}(t) & =J H^{\prime}(t, z(t)) \tag{5}\\
z(0) & =z(T) \tag{6}
\end{align*}
$$

- Its fundamental solution $\gamma \equiv \gamma(t)$ is

$$
\begin{align*}
\dot{\gamma}(t) & =J H^{\prime \prime}(t, z(t)) \gamma(t) \tag{7}\\
\gamma(0) & =I_{2 n} . \tag{8}
\end{align*}
$$

- Fundamental solution $\gamma(t) \in \operatorname{Sp}(2 n), t \in$ $[0, T]$
- Spectral stability $\sigma(\gamma(T)) \in \mathbf{U}$
- Linear stability $\left\|\gamma(T)^{k}\right\|$ is bounded for $k \in$ N
- Linear stability implies $\gamma(T)$ splits into two dimensional rotations.

This from Y.Long, normal from, basic normal form analysis or paper of W. Ballman, G.Thorbergsson and W.Ziller

- Difference of Spectral and linear stability
- First integral: Momentum, angle momentum, energy
- Reduction the system
- Spectral stability is same, linear stability from the essential part
- Problem for the angle momentum?

The Figure-Eight orbit

- Fixed period T, the Klein group $\mathbf{Z} / 2 \mathbf{Z} \times$ $\mathbf{Z} / 2 \mathbf{Z}$ with generators σ and τ acts on $\mathbf{R} / T \mathbf{Z}$ and on \mathbf{R}^{2} as follows:

$$
\begin{aligned}
& \sigma \cdot t=t+\frac{T}{2}, \tau \cdot t=-t+\frac{T}{2} \\
& \sigma \cdot(x, y)=(-x, y), \tau \cdot(x, y)=(x,-y) .
\end{aligned}
$$

- (Chenciner and Montgomery) There exists an "eight"-shaped planar loop $q:(\mathbf{R} / T \mathbf{Z}, 0) \rightarrow$ ($\mathbf{R}^{2}, 0$) with the following properties:
(i) for each t,

$$
q(t)+q(t+T / 3)+q(t+2 T / 3)=0 ;
$$

(ii) $q(t)$ is equivariant with respect to the actions of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ on $\mathbf{R} / T \mathbf{Z}$ and \mathbf{R}^{2} above:

$$
q(\sigma \cdot t)=\sigma \cdot q(t) \text { and } q(\tau \cdot t)=\tau \cdot q(t) ;
$$

The Figure-Eight orbit

(iii) the loop $x: \mathbf{R} / T \mathbf{Z} \rightarrow \hat{\mathcal{X}}$ defined by

$$
x(t)=(q(t+2 T / 3), q(t+T / 3), q(t))
$$

is a zero angular momentum T-periodic solution of the planar three-body problem with equal masses.

- Figure-Eight is minimizer in the D_{6}-invariant loop space
- linear stable by Kapela and Simó, also Roberts use computer assisted proof
- Can't understand why it is stable
- Motivated by Maslov-type index. Y.Long,...... We study the linear stability from variation property

Symmetry period orbits in n-body problems

- Type I: (Cyclic Symmetry) $Q, S \in \operatorname{Sp}(2 n) \cap$ $O(2 n), S J=J S$ and $S^{m}=Q$. $E=\left\{z \in W^{1,2}\left(\mathbf{R} / T \mathbf{Z}, \mathbf{R}^{2 n}\right) \mid z(t)=Q z(t+T)\right\}$.
\mathbf{Z}_{m}-group action with generator $g \in \mathbf{Z}_{m}$:

$$
\begin{aligned}
g: E & \rightarrow E, \\
z(t) & \mapsto S z\left(t+\frac{T}{m}\right),
\end{aligned}
$$

- hence $g^{m}=i d$.
- Hamiltonian function $H(t, z) \in \mathbf{C}^{2}\left(\mathbf{R} \times \mathbf{R}^{2 n}, \mathbf{R}\right)$ satisfies $H(t-T / m, S z)=H(t, z)(H(S z)=$ $H(z)$ in autonomous case),
- $f(z)=\int_{0}^{T}\left[\left(-J \frac{d z(t)}{d t}, z(t)\right)-H(t, z(t))\right] d t$ is \mathbf{Z}_{m}-invariant.

