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Period solution of n-body problems

• n particles with masses mi > 0, position
qi ∈ Rd

miq̈i =
∂U

∂qi
, i = 1, ..., n, (1)

U(q) =
∑

1≤i<j≤n

mimj

‖qi − qj‖
. (2)

• Euler-Lagrange equation of

A(q(t)) =
∫ T

0
[

n∑

i=1

mi‖q̇i(t)‖2
2

+ U(q(t))]dt

on W1,2(R/TZ, X̂ ),

X̂ := {q|
n∑

i=1

miqi = 0, qi 6= qj, ∀i 6= j}

• Find critical point of A(q(t)), minimizer
under topological constrain and symmetry
constrain.
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Linear stability

• Corresponding Hamiltonian systems

ṗi = −∂H

∂qi
(3)

q̇i =
∂H

∂pi
, (4)

H(p, q) =
∑n

i=1
‖pi‖2
2mi

− U(q)

• Sp(2n) = {M ∈ GL(2n,R) |MTJM = J},
where J =

(
0 −In

In 0

)
.

•

ż(t) = JH ′(t, z(t)) (5)

z(0) = z(T ) (6)
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• Its fundamental solution γ ≡ γ(t) is

γ̇(t) = JH ′′(t, z(t))γ(t) (7)

γ(0) = I2n. (8)

• Fundamental solution γ(t) ∈ Sp(2n), t ∈
[0, T ]

• Spectral stability σ(γ(T )) ∈ U

• Linear stability ‖γ(T )k‖ is bounded for k ∈
N
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• Linear stability implies γ(T ) splits into two

dimensional rotations.

This from Y.Long, normal from, basic nor-

mal form analysis or paper of W. Ballman,

G.Thorbergsson and W.Ziller

• Difference of Spectral and linear stability

• First integral: Momentum, angle momen-

tum, energy

• Reduction the system

• Spectral stability is same, linear stability

from the essential part

• Problem for the angle momentum?
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The Figure-Eight orbit

• Fixed period T , the Klein group Z/2Z ×
Z/2Z with generators σ and τ acts on R/TZ
and on R2 as follows:
σ · t = t + T

2 , τ · t = −t + T
2 ,

σ · (x, y) = (−x, y), τ · (x, y) = (x,−y).

• (Chenciner and Montgomery) There exists
an ”eight”-shaped planar loop q : (R/TZ,0) →
(R2,0) with the following properties:

(i) for each t,

q(t) + q(t + T/3) + q(t + 2T/3) = 0;

(ii) q(t) is equivariant with respect to the ac-
tions of Z/2Z × Z/2Z on R/TZ and R2

above:

q(σ · t) = σ · q(t) and q(τ · t) = τ · q(t);
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The Figure-Eight orbit

(iii) the loop x : R/TZ → X̂ defined by

x(t) = (q(t + 2T/3), q(t + T/3), q(t))

is a zero angular momentum T -periodic so-
lution of the planar three-body problem with
equal masses.

• Figure-Eight is minimizer in the D6-invariant
loop space

• linear stable by Kapela and Simó, also Roberts
use computer assisted proof

• Can’t understand why it is stable

• Motivated by Maslov-type index. Y.Long,......
We study the linear stability from variation
property
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Symmetry period orbits in n-body
problems

• Type I: (Cyclic Symmetry) Q, S ∈ Sp(2n)∩
O(2n), SJ = JS and Sm = Q.

E = {z ∈ W1,2(R/TZ,R2n) | z(t) = Qz(t+T )}.

Zm-group action with generator g ∈ Zm:

g : E → E,

z(t) 7→ Sz(t +
T

m
),

• hence gm = id.

• Hamiltonian function H(t, z) ∈ C2(R×R2n,R)
satisfies H(t−T/m, Sz) = H(t, z) (H(Sz) =
H(z) in autonomous case),

• f(z) =
∫ T
0 [(−J dz(t)

dt , z(t)) − H(t, z(t))]dt is
Zm-invariant.
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Symmetry period orbits in n-body
problems

• Type II: (Brake Symmetry) Let S, N ∈
O(2n), and satisfy SJ = JS, N2 = id2n,
NJ = −JN , N = NT , NST = SN .

E = {z ∈ W1,2([0, T ],R2n) | z(0) = Sz(T )}
time-reversal Z2-group action given by then

g : E → E,

z(t) 7→ Nz(T − t),

• H(t, z) satisfies H(T−t, Nz) = H(t, z) (H(Nz) =
H(z) in autonomous case).

• functional f(z) is Z2-invariant. V ±(SN)
and V ±(N) are Lagrangian subspaces of
(R2n, ω)
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Symmetry Hamiltonian systems

• These two group actions are motivated by
the periodic solutions of the n-body prob-
lems appearing in recent literature A. Chenciner,
Chen, D. L. Ferrario, S. Terracini,..............

• find critical point of f(z) in Zm invariant
loop space by Palis principle

• Hamiltonian equation on the fundamental
domain with corresponding boundary con-
dition.

• Type I x(0) = Sx(T/m), Type II x(0) ∈
V +(SN), x(T/2) ∈ V +(N)

• boundary condition given by (x(0), x(T )) ∈
Λ, Λ is lagrangian subspace of
(R2n ⊕R2n,−ω ⊕ ω)
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Maslov index

• Maslov index of a path of Lagrangian sub-

spaces V (t) with respect to a fixed La-

grangian subspace Λ (Cappell, Lee, Miller)

• ΣΛ = {V ∈ Lag(2n)|dimV ∩ Λ 6= 0}

• Maslov index µ(Λ, V (t)) is intersection num-

ber of e−εJV (t) with ΣΛ, 0 < ε ¿ 1

• Positive direction is given by eJ(t−t0)V (t0)

• V (t) = Gr(γ(t)) is Lagrangian subspace

(R2n ⊕R2n,−ω ⊕ ω)

• µ(z) = µ(Λ, V (t))
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Bott-type iteration formula

• In 1956, Bott got his celebrated iteration

formula for the Morse index of closed geodesics,

and it was generalized by Ballmann, Thor-

bergsson, Ziller,.......

• The precise iteration formula of general

Hamiltonian system was established by Long.

• the iteration could be regarded as a special

group action (Type I) Q = S = I2n.

• brake symmetry iteration formula has stud-

ied by Long, Liu, Zhang, Zhu. It is special

case of Type II
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Bott-type iteration formula

• Theorem 1. Let z be a solution funda-

mental solution γ(t). for type I symmetry

µ(Gr(QT ), Gr(γ(t)), t ∈ [0, T ]) =
m∑

i=1

µ(Gr(exp(
i

m
2π
√−1)ST ), Gr(γ(t)),

t ∈ [0, T/m]), (9)

Type II symmetry

µ(Gr(ST ), Gr(γ(t)), t ∈ [0, T ]) =

µ(V +(N), γ(t)V +(SN), t ∈ [0,
T

2
])

+µ(V −(N), γ(t)V −(SN), t ∈ [0,
T

2
]). (10)

• We have noticed that the k-th iteration for-

mula for brake symmetry is studied by Liu,

Zhang by a different way.
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Relation of Morse index and Maslov index

• n-body problem is also a second order sys-

tem. Its solution, as the critical point of

the action functional (on the symmetry loop

space), has also Morse index.

• The relation between Morse index of solu-

tion of Lagrangian system and Maslov in-

dex of corresponding solution in Hamilto-

nian is an intriguing problem, has studied

by many author, Duistermaat,...

• especially for the period case by An, Long,

Viterbo,...

• No one is suitable for our use
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Relation of Morse index and Maslov index

• Boundary condition of type I

x(0) = S̄x(T/m), S̄ ∈ O(n)

Type II

x(0) ∈ V1, x(T/2) ∈ V2,

V1, V2 are subspace of Rn

• Corresponding boundary condition in Hamil-

tonian systems, Type I

Λ = Gr(S), with S =

(
S̄ 0
0 S̄

)

• Type II, let Λ̄i = Vi ⊕ V ⊥i ∈ R2n, i = 1,2,

x(0) ∈ Λ̄1, x(T ) ∈ Λ̄2
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Relation of Morse index and Maslov index

• Theorem 2. For a critical point x of la-

grangian function, with γ(t) is the funda-

mental solution of the corresponding solu-

tion in Hamiltonian system

• under boundary condition Type I,

m−(x) + ν1(S̄) = µ(Gr(ST ), Gr(γ(t))),

where ν1(S̄) = dimker(S̄ − In).