Symmetry period orbits in n-body problems

- Type II: (Brake Symmetry) Let $S, N \in$ $O(2 n)$, and satisfy $S J=J S, N^{2}=i d_{2 n}$, $N J=-J N, N=N^{T}, N S^{T}=S N$.

$$
E=\left\{z \in W^{1,2}\left([0, T], \mathbf{R}^{2 n}\right) \mid z(0)=S z(T)\right\}
$$

time-reversal \mathbf{Z}_{2}-group action given by then

$$
\begin{aligned}
g: E & \rightarrow E, \\
z(t) & \mapsto N z(T-t),
\end{aligned}
$$

- $H(t, z)$ satisfies $H(T-t, N z)=H(t, z)(H(N z)=$ $H(z)$ in autonomous case).
- functional $f(z)$ is \mathbf{Z}_{2}-invariant. $V^{ \pm}(S N)$ and $V^{ \pm}(N)$ are Lagrangian subspaces of $\left(\mathbf{R}^{2 n}, \omega\right)$

Symmetry Hamiltonian systems

- These two group actions are motivated by the periodic solutions of the n-body problems appearing in recent literature A. Chenciner, Chen, D. L. Ferrario, S. Terracini,..............
- find critical point of $f(z)$ in \mathbf{Z}^{m} invariant loop space by Palis principle
- Hamiltonian equation on the fundamental domain with corresponding boundary condition.
- Type I $x(0)=S x(T / m)$, Type II $x(0) \in$ $V^{+}(S N), x(T / 2) \in V^{+}(N)$
- boundary condition given by $(x(0), x(T)) \in$ \wedge, \wedge is lagrangian subspace of
$\left(\mathbf{R}^{2 n} \oplus \mathbf{R}^{2 n},-\omega \oplus \omega\right)$

Maslov index

- Maslov index of a path of Lagrangian subspaces $V(t)$ with respect to a fixed Lagrangian subspace \wedge (Cappell, Lee, Miller)
- $\Sigma_{\wedge}=\{V \in \operatorname{Lag}(2 n) \mid \operatorname{dim} V \cap \wedge \neq 0\}$
- Maslov index $\mu(\Lambda, V(t))$ is intersection number of $e^{-\varepsilon J} V(t)$ with $\Sigma_{\Lambda}, 0<\varepsilon \ll 1$
- Positive direction is given by $e^{J\left(t-t_{0}\right)} V\left(t_{0}\right)$
- $V(t)=G r(\gamma(t))$ is Lagrangian subspace $\left(\mathbf{R}^{2 n} \oplus \mathbf{R}^{2 n},-\omega \oplus \omega\right)$
- $\mu(z)=\mu(\Lambda, V(t))$

Bott-type iteration formula

- In 1956, Bott got his celebrated iteration formula for the Morse index of closed geodesics, and it was generalized by Ballmann, Thorbergsson, Ziller,.......
- The precise iteration formula of general Hamiltonian system was established by Long.
- the iteration could be regarded as a special group action (Type I) $Q=S=I_{2 n}$.
- brake symmetry iteration formula has studied by Long, Liu, Zhang, Zhu. It is special case of Type II

Bott-type iteration formula

- Theorem 1. Let z be a solution fundamental solution $\gamma(t)$. for type I symmetry

$$
\begin{array}{r}
\mu\left(G r\left(Q^{T}\right), G r(\gamma(t)), t \in[0, T]\right)= \\
\sum_{i=1}^{m} \mu\left(G r\left(\exp \left(\frac{i}{m} 2 \pi \sqrt{-1}\right) S^{T}\right), G r(\gamma(t))\right. \\
t \in[0, T / m]) \tag{9}
\end{array}
$$

Type II symmetry

$$
\begin{align*}
& \mu\left(G r\left(S^{T}\right), G r(\gamma(t)), t \in[0, T]\right)= \\
& \mu\left(V^{+}(N), \gamma(t) V^{+}(S N), t \in\left[0, \frac{T}{2}\right]\right) \\
+ & \mu\left(V^{-}(N), \gamma(t) V^{-}(S N), t \in\left[0, \frac{T}{2}\right]\right) \tag{10}
\end{align*}
$$

- We have noticed that the k-th iteration formula for brake symmetry is studied by Liu, Zhang by a different way.

Relation of Morse index and Maslov index

- n-body problem is also a second order system. Its solution, as the critical point of the action functional (on the symmetry loop space), has also Morse index.
- The relation between Morse index of solution of Lagrangian system and Maslov index of corresponding solution in Hamiltonian is an intriguing problem, has studied by many author, Duistermaat,...
- especially for the period case by An, Long, Viterbo,...
- No one is suitable for our use

Relation of Morse index and Maslov index

- Boundary condition of type I

$$
x(0)=\bar{S} x(T / m), \bar{S} \in O(n)
$$

Type II

$$
x(0) \in V_{1}, x(T / 2) \in V_{2},
$$

V_{1}, V_{2} are subspace of \mathbf{R}^{n}

- Corresponding boundary condition in Hamiltonian systems, Type I

$$
\wedge=G r(S), \text { with } S=\left(\begin{array}{cc}
\bar{S} & 0 \\
0 & \bar{S}
\end{array}\right)
$$

- Type II, let $\bar{\Lambda}_{i}=V_{i} \oplus V_{i}^{\perp} \in \mathbf{R}^{2 n}, i=1,2$,

$$
x(0) \in \bar{\Lambda}_{1}, x(T) \in \bar{\Lambda}_{2}
$$

Relation of Morse index and Maslov index

- Theorem 2. For a critical point x of lagrangian function, with $\gamma(t)$ is the fundamental solution of the corresponding solution in Hamiltonian system
- under boundary condition Type I,

$$
m^{-}(x)+\nu_{1}(\bar{S})=\mu\left(G r\left(S^{T}\right), G r(\gamma(t))\right)
$$

where $\nu_{1}(\bar{S})=\operatorname{dim} \operatorname{ker}\left(\bar{S}-I_{n}\right)$.

- Under boundary condition Type II,

$$
m^{-}(x)+\operatorname{dim} V_{1}^{\perp} \cap V_{2}^{\perp}=\mu\left(\bar{\Lambda}_{2}, \gamma(t) \bar{\Lambda}_{1}\right)
$$

Relation with the Maslov-type index

- Masov-type index (Conley, Ekeland, Long, Zehnder,.....) for symplectic matrix path is a successful theory in study the stability of period solution in Hamiltonian systems
- $\operatorname{Sp}(2 n){ }_{\omega}^{0}=\left\{M \in \operatorname{Sp}(2 n) \mid \operatorname{det}\left(M-I_{2 n}\right)=\right.$ $0\}, \omega \in \mathrm{U}$
- $\gamma(t) \in \operatorname{Sp}(2 n), i_{\omega}(\gamma)$ is the intersection number of $e^{-\varepsilon J} \gamma(t)$ with $\operatorname{Sp}(2 n)_{\omega}^{0}$ (minus n if $\omega=1$)
- Let $\tilde{\gamma}(t)=S \gamma(t), \xi(t) \in \operatorname{Sp}(2 n)$ be any path connected $I_{2 n}$ to S
- $\mu\left(G r\left(\omega S^{T}\right), G r(\gamma)\right)=i_{\omega}(\tilde{\gamma} * \xi)-i_{\omega}(\xi)$

stability criteria

- Let $e(M)$ the total algebraic multiplicity of all eigenvalues of M on \mathbf{U}.
- $M \in \operatorname{Sp}(2 n)$, for any symplectic path η from $I_{2 n}$ to M, define $\mathcal{D}_{\omega}(M)$ for $\omega \in \mathbf{U}$ by

$$
\begin{equation*}
\mathcal{D}_{\omega}(M)=i_{\omega}(\eta)-i_{1}(\eta) \tag{11}
\end{equation*}
$$

Following book of Long, this definition is independent of the choice of η

- For function $g(w)$ on $[a, b]$, define its variation by

$$
\begin{array}{r}
\operatorname{var}(g(w),[a, b])= \\
\max \left\{\sum_{j=0}^{k-1}\left|g\left(w_{j+1}\right)-g\left(w_{j}\right)\right|,\right. \\
\left.a=w_{0}<\cdots<w_{k}=b \text { is any partition }\right\} .
\end{array}
$$

stability criteria

$$
e(M) / 2 \geq \operatorname{var}\left(\mathcal{D}_{\exp (\sqrt{-1} \theta)}(M), \theta \in[0, \pi]\right)
$$

by book of Long

- For period solution with type I symmetry,

$$
\gamma(T)=(S \gamma(T / m))^{m}
$$

- let

$$
\begin{aligned}
f(\theta)=\mu(& G r\left(\exp (\sqrt{-1} \theta) S^{T}\right), G r\left(\gamma_{z}(t)\right), \\
& t \in[0, T / m])+\mathcal{D}_{\exp (\sqrt{-1} \theta)}(S),
\end{aligned}
$$