• Under boundary condition Type II,

m−(x) + dimV ⊥1 ∩ V ⊥2 = µ(Λ̄2, γ(t)Λ̄1).

.
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Relation with the Maslov-type index

• Masov-type index (Conley, Ekeland, Long,

Zehnder,..... ) for symplectic matrix path

is a successful theory in study the stability

of period solution in Hamiltonian systems

• Sp(2n)0ω = {M ∈ Sp(2n)|det(M − I2n) =

0}, ω ∈ U

• γ(t) ∈ Sp(2n), iω(γ) is the intersection num-

ber of e−εJγ(t) with Sp(2n)0ω (minus n if

ω = 1)

• Let γ̃(t) = Sγ(t), ξ(t) ∈ Sp(2n) be any

path connected I2n to S

• µ(Gr(ωST ), Gr(γ)) = iω(γ̃ ∗ ξ)− iω(ξ)
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stability criteria

• Let e(M) the total algebraic multiplicity of
all eigenvalues of M on U.

• M ∈ Sp(2n), for any symplectic path η

from I2n to M , define Dω(M) for ω ∈ U

by

Dω(M) = iω(η)− i1(η). (11)

Following book of Long, this definition is
independent of the choice of η

• For function g(w) on [a, b], define its vari-
ation by

var(g(w), [a, b]) =

max{
k−1∑

j=0

|g(wj+1)− g(wj)|,

a = w0 < · · · < wk = b is any partition}.
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stability criteria

•

e(M)/2 ≥ var(Dexp(
√−1θ)(M), θ ∈ [0, π]),

by book of Long

• For period solution with type I symmetry,

γ(T ) = (Sγ(T/m))m

• let

f(θ) = µ(Gr(exp(
√−1θ)ST ), Gr(γz(t)),

t ∈ [0, T/m]) +Dexp(
√−1θ)(S),

• Theorem 3.

e(γz(T ))/2 ≥ var(f(θ), θ ∈ [0, π]). (12)
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linear instability criteria

• Observation: M ∈ Sp(2n) is linearly stable,

then

det(e−εJM − I2n) > 0. (13)

• Theorem 4. For period solution with Type

I symmetry, then the solution is linearly un-

stable if µ(Gr(ST ), Gr(γz(t)), t ∈ [0, T/m])

is odd.

• we need to consider the affect of first in-

tegral if it has

• a simple criteria could given to judge the

linear instability of closed geodesics
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Application to Figure-Eight orbits

•
D6 =< g1, g2 | g6

1 = I6, g2
2 = I6, g1g2 = g2g−1

1 > .

• g1 generator Z6 group is type I, g2 type II

• fact 1. Figure-Eight nondegenerate and is
local minimizer in the Z2, Z3 invariant loop
space

• fact 2. the symplectic Jordan form corre-
sponding to the angular momentum of the

monodromy matrix is

(
1 1
0 1

)

• Theorem 5. The Figure-Eight is linear
stable under the condition of the above
fact.

20



The Figure-Eight orbits

• We had verified the fact by matlab

• some question proposed by Chenciner:
1. Prove the Figure-Eight is the Z3 mini-
mizer with a topology constrain

• 2. Figure-Eight is minimizer on the Z6 in-
variant loop space

• 3. Figure-Eight is minimizer on D3(Z3 with
the brake symmetry) invariant loop space

• the symplectic Jordan form corresponding
to the angular momentum also studied by
Chenciner, Féjoz, and Montgomery (nu-
merical for detail form)
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Idea of Prof Theorem 5.

• Configuration space

X = {x = (x1, x2, x3) ∈ (R2)3 |x1+x2+x3 = 0},

• Z6 group generator g1 on X is

(g̃1 ◦ u)(t) = S̃u(t + T/6) (14)

•

S̃ =




1/2 0
√

3/2 0
0 −1/2 0 −√3/2

−√3/2 0 1/2 0
0

√
3/2 0 −1/2




,

• Set S =

(
S̃ 0
0 S̃

)

• Set M = Sγ(T/6), γ(T ) = M6
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Symplectic normal form

• Configuration space

• x(t) is a period T solution of the Newton

system, then h−2/3x(ht) is also a solution

with period T/h

• energy is negative, differential with h get

the corresponding normal form

(
1 1
0 1

)

• normal form for angle momentum of M is(
−1 b
0 −1

)
, b = 1,−1,0.