- Theorem 3.

$$
\begin{equation*}
e\left(\gamma_{z}(T)\right) / 2 \geq \operatorname{var}(f(\theta), \theta \in[0, \pi]) \tag{12}
\end{equation*}
$$

linear instability criteria

- Observation: $M \in \mathrm{Sp}(2 n)$ is linearly stable, then

$$
\begin{equation*}
\operatorname{det}\left(e^{-\varepsilon J} M-I_{2 n}\right)>0 . \tag{13}
\end{equation*}
$$

- Theorem 4. For period solution with Type I symmetry, then the solution is linearly unstable if $\mu\left(\operatorname{Gr}\left(S^{T}\right), \operatorname{Gr}\left(\gamma_{z}(t)\right), t \in[0, T / m]\right)$ is odd.
- we need to consider the affect of first integral if it has
- a simple criteria could given to judge the linear instability of closed geodesics

Application to Figure-Eight orbits

$$
D_{6}=<g_{1}, g_{2} \mid g_{1}^{6}=I_{6}, g_{2}^{2}=I_{6}, g_{1} g_{2}=g_{2} g_{1}^{-1}>.
$$

- g_{1} generator \mathbf{Z}_{6} group is type I, g_{2} type II
- fact 1. Figure-Eight nondegenerate and is local minimizer in the $\mathbf{Z}_{2}, \mathbf{Z}_{3}$ invariant loop space
- fact 2. the symplectic Jordan form corresponding to the angular momentum of the monodromy matrix is $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
- Theorem 5. The Figure-Eight is linear stable under the condition of the above fact.

The Figure-Eight orbits

- We had verified the fact by matlab
- some question proposed by Chenciner: 1. Prove the Figure-Eight is the Z_{3} minimizer with a topology constrain
- 2. Figure-Eight is minimizer on the \mathbf{Z}_{6} invariant loop space
- 3. Figure-Eight is minimizer on $D_{3}\left(\mathrm{Z}_{3}\right.$ with the brake symmetry) invariant loop space
- the symplectic Jordan form corresponding to the angular momentum also studied by Chenciner, Féjoz, and Montgomery (numerical for detail form)

Idea of Prof Theorem 5.

- Configuration space

$$
\mathcal{X}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(\mathbf{R}^{2}\right)^{3} \mid x_{1}+x_{2}+x_{3}=0\right\},
$$

- Z_{6} group generator g_{1} on \mathcal{X} is

$$
\begin{equation*}
\left(\tilde{g}_{1} \circ u\right)(t)=\tilde{S} u(t+T / 6) \tag{14}
\end{equation*}
$$

$$
\tilde{S}=\left(\begin{array}{cccc}
1 / 2 & 0 & \sqrt{3} / 2 & 0 \\
0 & -1 / 2 & 0 & -\sqrt{3} / 2 \\
-\sqrt{3} / 2 & 0 & 1 / 2 & 0 \\
0 & \sqrt{3} / 2 & 0 & -1 / 2
\end{array}\right),
$$

- Set $S=\left(\begin{array}{cc}\tilde{S} & 0 \\ 0 & \tilde{S}\end{array}\right)$
- Set $M=S \gamma(T / 6), \gamma(T)=M^{6}$

Symplectic normal form

- Configuration space
- $x(t)$ is a period T solution of the Newton system, then $h^{-2 / 3} x(h t)$ is also a solution with period T / h
- energy is negative, differential with h get the corresponding normal form $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
- normal form for angle momentum of M is $\left(\begin{array}{cc}-1 & b \\ 0 & -1\end{array}\right), b=1,-1,0$.
- $b=-1$ by fact 2 . the essential matrix M_{2} is 2×2

idea of proof

- $\forall \omega \in \mathbf{U}$ define

$$
\mu(\omega):=\mu\left(G r\left(\omega S^{T}\right), G r(\gamma(t)), t \in[0, T / 6]\right),
$$

- By Theorem 1. and 2., fact 1, $\mu(\omega) \geq 0$, $\mu(1)=\mu(-1)=0, \mu(\exp (2 \pi \sqrt{-1} / 3))=1$
- $\mathcal{D}_{\omega}(S)=0, \omega \in \mathbf{U}^{+} \backslash\{\exp (\pi \sqrt{-1} / 3), \exp (2 \pi \sqrt{-1} /$ and

$$
\mathcal{D}_{\exp (\pi \sqrt{-1} / 3)}(S)=\mathcal{D}_{\exp (2 \pi \sqrt{-1} / 3)}(S)=-1
$$

- detail analysis could get Theorem 5 .