• b = −1 by fact 2. the essential matrix M2

is 2× 2
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idea of proof

• ∀ω ∈ U define

µ(ω) := µ(Gr(ωST ), Gr(γ(t)), t ∈ [0, T/6]),

• By Theorem 1. and 2., fact 1, µ(ω) ≥ 0,

µ(1) = µ(−1) = 0, µ(exp(2π
√−1/3)) = 1

• Dω(S) = 0, ω ∈ U+\{exp(π
√−1/3), exp(2π

√−1/3)},
and

Dexp(π
√−1/3)(S) = Dexp(2π

√−1/3)(S) = −1.

• detail analysis could get Theorem 5.
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Lagrangian solutions

• (1772 Lagrange) three bodies form an equi-
lateral triangle, each body travels along a
specific Keplerian orbit

• Sun-Jupiter-Trojan asteroids system

• The stability had studied by many authors:
Gascheau, Routh, Danby, Roberts, Meyer,
Schmidt, Mart́ınez, Samà, Simó......

• β = 27(m1m2+m1m3+m2m3)
(m1+m2+m3)2

• Linear stable if β < 1, eccentricity e = 0.
Numerical for general

• minimizer under topology constrain

• Morse index is zero
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Main Theorems

• φk Morse index of k-th iteration of the La-
grangian solution in the variational problem

• Theorem A(Hu-Sun) For the elliptic La-
grangian solution x(t),

2 ≤ φ2 ≤ 4 (15)

φ2 ≤ e(γ(T ))/2. (16)

• φ2 = 4, spectrally stable;

• φ2 = 3, linear unstable;

• φ2 = 2, spectrally stable if ∃k ≥ 3, such
that φk > 2(k − 1).

• φk = 2(k−1), for all k ∈ N, linear unstable.
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Affect of First integral

• Theorem(Meyer and Schmidt)

γ(t) = γ1(t) ¦ γ2(t),

γ1(t) is basic solution of Kepler solution,
γ2(t) is the essential part.

• Solution is linear stable if γ2(t) is linear sta-
ble

• First integral of energy is clear

•
γ1(T ) = P−1(N1(1,1) ¦ I2)P.

where N1(1,1) =

(
1 1
0 1

)
, P ∈ Sp(2n)

• Fixed energy, all solution is periodic with
same period
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• Theorem(Gordon) The planar Kepler prob-

lem with prime period T is the minimizer

of the action functional on the subspace of

W1,2(R/TZ,R2)-loops with winding num-

ber ±1 with respect to the origin.

• Local minimizer, Morse index is zero

i1(γ1) = 0

• For the Keplerian solution

γ1(T ) = P−1(N1(1,1) ¦ I2)P.

• iω(γ1) = 2, for ω ∈ U, ω 6= 1

• Iteration formula is clear
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Stability of Lagrangian solution

• Theorem (Venturelli, also Long, Zhang
and Zhou) fix an element (k1, k2, k3) ∈ H1(X̂ ) ∼=
Z3. If (k1, k2, k3) = (1,1,1) or (−1,−1,−1),
the minimizers among the loops in this ho-
mology class are the elliptic Lagrangian so-
lutions with prime period T .

• The important of prime period is pointed
by Long

• φ1 = 0

• i1(γ2) = 0, i−1(γ2) ≤ 2

• φ2 = i−1(γ2) + 2

• Prof of Theorem A
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• I, II are linear stable, III is hyperbolic-elliptic,

IV is hyperbolic with real eigenvalue, V is

hyperbolic with complex eigenvalues.

I

III

II

V

IV

4 520

1.0

0.0
31

0.5
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• The region for γ2(2T ) to be degenerate on

boundary III

• φ2 = 4 on II, φ2 = 3 on III, φ2 = 2 on I, V,

and IV

• φ2 = 3 on left boundary of III, φ2 = 2 on

right boundary of III.

• φk = 2(k − 1) on boundary of V, IV

• Normal formal or basic normal form is clear

on each region
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