Lagrangian solutions

- (1772 Lagrange) three bodies form an equilateral triangle, each body travels along a specific Keplerian orbit
- Sun-Jupiter-Trojan asteroids system
- The stability had studied by many authors: Gascheau, Routh, Danby, Roberts, Meyer, Schmidt, Martínez, Samà, Simó......
- $\beta=\frac{27\left(m_{1} m_{2}+m_{1} m_{3}+m_{2} m_{3}\right)}{\left(m_{1}+m_{2}+m_{3}\right)^{2}}$
- Linear stable if $\beta<1$, eccentricity $e=0$. Numerical for general
- minimizer under topology constrain
- Morse index is zero

Main Theorems

- ϕ_{k} Morse index of k-th iteration of the Lagrangian solution in the variational problem
- Theorem $\mathbf{A}(H u-S u n)$ For the elliptic Lagrangian solution $x(t)$,

$$
\begin{align*}
2 & \leq \phi_{2} \leq 4 \tag{15}\\
\phi_{2} & \leq e(\gamma(T)) / 2 \tag{16}
\end{align*}
$$

- $\phi_{2}=4$, spectrally stable;
- $\phi_{2}=3$, linear unstable;
- $\phi_{2}=2$, spectrally stable if $\exists k \geq 3$, such that $\phi_{k}>2(k-1)$.
- $\phi_{k}=2(k-1)$, for all $k \in \mathbf{N}$, linear unstable.

Affect of First integral

- Theorem(Meyer and Schmidt)

$$
\gamma(t)=\gamma_{1}(t) \diamond \gamma_{2}(t),
$$

$\gamma_{1}(t)$ is basic solution of Kepler solution, $\gamma_{2}(t)$ is the essential part.

- Solution is linear stable if $\gamma_{2}(t)$ is linear stable
- First integral of energy is clear

$$
\gamma_{1}(T)=P^{-1}\left(N_{1}(1,1) \diamond I_{2}\right) P .
$$

where $N_{1}(1,1)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), P \in \operatorname{Sp}(2 n)$

- Fixed energy, all solution is periodic with same period
- Theorem(Gordon) The planar Kepler problem with prime period T is the minimizer of the action functional on the subspace of $W^{1,2}\left(\mathbf{R} / T \mathbf{Z}, \mathbf{R}^{2}\right)$-loops with winding number ± 1 with respect to the origin.
- Local minimizer, Morse index is zero

$$
i_{1}\left(\gamma_{1}\right)=0
$$

- For the Keplerian solution

$$
\gamma_{1}(T)=P^{-1}\left(N_{1}(1,1) \diamond I_{2}\right) P .
$$

- $i_{\omega}\left(\gamma_{1}\right)=2$, for $\omega \in \mathbf{U}, \omega \neq 1$
- Iteration formula is clear

Stability of Lagrangian solution

- Theorem (Venturelli, also Long, Zhang and Zhou) fix an element $\left(k_{1}, k_{2}, k_{3}\right) \in H_{1}(\hat{\mathcal{X}}) \cong$ \mathbf{Z}^{3}. If $\left(k_{1}, k_{2}, k_{3}\right)=(1,1,1)$ or $(-1,-1,-1)$, the minimizers among the loops in this homology class are the elliptic Lagrangian solutions with prime period T.
- The important of prime period is pointed by Long
- $\phi_{1}=0$
- $i_{1}\left(\gamma_{2}\right)=0, i_{-1}\left(\gamma_{2}\right) \leq 2$
- $\phi_{2}=i_{-1}\left(\gamma_{2}\right)+2$
- Prof of Theorem A
- I, II are linear stable, III is hyperbolic-elliptic, IV is hyperbolic with real eigenvalue, V is hyperbolic with complex eigenvalues.

- The region for $\gamma_{2}(2 T)$ to be degenerate on boundary III
- $\phi_{2}=4$ on II, $\phi_{2}=3$ on III, $\phi_{2}=2$ on I, V, and IV
- $\phi_{2}=3$ on left boundary of III, $\phi_{2}=2$ on right boundary of III.
- $\phi_{k}=2(k-1)$ on boundary of V, IV
- Normal formal or basic normal form is clear on each region

